Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Mini-Review Article

Autologous CD19-Targeted Chimeric Antigen Receptor (CAR)T-Cells as the Future of Systemic Lupus Erythematosus Treatment

Author(s): Gede Kambayana and Sandra Surya Rini*

Volume 19, Issue 3, 2023

Published on: 16 March, 2023

Page: [260 - 269] Pages: 10

DOI: 10.2174/1573397119666230214103044

Price: $65

Abstract

Systemic lupus erythematosus (SLE) is a chronic autoimmune illness with an unclear etiology and a range of clinical manifestations. The therapeutic results of current conventional treatments are frequently unsatisfactory. Many B-cell-directed immunotherapies have recently been discovered, as B cells play a key role in the pathogenesis of SLE. However, large-scale rituximab trials found that the antibody against CD20 was no better than a placebo. Autologous CAR T-cell therapy has garnered considerable interest and is considered a potential treatment option for SLE. CD19+CD20- B cells are thought to play an essential role in the onset and progression of SLE. CD19-targeted CAR T-cells destroy B cells without requiring an accessory cell type, thereby decreasing B cells more efficiently. Preclinical trials of CAR T-cells in mice have shown promising results against SLE. The review aimed to shed light on autologous CD19-targeted CAR T-cells as a potential treatment for SLE.

Graphical Abstract

[1]
Stojan G, Petri M. Epidemiology of systemic lupus erythematosus: An update. Curr Opin Rheumatol 2018; 30(2): 144-50.
[http://dx.doi.org/10.1097/BOR.0000000000000480] [PMID: 29251660]
[2]
Arbuckle MR, McClain MT, Rubertone MV, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003; 349(16): 1526-33.
[http://dx.doi.org/10.1056/NEJMoa021933] [PMID: 14561795]
[3]
Fanouriakis A, Kostopoulou M, Alunno A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019; 78(6): 736-45.
[http://dx.doi.org/10.1136/annrheumdis-2019-215089] [PMID: 30926722]
[4]
Rahman A, Isenberg DA. Systemic lupus erythematosus. N Engl J Med 2008; 358(9): 929-39.
[http://dx.doi.org/10.1056/NEJMra071297] [PMID: 18305268]
[5]
Parodis I, Stockfelt M, Sjöwall C. B cell therapy in systemic lupus erythematosus: From rationale to clinical practice. Front Med (Lausanne) 2020; 7: 316.
[http://dx.doi.org/10.3389/fmed.2020.00316] [PMID: 32754605]
[6]
Klonowska-Szymczyk A, Wolska A, Robak T, Cebula-Obrzut B, Smolewski P, Robak E. Expression of toll-like receptors 3, 7, and 9 in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Mediators Inflamm 2014; 2014: 1-11.
[http://dx.doi.org/10.1155/2014/381418] [PMID: 24692849]
[7]
Patel S, Brassil K, Jungsuwadee P. Expanding the role of CAR-T cell therapy to systemic lupus erythematosus. In: EMJ Hematol 2020; 105-12.
[http://dx.doi.org/10.33590/emjhematol/20-00079]
[8]
Aranow C, Dall’Era M, Byron M, et al. FRI0305 Phase 2 trial of induction therapy with anti-cd20 (RITUXIMAB) followed by maintenance therapy with anti-baff (BELIMUMAB) in patients with active lupus nephritis. Ann Rheum Dis 2018; 77: 690.
[http://dx.doi.org/10.1136/annrheumdis-2018-eular.5711]
[9]
Wise LM, Stohl W. Belimumab and rituximab in systemic lupus erythematosus: A tale of two b cell-targeting agents. Front Med (Lausanne) 2020; 7: 303.
[http://dx.doi.org/10.3389/fmed.2020.00303] [PMID: 32695790]
[10]
Furie R, Rovin BH, Houssiau F, et al. Two-year, randomized, controlled trial of belimumab in lupus nephritis. N Engl J Med 2020; 383(12): 1117-28.
[http://dx.doi.org/10.1056/NEJMoa2001180] [PMID: 32937045]
[11]
McHugh J. CAR T cells drive out B cells in SLE. Nat Rev Rheumatol 2019; 15(5): 249-9.
[http://dx.doi.org/10.1038/s41584-019-0214-x] [PMID: 30948844]
[12]
Tahir A. Is chimeric antigen receptor t-cell therapy the future of autoimmunity management? Cureus 2018; 10(10): e3407.
[http://dx.doi.org/10.7759/cureus.3407] [PMID: 30533341]
[13]
Reichlin M. Ribosomal P antibodies and CNS lupus. Lupus 2003; 12(12): 916-8.
[http://dx.doi.org/10.1191/0961203303lu502oa] [PMID: 14714911]
[14]
Nashi E, Wang Y, Diamond B. The role of B cells in lupus pathogenesis. Int J Biochem Cell Biol 2010; 42(4): 543-50.
[http://dx.doi.org/10.1016/j.biocel.2009.10.011] [PMID: 19850148]
[15]
Duddy ME, Alter A, Bar-Or A. Distinct profiles of human B cell effector cytokines: A role in immune regulation? J Immunol 2004; 172(6): 3422-7.
[http://dx.doi.org/10.4049/jimmunol.172.6.3422] [PMID: 15004141]
[16]
Llorente L, Richaud-Patin Y, García-Padilla C, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 2000; 43(8): 1790-800.
[http://dx.doi.org/10.1002/1529-0131(200008)43:8<1790:AID-ANR15>3.0.CO;2-2] [PMID: 10943869]
[17]
Furie RA, Leon G, Thomas M, et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis 2015; 74(9): 1667-75.
[http://dx.doi.org/10.1136/annrheumdis-2013-205144] [PMID: 24748629]
[18]
Arce-Salinas CA, Rodríguez-García F, Gómez-Vargas JI. Long-term efficacy of anti-CD20 antibodies in refractory lupus nephritis. Rheumatol Int 2012; 32(5): 1245-9.
[http://dx.doi.org/10.1007/s00296-010-1755-0] [PMID: 21258801]
[19]
Gregersen JW, Jayne DRW. B-cell depletion in the treatment of lupus nephritis. Nat Rev Nephrol 2012; 8(9): 505-14.
[http://dx.doi.org/10.1038/nrneph.2012.141] [PMID: 22801948]
[20]
Merrill JT, Neuwelt CM, Wallace DJ, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: The randomized, double-blind, phase ii/iii systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010; 62(1): 222-33.
[http://dx.doi.org/10.1002/art.27233] [PMID: 20039413]
[21]
Rovin BH, Furie R, Latinis K, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The lupus nephritis assessment with rituximab study. Arthritis Rheum 2012; 64(4): 1215-26.
[http://dx.doi.org/10.1002/art.34359] [PMID: 22231479]
[22]
Forsthuber TG, Cimbora DM, Ratchford JN, Katz E, Stüve O. B cell-based therapies in CNS autoimmunity: Differentiating CD19 and CD20 as therapeutic targets. Ther Adv Neurol Disord 2018; 11: 1756286418761697.
[http://dx.doi.org/10.1177/1756286418761697] [PMID: 29593838]
[23]
Zhu Q, Li Y, Zhang L, et al. Patients with systemic lupus erythematosus show increased proportions of CD19+CD20− B cells and secretion of related autoantibodies. Clin Rheumatol 2021; 40(1): 151-65.
[http://dx.doi.org/10.1007/s10067-020-05220-2] [PMID: 32542581]
[24]
Chan VSF, Tsang HHL, Tam RCY, Lu L, Lau CS. B-cell-targeted therapies in systemic lupus erythematosus. Cell Mol Immunol 2013; 10(2): 133-42.
[http://dx.doi.org/10.1038/cmi.2012.64] [PMID: 23455017]
[25]
Nutt SL, Morrison AM, Dörfler P, Rolink A, Busslinger M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J 1998; 17(8): 2319-33.
[http://dx.doi.org/10.1093/emboj/17.8.2319] [PMID: 9545244]
[26]
Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: The guardian of B cell identity and function. Nat Immunol 2007; 8(5): 463-70.
[http://dx.doi.org/10.1038/ni1454] [PMID: 17440452]
[27]
Mei HE, Schmidt S, Dörner T. Rationale of anti-CD19 immunotherapy: An option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 2012; 14(Suppl 5)(Suppl. 5): S1.
[http://dx.doi.org/10.1186/ar3909] [PMID: 23281743]
[28]
Korganow AS, Knapp AM, Nehme-Schuster H, et al. Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: Decreased memory B cells and membrane CD19 expression. J Autoimmun 2010; 34(4): 426-34.
[http://dx.doi.org/10.1016/j.jaut.2009.11.002] [PMID: 19963348]
[29]
Kurosaki T, Hikida M. Tyrosine kinases and their substrates in B lymphocytes. Immunol Rev 2009; 228(1): 132-48.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00748.x] [PMID: 19290925]
[30]
van Zelm MC, Reisli I, van der Burg M, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med 2006; 354(18): 1901-12.
[http://dx.doi.org/10.1056/NEJMoa051568] [PMID: 16672701]
[31]
Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex. Blood 2004; 103(6): 2257-65.
[http://dx.doi.org/10.1182/blood-2003-08-2694] [PMID: 14630796]
[32]
Binard A, Le Pottier L, Saraux A, Devauchelle-Pensec V, Pers JO, Youinou P. Does the BAFF dysregulation play a major role in the pathogenesis of systemic lupus erythematosus? J Autoimmun 2008; 30(1-2): 63-7.
[http://dx.doi.org/10.1016/j.jaut.2007.11.001] [PMID: 18155417]
[33]
Sato S, Fujimoto M, Hasegawa M, Takehara K. Altered blood B lymphocyte homeostasis in systemic sclerosis: Expanded naive B cells and diminished but activated memory B cells. Arthritis Rheum 2004; 50(6): 1918-27.
[http://dx.doi.org/10.1002/art.20274] [PMID: 15188368]
[34]
Curran CS, Gupta S, Sanz I, Sharon E. PD-1 immunobiology in systemic lupus erythematosus. J Autoimmun 2019; 97: 1-9.
[http://dx.doi.org/10.1016/j.jaut.2018.10.025] [PMID: 30396745]
[35]
Jia XY, Zhu Q, Wang YY, et al. The role and clinical significance of programmed cell death- ligand 1 expressed on CD19+B-cells and subsets in systemic lupus erythematosus. Clin Immunol 2019; 198: 89-99.
[http://dx.doi.org/10.1016/j.clim.2018.11.015] [PMID: 30502542]
[36]
McKay JT, Haro MA, Daly CA, et al. PD-L2 Regulates B-1 cell antibody production against phosphorylcholine through an IL-5-dependent mechanism. J Immunol 2017; 199: 2020-9.
[http://dx.doi.org/10.4049/jimmunol.1700555]
[37]
Dolff S, Wilde B, Patschan S, et al. Peripheral circulating activated b-cell populations are associated with nephritis and disease activity in patients with systemic lupus erythematosus. Scand J Immunol 2007; 66(5): 584-90.
[http://dx.doi.org/10.1111/j.1365-3083.2007.02008.x] [PMID: 17868260]
[38]
Maldini CR, Ellis GI, Riley JL. CAR T cells for infection, autoimmunity and allotransplantation. Nat Rev Immunol 2018; 18(10): 605-16.
[http://dx.doi.org/10.1038/s41577-018-0042-2] [PMID: 30046149]
[39]
Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371(16): 1507-17.
[http://dx.doi.org/10.1056/NEJMoa1407222] [PMID: 25317870]
[40]
Mazzi MT, Hajdu KL, Ribeiro PR, et al. CAR-T cells leave the comfort zone: current and future applications beyond cancer. Immunotherapy Advances 2021.
[http://dx.doi.org/10.1093/immadv/ltaa006]
[41]
Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res 2019; 2019: 1-9.
[http://dx.doi.org/10.1155/2019/5727516] [PMID: 32083141]
[42]
Chmielewski M, Abken H. TRUCKs: The fourth generation of CARs. Expert Opin Biol Ther 2015; 15(8): 1145-54.
[http://dx.doi.org/10.1517/14712598.2015.1046430] [PMID: 25985798]
[43]
Kansal R, Richardson N, Neeli I, et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci Transl Med 2019; 11: eaav1648.
[http://dx.doi.org/10.1126/scitranslmed.aav1648]
[44]
Shanghai GeneChem Co. A Study of CD19 Redirected Autologous T Cells for CD19 Positive Systemic Lupus Erythematosus (SLE). 2017. Available from: https://clinicaltrials.gov/ct2/show/NCT03030976.
[45]
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257(1): 107-26.
[http://dx.doi.org/10.1111/imr.12131] [PMID: 24329793]
[46]
Kim D, Cho JY. Recent advances in allogeneic CAR-T cells. Biomolecules 2020; 10(2): 263.
[http://dx.doi.org/10.3390/biom10020263] [PMID: 32050611]
[47]
Guedan S, Calderon H, Posey AD Jr, Maus MV. Engineering and design of chimeric antigen receptors. Mol Ther Methods Clin Dev 2019; 12: 145-56.
[http://dx.doi.org/10.1016/j.omtm.2018.12.009] [PMID: 30666307]
[48]
Liu J, Zhong JF, Zhang X, Zhang C. Allogeneic CD19-CAR-T cell infusion after allogeneic hematopoietic stem cell transplantation in B cell malignancies. J Hematol Oncol 2017; 10(1): 35.
[http://dx.doi.org/10.1186/s13045-017-0405-3] [PMID: 28143567]
[49]
Fujiwara K, Masutani M, Tachibana M, Okada N. Impact of scFv structure in chimeric antigen receptor on receptor expression efficiency and antigen recognition properties. Biochem Biophys Res Commun 2020; 527(2): 350-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.03.071] [PMID: 32216966]
[50]
Kochenderfer JN, Yu Z, Frasheri D, Restifo NP, Rosenberg SA. Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood 2010; 116(19): 3875-86.
[http://dx.doi.org/10.1182/blood-2010-01-265041] [PMID: 20631379]
[51]
Weinkove R, George P, Dasyam N, McLellan AD. Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations. Clin Transl Immunology 2019; 8(5): e1049.
[http://dx.doi.org/10.1002/cti2.1049] [PMID: 31110702]
[52]
Long AH, Haso WM, Shern JF, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21(6): 581-90.
[http://dx.doi.org/10.1038/nm.3838] [PMID: 25939063]
[53]
Gomes-Silva D, Mukherjee M, Srinivasan M, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep 2017; 21(1): 17-26.
[http://dx.doi.org/10.1016/j.celrep.2017.09.015] [PMID: 28978471]
[54]
Shen CJ, Yang YX, Han EQ, et al. Chimeric antigen receptor containing ICOS signaling domain mediates specific and efficient antitumor effect of T cells against EGFRvIII expressing glioma. J Hematol Oncol 2013; 6(1): 33.
[http://dx.doi.org/10.1186/1756-8722-6-33] [PMID: 23656794]
[55]
Dwivedi A, Karulkar A, Ghosh S, Rafiq A, Purwar R. Lymphocytes in cellular therapy: functional regulation of CAR T cells. Front Immunol 2019; 9: 3180.
[http://dx.doi.org/10.3389/fimmu.2018.03180] [PMID: 30713539]
[56]
Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020; 17(3): 147-67.
[http://dx.doi.org/10.1038/s41571-019-0297-y] [PMID: 31848460]
[57]
Ramos CA, Dotti G. Chimeric antigen receptor (CAR)-engineered lymphocytes for cancer therapy. Expert Opin Biol Ther 2011; 11(7): 855-73.
[http://dx.doi.org/10.1517/14712598.2011.573476] [PMID: 21463133]
[58]
Sadeqi Nezhad M, Seifalian A, Bagheri N, Yaghoubi S, Karimi MH, Adbollahpour-Alitappeh M. Chimeric antigen receptor based therapy as a potential approach in autoimmune diseases: How close are we to the treatment? Front Immunol 2020; 11: 603237.
[http://dx.doi.org/10.3389/fimmu.2020.603237] [PMID: 33324420]
[59]
Liu Q, Liu Z, Wan R, Huang W. Clinical strategies for enhancing the efficacy of CAR T-cell therapy for hematological malignancies. Cancers (Basel) 2022; 14(18): 4452.
[http://dx.doi.org/10.3390/cancers14184452] [PMID: 36139611]
[60]
Vitale C, Strati P. CAR T-cell therapy for B-cell non-hodgkin lymphoma and chronic lymphocytic leukemia: Clinical trials and real-world experiences. Front Oncol 2020; 10: 849.
[http://dx.doi.org/10.3389/fonc.2020.00849] [PMID: 32670869]
[61]
Curran KJ, Margossian SP, Kernan NA, et al. Toxicity and response after CD19-specific CAR T-cell therapy in pediatric/young adult relapsed/refractory B-ALL. Blood 2019; 134(26): 2361-8.
[http://dx.doi.org/10.1182/blood.2019001641] [PMID: 31650176]
[62]
Geyer MB, Rivière I, Sénéchal B, et al. Safety and tolerability of conditioning chemotherapy followed by CD19-targeted CAR T cells for relapsed/refractory CLL. JCI Insight 2019; 4(9): e122627.
[http://dx.doi.org/10.1172/jci.insight.122627] [PMID: 30938714]
[63]
Mougiakakos D, Krönke G, Völkl S, et al. CD19-Targeted CAR T cells in refractory systemic lupus erythematosus. N Engl J Med 2021; 385(6): 567-9.
[http://dx.doi.org/10.1056/NEJMc2107725] [PMID: 34347960]
[64]
Zhang C, Liu J, Zhong JF, Zhang X. Engineering CAR-T cells. Biomark Res 2017; 5(1): 22.
[http://dx.doi.org/10.1186/s40364-017-0102-y] [PMID: 28652918]
[65]
Bozza M, De Roia A, Correia MP, et al. A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Sci Adv 2021; 7(16): eabf1333.
[http://dx.doi.org/10.1126/sciadv.abf1333] [PMID: 33853779]
[66]
Irving M, Lanitis E, Migliorini D, Ivics Z, Guedan S. Choosing the right tool for genetic engineering: Clinical lessons from chimeric antigen receptor-T cells. Hum Gene Ther 2021; 32(19-20): 1044-58.
[http://dx.doi.org/10.1089/hum.2021.173] [PMID: 34662233]
[67]
Wang X, Rivière I. Clinical manufacturing of CAR T cells: Foundation of a promising therapy. Mol Ther Oncolytics 2016; 3: 16015.
[http://dx.doi.org/10.1038/mto.2016.15] [PMID: 27347557]
[68]
Guedan S, Chen X, Madar A, et al. ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood 2014; 124(7): 1070-80.
[http://dx.doi.org/10.1182/blood-2013-10-535245] [PMID: 24986688]
[69]
Ibsen KN, Daugherty PS. Prediction of antibody structural epitopes via random peptide library screening and next generation sequencing. J Immunol Methods 2017; 451: 28-36.
[http://dx.doi.org/10.1016/j.jim.2017.08.004] [PMID: 28827189]
[70]
Manguso RT, Pope HW, Zimmer MD, et al. In vivo CRISPR screening identifies PTPN2 as a cancer immunotherapy target. Nature 2017; 547(7664): 413-8.
[http://dx.doi.org/10.1038/nature23270] [PMID: 28723893]
[71]
Gomez Mendez LM, Cascino MD, Garg J, et al. Peripheral blood b cell depletion after rituximab and complete response in lupus nephritis. Clin J Am Soc Nephrol 2018; 13(10): 1502-9.
[http://dx.doi.org/10.2215/CJN.01070118] [PMID: 30089664]
[72]
Davila ML, Kloss CC, Gunset G, Sadelain M. CD19 CAR-targeted T cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS One 2013; 8(4): e61338.
[http://dx.doi.org/10.1371/journal.pone.0061338] [PMID: 23585892]
[73]
Riaz IB, Zahid U, Kamal MU, et al. Anti-CD 19 and anti-CD 20 CAR-modified T cells for B-cell malignancies: a systematic review and meta-analysis. Immunotherapy 2017; 9(12): 979-93.
[http://dx.doi.org/10.2217/imt-2017-0062] [PMID: 28971751]
[74]
Gauthier J, Turtle CJ. Insights into cytokine release syndrome and neurotoxicity after CD19-specific CAR-T cell therapy. Curr Res Transl Med 2018; 66(2): 50-2.
[http://dx.doi.org/10.1016/j.retram.2018.03.003] [PMID: 29625831]
[75]
Santomasso B, Bachier C, Westin J, Rezvani K, Shpall EJ. The other side of car t-cell therapy: cytokine release syndrome, neurologic toxicity, and financial burden. Am Soc Clin Oncol Educ Book 2019; 39(39): 433-44.
[http://dx.doi.org/10.1200/EDBK_238691] [PMID: 31099694]
[76]
Hay KA. Cytokine release syndrome and neurotoxicity after CD19 chimeric antigen receptor-modified (CAR-) T cell therapy. Br J Haematol 2018; 183(3): 364-74.
[http://dx.doi.org/10.1111/bjh.15644] [PMID: 30407609]
[77]
Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016; 127(26): 3321-30.
[http://dx.doi.org/10.1182/blood-2016-04-703751] [PMID: 27207799]
[78]
Teachey DT, Lacey SF, Shaw PA, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor t-cell therapy for acute lymphoblastic leukemia. Cancer Discov 2016; 6(6): 664-79.
[http://dx.doi.org/10.1158/2159-8290.CD-16-0040] [PMID: 27076371]
[79]
Rice J, Nagle S, Randall J, Hinson HE. Chimeric antigen receptor t cell-related neurotoxicity: mechanisms, clinical presentation, and approach to treatment. Curr Treat Options Neurol 2019; 21(8): 40.
[http://dx.doi.org/10.1007/s11940-019-0580-3] [PMID: 31327064]
[80]
Yáñez L, Sánchez-Escamilla M, Perales MA. CAR T cell toxicity: Current management and future directions. HemaSphere 2019; 3(2): e186.
[http://dx.doi.org/10.1097/HS9.0000000000000186] [PMID: 31723825]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy