Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Signalling Pathways Involved in Microglial Activation in Alzheimer’s Disease and Potential Neuroprotective Role of Phytoconstituents

Author(s): Mohd Uzair Ali, Laiba Anwar, Mohd Humair Ali, Mohammad Kashif Iqubal, Ashif Iqubal*, Sanjula Baboota and Javed Ali*

Volume 23, Issue 7, 2024

Published on: 13 January, 2023

Page: [819 - 840] Pages: 22

DOI: 10.2174/1871527322666221223091529

Price: $65

Abstract

Alzheimer’s disease (AD) is a commonly reported neurodegenerative disorder associated with dementia and cognitive impairment. The pathophysiology of AD comprises Aβ, hyperphosphorylated tau protein formation, abrupt cholinergic cascade, oxidative stress, neuronal apoptosis, and neuroinflammation. Recent findings have established the profound role of immunological dysfunction and microglial activation in the pathogenesis of AD. Microglial activation is a multifactorial cascade encompassing various signalling molecules and pathways such as Nrf2/NLRP3/NF-kB/p38 MAPKs/ GSK-3β. Additionally, deposited Aβ or tau protein triggers microglial activation and accelerates its pathogenesis. Currently, the FDA-approved therapeutic regimens are based on the modulation of the cholinergic system, and recently, one more drug, aducanumab, has been approved by the FDA. On the one hand, these drugs only offer symptomatic relief and not a cure for AD. Additionally, no targetedbased microglial medicines are available for treating and managing AD. On the other hand, various natural products have been explored for the possible anti-Alzheimer effect via targeting microglial activation or different targets of microglial activation. Therefore, the present review focuses on exploring the mechanism and associated signalling related to microglial activation and a detailed description of various natural products that have previously been reported with anti-Alzheimer’s effect via mitigation of microglial activation. Additionally, we have discussed the various patents and clinical trials related to managing and treating AD.

Graphical Abstract

[1]
Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 2004; 3(3): 205-14.
[http://dx.doi.org/10.1038/nrd1330] [PMID: 15031734]
[2]
Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007; 3(3): 186-91.
[http://dx.doi.org/10.1016/j.jalz.2007.04.381] [PMID: 19595937]
[3]
Sanders O, Rajagopal L. Phosphodiesterase inhibitors for alzheimer’s disease: A systematic review of clinical trials and epidemiology with a mechanistic rationale. J Alzheimers Dis Rep 2020; 4(1): 185-215.
[http://dx.doi.org/10.3233/ADR-200191] [PMID: 32715279]
[4]
Javaid SF, Giebel C, Khan MA, Hashim MJ. Epidemiology of alzheimer’s disease and other dementias: Rising global burden and forecasted trends. F1000 Res 2021; 2021(10): 425.
[5]
Dumurgier J, Sabia S. Epidemiology of Alzheimer’s disease: Latest trends. Rev Prat 2020; 70(2): 149-51.
[PMID: 32877124]
[6]
Yasuno F, Minami H, Hattori H. Interaction effect of alzheimer’s disease pathology and education, occupation, and socioeconomic status as a proxy for cognitive reserve on cognitive performance: In vivo positron emission tomography study. Psychogeriatrics 2020; 20(5): 585-93.
[http://dx.doi.org/10.1111/psyg.12552] [PMID: 32285577]
[7]
Hebert LE, Scherr PA, McCann JJ, Beckett LA, Evans DA. Is the risk of developing alzheimer’s disease greater for women than for men? Am J Epidemiol 2001; 153(2): 132-6.
[http://dx.doi.org/10.1093/aje/153.2.132] [PMID: 11159157]
[8]
Emilsson L, Saetre P, Jazin E. Low mRNA levels of RGS4 splice variants in Alzheimer’s disease: Association between a rare haplotype and decreased mRNA expression. Synapse 2006; 59(3): 173-6.
[http://dx.doi.org/10.1002/syn.20226] [PMID: 16358332]
[9]
Chauhan V, Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006; 13(3): 195-208.
[http://dx.doi.org/10.1016/j.pathophys.2006.05.004] [PMID: 16781128]
[10]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[11]
Lukiw WJ. Emerging amyloid beta (Ab) peptide modulators for the treatment of Alzheimer’s disease (AD). Expert Opin Emerg Drugs 2008; 13(2): 255-71.
[http://dx.doi.org/10.1517/14728214.13.2.255] [PMID: 18537520]
[12]
Coneys R, Wood IC. Alzheimer’s disease: The potential of epigenetic treatments and current clinical candidates. Neurodegener Dis Manag 2020; 10(3) : nmt-2019 -0034.
[http://dx.doi.org/10.2217/nmt-2019-0034] [PMID: 32552286]
[13]
Hu H, Forsey RJ, Blades TJ, Barratt MEJ, Parmar P, Powell JR. Antioxidants may contribute in the fight against ageing: An in vitro model. Mech Ageing Dev 2001; 121(1-3): 217-30.
[http://dx.doi.org/10.1016/S0047-6374(00)00212-8] [PMID: 11164475]
[14]
Sharma AM, Thomas TL, Woodard DR, Kashmer OM, Diamond MI. Tau monomer encodes strains. eLife 2018; 7: e37813.
[http://dx.doi.org/10.7554/eLife.37813] [PMID: 30526844]
[15]
Uddin MS, Al Mamun A, Rahman MA, et al. Emerging proof of protein misfolding and interactions in multifactorial alzheimer’s disease. Curr Top Med Chem 2020; 20(26): 2380-90.
[http://dx.doi.org/10.2174/1568026620666200601161703] [PMID: 32479244]
[16]
Sanabria-Castro A, Alvarado-Echeverría I, Monge-Bonilla C. Molecular pathogenesis of alzheimer’s disease: An update. Ann Neurosci 2017; 24(1): 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[17]
Mandelkow E, Mandelkow E. Tau in alzheimer’s disease. Trends Cell Biol 1998; 8(11): 425-7.
[http://dx.doi.org/10.1016/S0962-8924(98)01368-3] [PMID: 9854307]
[18]
Markesbery WR. The role of oxidative stress in Alzheimer disease. Arch Neurol 1999; 56(12): 1449-52.
[http://dx.doi.org/10.1001/archneur.56.12.1449] [PMID: 10593298]
[19]
Rezaie P, Trillo-Pazos G, Greenwood J, Everall IP, Male DK. Motility and ramification of human fetal microglia in culture: An investigation using time-lapse video microscopy and image analysis. Exp Cell Res 2002; 274(1): 68-82.
[http://dx.doi.org/10.1006/excr.2001.5431] [PMID: 11855858]
[20]
Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009; 6(7): e1000113.
[http://dx.doi.org/10.1371/journal.pmed.1000113] [PMID: 19636355]
[21]
Podleśny-Drabiniok A, Marcora E, Goate AM. Microglial phagocytosis: A disease-associated process emerging from alzheimer’s disease genetics. Trends Neurosci 2020; 43(12): 965-79.
[http://dx.doi.org/10.1016/j.tins.2020.10.002] [PMID: 33127097]
[22]
Nimmerjahn A, Kirchhoff F, Helmchen F. Neuroscience: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 1979; 2005(308): 1314-8.
[23]
Färber K, Kettenmann H. Physiology of microglial cells. Brain Res Brain Res Rev 2005; 48(2): 133-43.
[http://dx.doi.org/10.1016/j.brainresrev.2004.12.003] [PMID: 15850652]
[24]
Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG. The emerging role of the interplay among astrocytes, microglia, and neurons in the hippocampus in health and disease. Front Aging Neurosci 2021; 13: 651973.
[http://dx.doi.org/10.3389/fnagi.2021.651973] [PMID: 33889084]
[25]
Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19(8): 312-8.
[http://dx.doi.org/10.1016/0166-2236(96)10049-7] [PMID: 8843599]
[26]
Hurley SD, Walter SA, Semple-Rowland SL, Streit WJ. Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia of the developing rat central nervous system. Glia 1999; 25(3): 304-9.http://dx.doi.org/10.1002/(SICI)1098-1136(19990201)25:3<304::AID-GLIA10>3.0.CO;2-W
[PMID: 9932876]
[27]
Graeber MB, Streit WJ. Microglia: Biology and pathology. Acta Neuropathol 2009; 119: 89-105.
[28]
Sies H. The concept of oxidative stress after 30 years Biochemistry of oxidative stress. Cham: Springer 2016; pp. 3-11.
[29]
Bandyopadhyay U, Das D, Banerjee RK. Reactive oxygen species: Oxidative damage and pathogenesis. Curr Sci 1999; 10: 658-66.
[30]
Markesbery WR. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 1997; 23(1): 134-47.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[31]
Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 2006; 3(1): 30.
[http://dx.doi.org/10.1186/1742-2094-3-30] [PMID: 17094809]
[32]
Babior BM. NADPH oxidase: An update. Blood 1999; 93(5): 1464-76.
[http://dx.doi.org/10.1182/blood.V93.5.1464] [PMID: 10029572]
[33]
McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 1997; 17(7): 2284-94.
[http://dx.doi.org/10.1523/JNEUROSCI.17-07-02284.1997] [PMID: 9065490]
[34]
Combs CK, Johnson DE, Cannady SB, Lehman TM, Landreth GE. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of β-amyloid and prion proteins. J Neurosci 1999; 19(3): 928-39.
[http://dx.doi.org/10.1523/JNEUROSCI.19-03-00928.1999] [PMID: 9920656]
[35]
Della Bianca V, Dusi S, Bianchini E, Dal Prà I, Rossi F. β-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 1999; 274(22): 15493-9.
[http://dx.doi.org/10.1074/jbc.274.22.15493] [PMID: 10336441]
[36]
Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 2003; 23(7): 2665-74.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02665.2003] [PMID: 12684452]
[37]
Meda L, Bonaiuto C, Baron P, Otvos L Jr, Rossi F, Cassatella MA. Priming of monocyte respiratory burst by β-amyloid fragment (25-35). Neurosci Lett 1996; 219(2): 91-4.
[http://dx.doi.org/10.1016/S0304-3940(96)13177-3] [PMID: 8971787]
[38]
Lukiw WJ, Bazan NG. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem Res 2000; 25(9/10): 1173-84.
[http://dx.doi.org/10.1023/A:1007627725251] [PMID: 11059791]
[39]
Takei Y, Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol 2000; 150(5): 989-1000.
[http://dx.doi.org/10.1083/jcb.150.5.989] [PMID: 10973990]
[40]
Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from τ deficient mice. J Cell Sci 2001; 114(6): 1179-87.
[http://dx.doi.org/10.1242/jcs.114.6.1179] [PMID: 11228161]
[41]
Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging 1995; 16(3): 355-62.
[http://dx.doi.org/10.1016/0197-4580(95)00025-A] [PMID: 7566345]
[42]
Delacourte A, Buée L. Normal and pathological Tau proteins as factors for microtubule assembly. Int Rev Cytol 1997; 171: 167-224.
[http://dx.doi.org/10.1016/S0074-7696(08)62588-7] [PMID: 9066128]
[43]
Vigo-Pelfrey C, Seubert P, Barbour R, Blomquist C, Lee M, Lee D. Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with alzheimer’s disease. Neurology 1995; 45(7): 88-93.
[http://dx.doi.org/10.1212/WNL.45.4.788]
[44]
Drewes G, Ebneth A, Mandelkow EM. MAPs, MARKs and microtubule dynamics. Trends Biochem Sci 1998; 23(8): 307-11.
[http://dx.doi.org/10.1016/S0968-0004(98)01245-6] [PMID: 9757832]
[45]
Brelstaff JH, Mason M, Katsinelos T, et al. Microglia become hypofunctional and release metalloproteases and tau seeds when phagocytosing live neurons with P301S tau aggregates. Sci Adv 2021; 7(43): eabg4980.
[http://dx.doi.org/10.1126/sciadv.abg4980] [PMID: 34669475]
[46]
Gerhard A, Watts J, Trender-Gerhard I, et al. In vivo imaging of microglial activation with [11C](R)-PK11195 PET in corticobasal degeneration. Mov Disord 2004; 19(10): 1221-6.
[http://dx.doi.org/10.1002/mds.20162] [PMID: 15390000]
[47]
Yoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53(3): 337-51.
[http://dx.doi.org/10.1016/j.neuron.2007.01.010] [PMID: 17270732]
[48]
Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 2010; 68(1): 19-31.
[http://dx.doi.org/10.1016/j.neuron.2010.08.023] [PMID: 20920788]
[49]
Li Y, Sun H, Chen Z, Xu H, Bu G, Zheng H. Implications of GABAergic neurotransmission in Alzheimer’s disease. Front Aging Neurosci 2016; 8: 31.
[http://dx.doi.org/10.3389/fnagi.2016.00031] [PMID: 26941642]
[50]
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72.
[http://dx.doi.org/10.1038/s41582-020-00435-y] [PMID: 33318676]
[51]
Stancu IC, Vasconcelos B, Terwel D, Dewachter I. Models of β-amyloid induced tau-pathology: The long and “folded” road to understand the mechanism. Mol Neurodegener 2014; 9: 51.
[http://dx.doi.org/10.1186/1750-1326-9-51]
[52]
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 1996; 17(3): 553-65.
[http://dx.doi.org/10.1016/S0896-6273(00)80187-7] [PMID: 8816718]
[53]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[54]
McGeer P, McGeer E. The inflammatory response system of brain: Implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Res Brain Res Rev 1995; 21(2): 195-218.
[http://dx.doi.org/10.1016/0165-0173(95)00011-9] [PMID: 8866675]
[55]
Kiefer R, Streit WJ, Toyka KV, Kreutzberg GW, Hartung HP. Transforming growth factor-β1: A lesion-associated cytokine of the nervous system. Int J Dev Neurosci 1995; 13(3-4): 331-9.
[http://dx.doi.org/10.1016/0736-5748(94)00074-D] [PMID: 7572285]
[56]
Greenamyre JT, Young AB. Excitatory amino acids and alzheimer’s disease. Neurobiol Aging 1989; 10(5): 93-602.
[http://dx.doi.org/10.1016/0197-4580(89)90143-7]
[57]
Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol Med 2001; 7(12): 548-54.
[http://dx.doi.org/10.1016/S1471-4914(01)02173-6] [PMID: 11733217]
[58]
Butterfield DA, Lauderback CM. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress. Free Radic Biol Med 2002; 32(11): 1050-60.
[http://dx.doi.org/10.1016/S0891-5849(02)00794-3] [PMID: 12031889]
[59]
Varadarajan S, Yatin S, Aksenova M, Butterfield DA. Review: Alzheimer’s amyloid β-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 2000; 130(2-3): 184-208.
[http://dx.doi.org/10.1006/jsbi.2000.4274] [PMID: 10940225]
[60]
Culcasi M, Lafon-Cazal M, Pietri S, Bockaert J. Glutamate receptors induce a burst of superoxide via activation of nitric oxide synthase in arginine-depleted neurons. J Biol Chem 1994; 269(17): 12589-93.
[http://dx.doi.org/10.1016/S0021-9258(18)99916-3] [PMID: 7513691]
[61]
Feng YS, Tan ZX, Wu LY, Dong F, Zhang F. The involvement of NLRP3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res Rev 2020; 64: 101192.
[http://dx.doi.org/10.1016/j.arr.2020.101192] [PMID: 33059089]
[62]
Stefano GB, Esch T, Ptacek R, Kream RM. Dysregulation of nitric oxide signaling in microglia: Multiple points of functional convergence in the complex pathophysiology of alzheimer disease. Med Sci Monit 2020; 26: e927739-1.
[http://dx.doi.org/10.12659/MSM.927739] [PMID: 32975239]
[63]
Sharma M, de Alba E. Structure, activation and regulation of nlrp3 and aim2 inflammasomes. Int J Mol Sci 2021; 22(2): 872.
[http://dx.doi.org/10.3390/ijms22020872] [PMID: 33467177]
[64]
Munoz L, Ammit AJ. Targeting p38 MAPK pathway for the treatment of Alzheimer’s disease. Neuropharmacology 2010; 58(3): 561-8.
[http://dx.doi.org/10.1016/j.neuropharm.2009.11.010] [PMID: 19951717]
[65]
Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 2004; 117(8): 1281-3.
[http://dx.doi.org/10.1242/jcs.00963] [PMID: 15020666]
[66]
Thapa A, Adamiak M, Bujko K, Ratajczak J, Abdel-Latif AK, Kucia M, et al. Danger-associated molecular pattern molecules take unexpectedly a central stage in Nlrp3 inflammasome-caspase-1-mediated trafficking of hematopoietic stem/progenitor cells. Leukemia 2021; 35(9): 2658-71.
[67]
Chintapaludi SR, Uyar A, Jackson HM, et al. Staging Alzheimer’s disease in the brain and retina of B6. APP/PS1 mice by transcriptional profiling. J Alzheimers Dis 2020; 73(4): 1421-34.
[http://dx.doi.org/10.3233/JAD-190793] [PMID: 31929156]
[68]
Zahid A, Li B, Kombe AJK, Jin T, Tao J. Pharmacological inhibitors of the nlrp3 inflammasome. Front Immunol 2019; 10: 2538.
[http://dx.doi.org/10.3389/fimmu.2019.02538] [PMID: 31749805]
[69]
Sutterwala FS, Haasken S, Cassel SL. Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 2014; 1319(1): 82-95.
[http://dx.doi.org/10.1111/nyas.12458] [PMID: 24840700]
[70]
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 2021; 8(3): 287-97.
[http://dx.doi.org/10.1016/j.gendis.2020.06.005] [PMID: 33997176]
[71]
Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther 2017; 2: 1-9.
[72]
Singh S, Singh TG. Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: An mechanistic approach. Curr Neuropharmacol 2020; 18(10): 918-35.
[http://dx.doi.org/10.2174/1570159X18666200207120949] [PMID: 32031074]
[73]
Maity A, Wollman R. Information transmission from NFkB signaling dynamics to gene expression. PLOS Comput Biol 2020; 16(8): e1008011.
[http://dx.doi.org/10.1371/journal.pcbi.1008011] [PMID: 32797040]
[74]
Terai K, Matsuo A, McGeer PL. Enhancement of immunoreactivity for NF-κB in the hippocampal formation and cerebral cortex of Alzheimer’s disease. Brain Res 1996; 735(1): 159-68.
[http://dx.doi.org/10.1016/0006-8993(96)00310-1] [PMID: 8905182]
[75]
Muraleva NA, Stefanova NA, Kolosova NG. SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in oxys rats. Antioxidants 2020; 9(8): 676.
[http://dx.doi.org/10.3390/antiox9080676] [PMID: 32731533]
[76]
Zhu X, Rottkamp CA, Hartzler A, et al. Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. J Neurochem 2001; 79(2): 311-8.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00597.x] [PMID: 11677259]
[77]
Singh A, Upadhayay S, Mehan S. Understanding abnormal c-JNK/p38MAPK signaling overactivation involved in the progression of multiple sclerosis: Possible therapeutic targets and impact on neurodegenerative diseases. Neurotox Res 2021; 39(5): 1630-50.
[http://dx.doi.org/10.1007/s12640-021-00401-6] [PMID: 34432262]
[78]
Lee JK, Kim NJ. Recent advances in the inhibition of p38 mapk as a potential strategy for the treatment of alzheimer’s disease. Molecules 2017; 22(8): 1287.
[http://dx.doi.org/10.3390/molecules22081287] [PMID: 28767069]
[79]
Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: The p38 MAPK pathway. Crit Care Med 2000; 28(4): N67-77.
[http://dx.doi.org/10.1097/00003246-200004001-00008] [PMID: 10807318]
[80]
Castro RE, Santos MM, Glória PM, et al. Cell death targets and potential modulators in Alzheimer’s disease. Curr Pharm Des 2010; 16(25): 2851-64.
[http://dx.doi.org/10.2174/138161210793176563] [PMID: 20698818]
[81]
Xin P, Xu X, Deng C, et al. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 2020; 80: 106210.
[http://dx.doi.org/10.1016/j.intimp.2020.106210] [PMID: 31972425]
[82]
Nevado-Holgado AJ, Ribe E, Thei L, et al. Genetic and real-world clinical data, combined with empirical validation, nominate jak-stat signaling as a target for alzheimer’s disease therapeutic development. Cells 2019; 8(5): 425.
[http://dx.doi.org/10.3390/cells8050425] [PMID: 31072055]
[83]
Yan Z, Gibson SA, Buckley JA, Qin H, Benveniste EN. Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol 2018; 189: 4-13.
[http://dx.doi.org/10.1016/j.clim.2016.09.014] [PMID: 27713030]
[84]
Li W, Liu H, Yu M, et al. Folic acid alters methylation profile of JAK-STAT and long-term depression signaling pathways in alzheimer’s disease models. Mol Neurobiol 2016; 53(9): 6548-56.
[http://dx.doi.org/10.1007/s12035-015-9556-9] [PMID: 26627706]
[85]
Barker RM, Holly JMP, Biernacka KM, Allen-Birt SJ, Perks CM. Mini review: Opposing pathologies in cancer and alzheimer’s disease: Does the pi3k/akt pathway provide clues? Front Endocrinol 2020; 11: 403.
[http://dx.doi.org/10.3389/fendo.2020.00403] [PMID: 32655497]
[86]
Wang Y, Lin Y, Wang L, et al. TREM2 ameliorates neuroinflammatory response and cognitive impairment via PI3K/AKT/FoxO3a signaling pathway in Alzheimer’s disease mice. Aging 2020; 12(20): 20862-79.
[http://dx.doi.org/10.18632/aging.104104] [PMID: 33065553]
[87]
Razani E, Pourbagheri-Sigaroodi A, Safaroghli-Azar A, Zoghi A, Shanaki-Bavarsad M, Bashash D. The PI3K/Akt signaling axis in Alzheimer’s disease: A valuable target to stimulate or suppress? Cell Stress Chaperones 2021; 26(6): 871-87.
[http://dx.doi.org/10.1007/s12192-021-01231-3] [PMID: 34386944]
[88]
Guha S, Johnson GVW, Nehrke K. The crosstalk between pathological tau phosphorylation and mitochondrial dysfunction as a key to understanding and treating alzheimer’s disease. Mol Neurobiol 2020; 57(12): 5103-20.
[http://dx.doi.org/10.1007/s12035-020-02084-0] [PMID: 32851560]
[89]
Cui W, Wang S, Wang Z, Wang Z, Sun C, Zhang Y. Inhibition of PTEN attenuates endoplasmic reticulum stress and apoptosis via activation of PI3K/AKT pathway in alzheimer’s disease. Neurochem Res 2017; 42(11): 3052-60.
[http://dx.doi.org/10.1007/s11064-017-2338-1] [PMID: 28819903]
[90]
Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012; 367(24): 2322-33.
[http://dx.doi.org/10.1056/NEJMra1205750] [PMID: 23234515]
[91]
Das R, Chinnathambi S. Actin-mediated microglial chemotaxis via g-protein coupled purinergic receptor in alzheimer’s disease. Neuroscience 2020; 448: 325-36.
[http://dx.doi.org/10.1016/j.neuroscience.2020.09.024] [PMID: 32941933]
[92]
Wang S, Mustafa M, Yuede CM, Salazar SV, Kong P, Long H, et al. Anti-human TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s disease model. JEM 2020; 217.
[93]
Doens D, Fernández PL. Microglia receptors and their implications in the response to amyloid β for Alzheimer’s disease pathogenesis. J Neuroinflammation 2014; 11(1): 48.
[http://dx.doi.org/10.1186/1742-2094-11-48] [PMID: 24625061]
[94]
Govindpani K, Turner C, Waldvogel HJ, Faull RLM, Kwakowsky A. Impaired expression of gaba signaling components in the alzheimer’s disease middle temporal gyrus. Int J Mol Sci 2020; 21(22): 8704.
[http://dx.doi.org/10.3390/ijms21228704] [PMID: 33218044]
[95]
Maeda J, Minamihisamatsu T, Shimojo M, et al. Distinct microglial response against Alzheimer’s amyloid and tau pathologies characterized by P2Y12 receptor. Brain Commun 2021; 3(1): fcab011.
[http://dx.doi.org/10.1093/braincomms/fcab011] [PMID: 33644757]
[96]
Magham SV. Thaggikuppe krishnamurthy P, Shaji N, Mani L, Balasubramanian S. Cannabinoid receptor 2 selective agonists and Alzheimer’s disease: An insight into the therapeutic potentials. J Neurosci Res 2021; 99(11): 2888-905.
[http://dx.doi.org/10.1002/jnr.24933] [PMID: 34486749]
[97]
Iwaloye O, Elekofehinti OO, Momoh AI, Babatomiwa K, Ariyo EO. In silico molecular studies of natural compounds as possible anti-Alzheimer’s agents: Ligand-based design. Netw Model Anal Health Inform Bioinform 2020; 9(1): 54.
[http://dx.doi.org/10.1007/s13721-020-00262-7]
[98]
Ramalho MJ, Andrade S, Loureiro JA, do Carmo Pereira M. Nanotechnology to improve the Alzheimer’s disease therapy with natural compounds. Drug Deliv Transl Res 2020; 10(2): 380-402.
[http://dx.doi.org/10.1007/s13346-019-00694-3] [PMID: 31773421]
[99]
Shukla R, Singh TR. High-throughput screening of natural compounds and inhibition of a major therapeutic target HsGSK-3β for Alzheimer’s disease using computational approaches. J Genet Eng Biotechnol 2021; 19(1): 61.
[http://dx.doi.org/10.1186/s43141-021-00163-w] [PMID: 33945025]
[100]
Mir RH, Shah AJ, Mohi-ud-din R, et al. Natural anti-inflammatory compounds as drug candidates in alzheimer’s disease. Curr Med Chem 2021; 28(23): 4799-825.
[http://dx.doi.org/10.2174/0929867327666200730213215] [PMID: 32744957]
[101]
Korkmaz OT, Ay H, Aytan N, et al. Vasoactive intestinal peptide decreases β-amyloid accumulation and prevents brain atrophy in the 5xfad mouse model of alzheimer’s disease. J Mol Neurosci 2019; 68(3): 389-96.
[http://dx.doi.org/10.1007/s12031-018-1226-8] [PMID: 30498985]
[102]
Zhang Z, Liu X, Schroeder JP, et al. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 2014; 39(3): 638-50.
[http://dx.doi.org/10.1038/npp.2013.243] [PMID: 24022672]
[103]
Thiyagarajan P, Chandrasekaran CV, Deepak HB, Agarwal A. Modulation of lipopolysaccharide-induced pro-inflammatory mediators by an extract of glycyrrhiza glabra and its phytoconstituents. Inflammopharmacology 2011; 19(4): 235-41.
[http://dx.doi.org/10.1007/s10787-011-0080-x] [PMID: 21328091]
[104]
Habtemariam S. Natural products in Alzheimer’s disease therapy: Would old therapeutic approaches fix the broken promise of modern medicines? Molecules 2019; 24(8): 1519.
[http://dx.doi.org/10.3390/molecules24081519] [PMID: 30999702]
[105]
Andres-Lacueva C, Shukitt-Hale B, Galli RL, Jauregui O, Lamuela-Raventos RM, Joseph JA. Anthocyanins in aged blueberry-fed rats are found centrally and may enhance memory. Nutr Neurosci 2005; 8(2): 111-20.
[http://dx.doi.org/10.1080/10284150500078117] [PMID: 16053243]
[106]
Chang RC, Chao J, Yu MS, Wang M. Neuroprotective effects of oxyresveratrol from fruit against neurodegeneration in Alzheimer’s disease. Recent Advances on Nutrition and the Prevention of Alzheimer’s Disease 2010; 2010.
[107]
Essa MM, Vijayan RK, Castellano-Gonzalez G, Memon MA, Braidy N, Guillemin GJ. Neuroprotective effect of natural products against Alzheimer’s disease. Neurochem Res 2012; 37(9): 1829-42.
[http://dx.doi.org/10.1007/s11064-012-0799-9] [PMID: 22614926]
[108]
Heo HJ, Lee CY. Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 2005; 53(6): 1984-9.
[http://dx.doi.org/10.1021/jf048616l] [PMID: 15769124]
[109]
Kwak HM, Jeon SY, Sohng BH, et al. β-Secretase(BACE1) inhibitors from pomegranate (Punica granatum) husk. Arch Pharm Res 2005; 28(12): 1328-32.
[http://dx.doi.org/10.1007/BF02977896] [PMID: 16392663]
[110]
Wang YJ, Thomas P, Zhong JH, et al. Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an alzheimer’s disease mouse. Neurotox Res 2009; 15(1): 3-14.
[http://dx.doi.org/10.1007/s12640-009-9000-x] [PMID: 19384583]
[111]
Von Bernhardi R. Glial cell dysregulation: A new perspective on Alzheimer disease. Neurotox Res 2007; 12(4): 215-32.
[http://dx.doi.org/10.1007/BF03033906] [PMID: 18201950]
[112]
Vingtdeux V, Dreses-Werringloer U, Zhao H, Davies P, Marambaud P. Therapeutic potential of resveratrol in Alzheimer’s disease. BMC Neurosci 2008; 9(S2): S6.
[http://dx.doi.org/10.1186/1471-2202-9-S2-S6] [PMID: 19090994]
[113]
Chandrika UG, Jansz ER, Wickramasinghe SMDN, Warnasuriya ND. Carotenoids in yellow- and red-fleshed papaya (Carica papaya L). J Sci Food Agric 2003; 83(12): 1279-82.
[http://dx.doi.org/10.1002/jsfa.1533]
[114]
Zhang J, Mori A, Chen Q, Zhao B. Fermented papaya preparation attenuates β-amyloid precursor protein: β-amyloid-mediated copper neurotoxicity in β-amyloid precursor protein and β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Neuroscience 2006; 143(1): 63-72.
[http://dx.doi.org/10.1016/j.neuroscience.2006.07.023] [PMID: 16962711]
[115]
Weinreb O, Mandel S, Amit T, Youdim MBH. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 2004; 15(9): 506-16.
[http://dx.doi.org/10.1016/j.jnutbio.2004.05.002] [PMID: 15350981]
[116]
Levites Y, Amit T, Mandel S, Youdim MBH. Neuroprotection and neurorescue against Aβ toxicity and PKC‐dependent release of non‐amyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003; 17(8): 1-23.
[http://dx.doi.org/10.1096/fj.02-0881fje] [PMID: 12670874]
[117]
Chauhan N, Wang K, Wegiel J, Malik M. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 2004; 1(3): 183-8.
[http://dx.doi.org/10.2174/1567205043332144] [PMID: 15975066]
[118]
Muthaiyah B, Essa MM, Chauhan V, Chauhan A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem Res 2011; 36(11): 2096-103.
[http://dx.doi.org/10.1007/s11064-011-0533-z] [PMID: 21706234]
[119]
Akhondzadeh S, Shafiee SM, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology 2009; 207(4): 637-43.
[120]
Papandreou MA, Kanakis CD, Polissiou MG, et al. Inhibitory activity on amyloid-β aggregation and antioxidant properties of Crocus sativus stigmas extract and its crocin constituents. J Agric Food Chem 2006; 54(23): 8762-8.
[http://dx.doi.org/10.1021/jf061932a] [PMID: 17090119]
[121]
Cole GM, Teter B, Frautschy SA. Neuroprotective effects of curcumin. Adv Exp Med Biol 2007; 595: 197-212.
[http://dx.doi.org/10.1007/978-0-387-46401-5_8] [PMID: 17569212]
[122]
Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 2010; 48(3): 798-802.
[http://dx.doi.org/10.1016/j.fct.2009.12.009] [PMID: 20034530]
[123]
Guillemin GJ, Meininger V, Brew BJ. Implications for the kynurenine pathway and quinolinic acid in amyotrophic lateral sclerosis. Neurodegener Dis 2005; 2(3-4): 166-76.
[http://dx.doi.org/10.1159/000089622] [PMID: 16909022]
[124]
Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 2012; 64(4): 315-9.
[http://dx.doi.org/10.1016/j.etp.2010.09.004] [PMID: 20952170]
[125]
Ursell A. The complete guide: Healing foods; Nutritional healing for body and mind; how to choose the natural foods that make you well. Dorling Kindersley 2000.
[126]
Colciaghi F, Borroni B, Zimmermann M, et al. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis 2004; 16(2): 454-60.
[http://dx.doi.org/10.1016/j.nbd.2004.03.011] [PMID: 15193301]
[127]
Sasaki K, Hatta S, Wada K, et al. Effects of extract of ginkgo biloba leaves and its constituents on carcinogen-metabolizing enzyme activities and glutathione levels in mouse liver. Life Sci 2002; 70(14): 1657-67.
[http://dx.doi.org/10.1016/S0024-3205(01)01557-0] [PMID: 11991253]
[128]
Ahlemeyer B, Krieglstein J. Neuroprotective effects of ginkgo biloba extract. Cell Mol Life Sci 2003; 60(9): 1779-92.
[http://dx.doi.org/10.1007/s00018-003-3080-1] [PMID: 14523543]
[129]
Kuboyama T, Tohda C, Komatsu K. Withanoside IV and its active metabolite, sominone, attenuate Aβ(25-35)-induced neurodegeneration. Eur J Neurosci 2006; 23(6): 1417-26.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04664.x] [PMID: 16553605]
[130]
Kim JK, Bae H, Kim MJ, et al. Inhibitory effect of poncirus trifoliate on acetylcholinesterase and attenuating activity against trimethyltin-induced learning and memory impairment. Biosci Biotechnol Biochem 2009; 73(5): 1105-12.
[http://dx.doi.org/10.1271/bbb.80859] [PMID: 19420715]
[131]
Jeong EJ, Ma CJ, Lee KY, Kim SH, Sung SH, Kim YC. KD-501, a standardized extract of Scrophularia buergeriana has both cognitive-enhancing and antioxidant activities in mice given scopolamine. J Ethnopharmacol 2009; 121(1): 98-105.
[http://dx.doi.org/10.1016/j.jep.2008.10.006] [PMID: 18996178]
[132]
Kim SR, Lee KY, Koo KA, et al. Four new neuroprotective iridoid glycosides from Scrophularia buergeriana roots. J Nat Prod 2002; 65(11): 1696-9.
[http://dx.doi.org/10.1021/np0202172] [PMID: 12444706]
[133]
Kim Y, Park EJ, Kim J, Kim YB, Kim SR, Kim YC. Neuroprotective constituents from Hedyotis diffusa. J Nat Prod 2001; 64(1): 75-8.
[http://dx.doi.org/10.1021/np000327d] [PMID: 11170670]
[134]
Wang R, Tang XC. Neuroprotective effects of huperzine A. A natural cholinesterase inhibitor for the treatment of Alzheimer’s disease. Neurosignals 2005; 14(1-2): 71-82.
[http://dx.doi.org/10.1159/000085387] [PMID: 15956816]
[135]
Xiao XQ, Yang JW, Tang XC. Huperzine A protects rat pheochromocytoma cells against hydrogen peroxide-induced injury. Neurosci Lett 1999; 275(2): 73-6.
[http://dx.doi.org/10.1016/S0304-3940(99)00695-3] [PMID: 10568502]
[136]
Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on β-amyloid25-35 induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 2000; 286(3): 155-8.
[http://dx.doi.org/10.1016/S0304-3940(00)01088-0] [PMID: 10832008]
[137]
Goswami S, Kumar N, Thawani V. Effect of bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int J Collab Res Intern Med Public Health 2011; 3(4): 285-93.
[138]
Fujiwara H, Tabuchi M, Yamaguchi T, et al. A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O -galloyl-β-d-glucopyranose have potent anti-aggregation effects on Alzheimer’s amyloid β proteins in vitro and in vivo. J Neurochem 2009; 109(6): 1648-57.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06069.x] [PMID: 19457098]
[139]
Fujiwara H, Iwasaki K, Furukawa K, et al. Uncaria rhynchophylla, a Chinese medicinal herb, has potent antiaggregation effects on Alzheimer’s β-amyloid proteins. J Neurosci Res 2006; 84(2): 427-33.
[http://dx.doi.org/10.1002/jnr.20891] [PMID: 16676329]
[140]
Wijeratne SSK, Cuppett SL. Potential of rosemary (Rosemarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. J Agric Food Chem 2007; 55(4): 1193-9.
[http://dx.doi.org/10.1021/jf063089m] [PMID: 17263550]
[141]
Lee ST, Chu K, Sim JY, Heo JH, Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis Assoc Disord 2008; 22(3): 222-6.
[http://dx.doi.org/10.1097/WAD.0b013e31816c92e6] [PMID: 18580589]
[142]
Lee YK, Yuk DY, Kim TI, et al. Protective effect of the ethanol extract of magnolia officinalis and 4-o-methylhonokiol on scopolamine-induced memory impairment and the inhibition of acetylcholinesterase activity. J Nat Med 2009; 63(3): 274-82.
[http://dx.doi.org/10.1007/s11418-009-0330-z] [PMID: 19343477]
[143]
Ashwlayan VD, Singh RA. Reversal effect of phyllanthus emblica (Euphorbiaceae) rasayana on memory deficits in mice. Int J Appl Pharm 2011; 3: 10-5.
[144]
Williams P, Sorribas A, Howes MJR. Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep 2011; 28(1): 48-77.
[http://dx.doi.org/10.1039/C0NP00027B] [PMID: 21072430]
[145]
Gervais F, Paquette J, Morissette C, et al. Targeting soluble aβ peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2007; 28(4): 537-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.015] [PMID: 16675063]
[146]
Pilipenko V, Pupure J, Rumaks J, et al. GABAA agonist muscimol ameliorates learning/memory deficits in streptozocin-induced Alzheimer’s disease non-transgenic rat model. Springerplus 2015; 4(S1): 36.
[http://dx.doi.org/10.1186/2193-1801-4-S1-P36]
[147]
Jin X, Liu MY, Zhang DF, et al. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol Res 2019; 145: 104253.
[http://dx.doi.org/10.1016/j.phrs.2019.104253] [PMID: 31059788]
[148]
Google Patents. n.d. Available from: https://patents.google.com/
[149]
PATENTSCOPE. n.d. Available from: https://www.wipo.int/patentscope/en/
[150]
ANZCTR. n.d. Available from: https://www.anzctr.org.au/
[151]
Clinical Trials Register. n.d. Available from: https://www.clinicaltrialsregister.eu/ctr-search/search
[152]
UMIN Clinical Trials Registry (UMIN-CTR). n.d. Available from: https://www.umin.ac.jp/ctr/
[153]
IRCT. n.d. Available from: https://www.irct.ir/
[154]
Clinical Trials Registry - India (CTRI). n.d. Available from: http://ctri.nic.in/Clinicaltrials/login.php/login.php
[155]
Chinese Clinical Trial Register (ChiCTR). The world health organization international clinical trials registered organization registered platform. Available from: https://www.chictr.org.cn/searchprojen.aspx
[156]
Home - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/
[157]
Abeysinghe AADT, Deshapriya RDUS, Udawatte C. Alzheimer’s disease; A review of the pathophysiological basis and therapeutic interventions. Life Sci 2020; 256: 117996.
[http://dx.doi.org/10.1016/j.lfs.2020.117996] [PMID: 32585249]
[158]
Hermann DM, Gunzer M. Modulating microglial cells for promoting brain recovery and repair. Front Cell Neurosci 2021; 14: 627987.
[http://dx.doi.org/10.3389/fncel.2020.627987] [PMID: 33505251]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy