Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Mini-Review Article

The Enigmas of Lymphatic Muscle Cells: Where Do They Come From, How Are They Maintained, and Can They Regenerate?

Author(s): H. Mark Kenney, Yue Peng, Karen L. de Mesy Bentley, Lianping Xing, Christopher T. Ritchlin and Edward M. Schwarz*

Volume 19, Issue 3, 2023

Published on: 15 February, 2023

Page: [246 - 259] Pages: 14

DOI: 10.2174/1573397119666230127144711

Price: $65

Abstract

Lymphatic muscle cell (LMC) contractility and coverage of collecting lymphatic vessels (CLVs) are integral to effective lymphatic drainage and tissue homeostasis. In fact, defects in lymphatic contractility have been identified in various conditions, including rheumatoid arthritis, inflammatory bowel disease, and obesity. However, the fundamental role of LMCs in these pathologic processes is limited, primarily due to the difficulty in directly investigating the enigmatic nature of this poorly characterized cell type. LMCs are a unique cell type that exhibit dual tonic and phasic contractility with hybrid structural features of both vascular smooth muscle cells (VSMCs) and cardiac myocytes. While advances have been made in recent years to better understand the biochemistry and function of LMCs, central questions regarding their origins, investiture into CLVs, and homeostasis remain unanswered. To summarize these discoveries, unexplained experimental results, and critical future directions, here we provide a focused review of current knowledge and open questions related to LMC progenitor cells, recruitment, maintenance, and regeneration. We also highlight the high-priority research goal of identifying LMC-specific genes towards genetic conditional- inducible in vivo gain and loss of function studies. While our interest in LMCs has been focused on understanding lymphatic dysfunction in an arthritic flare, these concepts are integral to the broader field of lymphatic biology, and have important potential for clinical translation through targeted therapeutics to control lymphatic contractility and drainage.

Graphical Abstract

[1]
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21st century: Novel functional roles in homeostasis and disease. Cell 2020; 182(2): 270-96.
[http://dx.doi.org/10.1016/j.cell.2020.06.039] [PMID: 32707093]
[2]
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: Mechanics, mechanisms and malfunction. J Physiol 2016; 594(20): 5749-68.
[http://dx.doi.org/10.1113/JP272088] [PMID: 27219461]
[3]
von der Weid PY, Zawieja DC. Lymphatic smooth muscle: The motor unit of lymph drainage. Int J Biochem Cell Biol 2004; 36(7): 1147-53.
[http://dx.doi.org/10.1016/j.biocel.2003.12.008] [PMID: 15109561]
[4]
Zawieja DC. Contractile physiology of lymphatics. Lymphat Res Biol 2009; 7(2): 87-96.
[http://dx.doi.org/10.1089/lrb.2009.0007] [PMID: 19534632]
[5]
Akl TJ, Nagai T, Coté GL, Gashev AA. Mesenteric lymph flow in adult and aged rats. Am J Physiol Heart Circ Physiol 2011; 301(5): H1828-40.
[http://dx.doi.org/10.1152/ajpheart.00538.2011] [PMID: 21873496]
[6]
Nagai T, Bridenbaugh EA, Gashev AA. Aging-associated alterations in contractility of rat mesenteric lymphatic vessels. Microcirculation 2011; 18(6): 463-73.
[http://dx.doi.org/10.1111/j.1549-8719.2011.00107.x] [PMID: 21466607]
[7]
Zolla V, Nizamutdinova IT, Scharf B, et al. Aging‐related anatomical and biochemical changes in lymphatic collectors impair lymph transport, fluid homeostasis, and pathogen clearance. Aging Cell 2015; 14(4): 582-94.
[http://dx.doi.org/10.1111/acel.12330] [PMID: 25982749]
[8]
Shang T, Liang J, Kapron CM, Liu J. Pathophysiology of aged lymphatic vessels. Aging (Albany NY) 2019; 11(16): 6602-13.
[http://dx.doi.org/10.18632/aging.102213] [PMID: 31461408]
[9]
Bouta EM, Bell RD, Rahimi H, et al. Targeting lymphatic function as a novel therapeutic intervention for rheumatoid arthritis. Nat Rev Rheumatol 2018; 14(2): 94-106.
[http://dx.doi.org/10.1038/nrrheum.2017.205] [PMID: 29323343]
[10]
Bouta EM, Li J, Ju Y, et al. The role of the lymphatic system in inflammatory-erosive arthritis. Semin Cell Dev Biol 2015; 38: 90-7.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.001] [PMID: 25598390]
[11]
Cromer W, Wang W, Zawieja SD, von der Weid PY, Newell-Rogers MK, Zawieja DC. Colonic insult impairs lymph flow, increases cellular content of the lymph, alters local lymphatic microenvironment, and leads to sustained inflammation in the rat ileum. Inflamm Bowel Dis 2015; 21(7): 1553-63.
[http://dx.doi.org/10.1097/MIB.0000000000000402] [PMID: 25939039]
[12]
Mathias R, von der Weid PY. Involvement of the NO-cGMP-K ATP channel pathway in the mesenteric lymphatic pump dysfunction observed in the guinea pig model of TNBS-induced ileitis. Am J Physiol Gastrointest Liver Physiol 2013; 304(6): G623-34.
[http://dx.doi.org/10.1152/ajpgi.00392.2012] [PMID: 23275612]
[13]
Van Kruiningen HJ, Colombel JF. The forgotten role of lymphangitis in Crohn’s disease. Gut 2007; 57(1): 1-4.
[http://dx.doi.org/10.1136/gut.2007.123166] [PMID: 18094195]
[14]
Wu TF, Carati CJ, MacNaughton WK, von der Weid PY. Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 2006; 291(4): G566-74.
[http://dx.doi.org/10.1152/ajpgi.00058.2006] [PMID: 16675748]
[15]
Blum KS, Karaman S, Proulx ST, et al. Chronic high-fat diet impairs collecting lymphatic vessel function in mice. PLoS One 2014; 9(4): e94713.
[http://dx.doi.org/10.1371/journal.pone.0094713] [PMID: 24714646]
[16]
Cao E, Watt MJ, Nowell CJ, et al. Mesenteric lymphatic dysfunction promotes insulin resistance and represents a potential treatment target in obesity. Nat Metab 2021; 3(9): 1175-88.
[http://dx.doi.org/10.1038/s42255-021-00457-w] [PMID: 34545251]
[17]
Castorena-Gonzalez JA. lymphatic valve dysfunction in western diet-fed mice: New insights into obesity-induced lymphedema. Front Pharmacol 2022; 13(823266): 823266.
[http://dx.doi.org/10.3389/fphar.2022.823266] [PMID: 35308249]
[18]
Zawieja SD, Wang W, Wu X, Nepiyushchikh ZV, Zawieja DC, Muthuchamy M. Impairments in the intrinsic contractility of mesenteric collecting lymphatics in a rat model of metabolic syndrome. Am J Physiol Heart Circ Physiol 2012; 302(3): H643-53.
[http://dx.doi.org/10.1152/ajpheart.00606.2011] [PMID: 22159997]
[19]
Lee Y, Zawieja SD, Muthuchamy M. Lymphatic collecting vessel: New perspectives on mechanisms of contractile regulation and potential lymphatic contractile pathways to target in obesity and metabolic diseases. Front Pharmacol 2022; 13(848088): 848088.
[http://dx.doi.org/10.3389/fphar.2022.848088] [PMID: 35355722]
[20]
Chakraborty S, Davis MJ, Muthuchamy M. Emerging trends in the pathophysiology of lymphatic contractile function. Semin Cell Dev Biol 2015; 38: 55-66.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.005] [PMID: 25617600]
[21]
Olszewski WL. Contractility patterns of normal and pathologically changed human lymphatics. Ann N Y Acad Sci 2002; 979(1): 52-63.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04867.x] [PMID: 12543716]
[22]
Davis MJ, Kim HJ, Zawieja SD, et al. Kir6.1‐dependent K ATP channels in lymphatic smooth muscle and vessel dysfunction in mice with Kir6.1 gain‐of‐function. J Physiol 2020; 598(15): 3107-27.
[http://dx.doi.org/10.1113/JP279612] [PMID: 32372450]
[23]
Zawieja SD, Castorena-Gonzalez JA, Scallan JP, Davis MJ. Differences in L-type Ca2+ channel activity partially underlie the regional dichotomy in pumping behavior by murine peripheral and visceral lymphatic vessels. Am J Physiol Heart Circ Physiol 2018; 314(5): H991-H1010.
[http://dx.doi.org/10.1152/ajpheart.00499.2017] [PMID: 29351458]
[24]
Castorena-Gonzalez JA, Zawieja SD, Li M, et al. Mechanisms of connexin-related lymphedema. Circ Res 2018; 123(8): 964-85.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.312576] [PMID: 30355030]
[25]
Zawieja SD, Castorena JA, Gui P, et al. Ano1 mediates pressure-sensitive contraction frequency changes in mouse lymphatic collecting vessels. J Gen Physiol 2019; 151(4): 532-54.
[http://dx.doi.org/10.1085/jgp.201812294] [PMID: 30862712]
[26]
Liang Q, Ju Y, Chen Y, et al. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther 2016; 18(1): 62.
[http://dx.doi.org/10.1186/s13075-016-0963-8] [PMID: 26970913]
[27]
Nizamutdinova IT, Maejima D, Nagai T, et al. Involvement of histamine in endothelium-dependent relaxation of mesenteric lymphatic vessels. Microcirculation 2014; 21(7): 640-8.
[http://dx.doi.org/10.1111/micc.12143] [PMID: 24750494]
[28]
Liao S, Cheng G, Conner DA, et al. Impaired lymphatic contraction associated with immunosuppression. Proc Natl Acad Sci USA 2011; 108(46): 18784-9.
[http://dx.doi.org/10.1073/pnas.1116152108] [PMID: 22065738]
[29]
Liao S, Bouta EM, Morris LM, Jones D, Jain RK, Padera TP. Inducible nitric oxide synthase and CD11b + Gr1 + cells impair lymphatic contraction of tumor-draining lymphatic vessels. Lymphat Res Biol 2019; 17(3): 294-300.
[http://dx.doi.org/10.1089/lrb.2018.0013] [PMID: 30358484]
[30]
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging roles of mast cells in the regulation of lymphatic immuno-physiology. Front Immunol 2020; 11(1234): 1234.
[http://dx.doi.org/10.3389/fimmu.2020.01234] [PMID: 32625213]
[31]
Hooks JST, Clement CC, Nguyen HD, Santambrogio L, Dixon JB. In vitro model reveals a role for mechanical stretch in the remodeling response of lymphatic muscle cells. Microcirculation 2019; 26(1): e12512.
[http://dx.doi.org/10.1111/micc.12512] [PMID: 30383330]
[32]
Liang Q, Zhang L, Xu H, et al. Lymphatic muscle cells contribute to dysfunction of the synovial lymphatic system in inflammatory arthritis in mice. Arthritis Res Ther 2021; 23(1): 58.
[http://dx.doi.org/10.1186/s13075-021-02438-6] [PMID: 33602317]
[33]
Selahi A, Fernando T, Chakraborty S, Muthuchamy M, Zawieja DC, Jain A. Lymphangion-chip: A microphysiological system which supports co-culture and bidirectional signaling of lymphatic endothelial and muscle cells. Lab Chip 2021; 22(1): 121-35.
[http://dx.doi.org/10.1039/D1LC00720C] [PMID: 34850797]
[34]
Hong YK, Harvey N, Noh YH, et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225(3): 351-7.
[http://dx.doi.org/10.1002/dvdy.10163] [PMID: 12412020]
[35]
Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98(6): 769-78.
[http://dx.doi.org/10.1016/S0092-8674(00)81511-1] [PMID: 10499794]
[36]
Lutter S, Xie S, Tatin F, Makinen T. Smooth muscle–endothelial cell communication activates reelin signaling and regulates lymphatic vessel formation. J Cell Biol 2012; 197(6): 837-49.
[http://dx.doi.org/10.1083/jcb.201110132] [PMID: 22665518]
[37]
Wang Y, Jin Y, Mäe MA, et al. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity. Development 2017; 144(19): dev.147967.
[http://dx.doi.org/10.1242/dev.147967] [PMID: 28851707]
[38]
Bazigou E, Lyons OTA, Smith A, et al. Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J Clin Invest 2011; 121(8): 2984-92.
[http://dx.doi.org/10.1172/JCI58050] [PMID: 21765212]
[39]
Kenney HM, Bell RD, Masters EA, Xing L, Ritchlin CT, Schwarz EM. Lineage tracing reveals evidence of a popliteal lymphatic muscle progenitor cell that is distinct from skeletal and vascular muscle progenitors. Sci Rep 2020; 10(1): 18088.
[http://dx.doi.org/10.1038/s41598-020-75190-7] [PMID: 33093635]
[40]
Martinez-Corral I, Ulvmar MH, Stanczuk L, et al. Nonvenous origin of dermal lymphatic vasculature. Circ Res 2015; 116(10): 1649-54.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.306170] [PMID: 25737499]
[41]
Aspelund A, Robciuc MR, Karaman S, Makinen T, Alitalo K. lymphatic system in cardiovascular medicine. Circ Res 2016; 118(3): 515-30.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306544] [PMID: 26846644]
[42]
Thornbury KD. Tonic and phasic activity in smooth muscle. Ir J Med Sci 1999; 168(3): 201-7.
[http://dx.doi.org/10.1007/BF02945854] [PMID: 10540789]
[43]
Bridenbaugh EA, Nizamutdinova IT, Jupiter D, et al. Lymphatic muscle cells in rat mesenteric lymphatic vessels of various ages. Lymphat Res Biol 2013; 11(1): 35-42.
[http://dx.doi.org/10.1089/lrb.2012.0025] [PMID: 23531183]
[44]
McCloskey KD, Hollywood MA, Thornbury KD, Ward SM, McHale NG. Kit-like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res 2002; 310(1): 77-84.
[http://dx.doi.org/10.1007/s00441-002-0623-y] [PMID: 12242486]
[45]
Razavi MS, Leonard-Duke J, Hardie B, Dixon JB, Gleason RL Jr. Axial stretch regulates rat tail collecting lymphatic vessel contractions. Sci Rep 2020; 10(1): 5918.
[http://dx.doi.org/10.1038/s41598-020-62799-x] [PMID: 32246026]
[46]
Muthuchamy M, Gashev A, Boswell N, Dawson N, Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J 2003; 17(8): 1-25.
[http://dx.doi.org/10.1096/fj.02-0626fje] [PMID: 12670880]
[47]
Davis MJ, Davis AM, Lane MM, Ku CW, Gashev AA. Rate-sensitive contractile responses of lymphatic vessels to circumferential stretch. J Physiol 2009; 587(1): 165-82.
[http://dx.doi.org/10.1113/jphysiol.2008.162438] [PMID: 19001046]
[48]
Scallan JP, Wolpers JH, Davis MJ. Constriction of isolated collecting lymphatic vessels in response to acute increases in downstream pressure. J Physiol 2013; 591(2): 443-59.
[http://dx.doi.org/10.1113/jphysiol.2012.237909] [PMID: 23045335]
[49]
Lee S, Roizes S, von der Weid PY. Distinct roles of L‐ and T‐type voltage‐dependent Ca2+ channels in regulation of lymphatic vessel contractile activity. J Physiol 2014; 592(24): 5409-27.
[http://dx.doi.org/10.1113/jphysiol.2014.280347] [PMID: 25326448]
[50]
Ghosh D, Syed AU, Prada MP, et al. Calcium channels in vascular smooth muscle. Adv Pharmacol 2017; 78: 49-87.
[http://dx.doi.org/10.1016/bs.apha.2016.08.002] [PMID: 28212803]
[51]
Hollywood MA, Cotton KD, Thornbury KD, McHale NG. Tetrodotoxin-sensitive sodium current in sheep lymphatic smooth muscle. J Physiol 1997; 503(1): 13-20.
[http://dx.doi.org/10.1111/j.1469-7793.1997.013bi.x] [PMID: 9288670]
[52]
McCloskey KD, Toland HM, Hollywood MA, Thornbury KD, McHale NG. Hyperpolarisation‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol 1999; 521(1): 201-11.
[http://dx.doi.org/10.1111/j.1469-7793.1999.00201.x] [PMID: 10562345]
[53]
Mesirca P, Torrente AG, Mangoni ME. Functional role of voltage gated Ca2+ channels in heart automaticity. Front Physiol 2015; 6(19): 19.
[PMID: 25698974]
[54]
To KHT, Gui P, Li M, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. T-type, but not L-type, voltage-gated calcium channels are dispensable for lymphatic pacemaking and spontaneous contractions. Sci Rep 2020; 10(1): 70.
[http://dx.doi.org/10.1038/s41598-019-56953-3] [PMID: 31919478]
[55]
Telinius N, Mohanakumar S, Majgaard J, et al. Human lymphatic vessel contractile activity is inhibited in vitro but not in vivo by the calcium channel blocker nifedipine. J Physiol 2014; 592(21): 4697-714.
[http://dx.doi.org/10.1113/jphysiol.2014.276683] [PMID: 25172950]
[56]
Cribbs L. T-type Ca2+ channels in vascular smooth muscle: Multiple functions. Cell Calcium 2006; 40(2): 221-30.
[http://dx.doi.org/10.1016/j.ceca.2006.04.026] [PMID: 16797699]
[57]
Chen YC, Chen SA, Chen YJ, Tai CT, Chan P, Lin C. T-type calcium current in electrical activity of cardiomyocytes isolated from rabbit pulmonary vein. J Cardiovasc Electrophysiol 2004; 15(5): 567-71.
[http://dx.doi.org/10.1046/j.1540-8167.2004.03399.x] [PMID: 15149427]
[58]
Sturek M, Hermsmeyer K. Calcium and sodium channels in spontaneously contracting vascular muscle cells. Science 1986; 233(4762): 475-8.
[http://dx.doi.org/10.1126/science.2425434] [PMID: 2425434]
[59]
Hald BO, Castorena-Gonzalez JA, Zawieja SD, Gui P, Davis MJ. Electrical communication in lymphangions. Biophys J 2018; 115(5): 936-49.
[http://dx.doi.org/10.1016/j.bpj.2018.07.033] [PMID: 30143234]
[60]
von der Weid PY, Crowe MJ, Van Helden DF. Endothelium-dependent modulation of pacemaking in lymphatic vessels of the guinea-pig mesentery. J Physiol 1996; 493(2): 563-75.
[http://dx.doi.org/10.1113/jphysiol.1996.sp021404] [PMID: 8782117]
[61]
Crowe MJ, von der Weid PY, Brock JA, Van Helden DF. Co-ordination of contractile activity in guinea-pig mesenteric lymphatics. J Physiol 1997; 500(1): 235-44.
[http://dx.doi.org/10.1113/jphysiol.1997.sp022013] [PMID: 9097947]
[62]
Brice G, Ostergaard P, Jeffery S, Gordon K, Mortimer PS, Mansour S. A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family. Clin Genet 2013; 84(4): 378-81.
[http://dx.doi.org/10.1111/cge.12158] [PMID: 23550541]
[63]
Ferrell RE, Baty CJ, Kimak MA, et al. GJC2 missense mutations cause human lymphedema. Am J Hum Genet 2010; 86(6): 943-8.
[http://dx.doi.org/10.1016/j.ajhg.2010.04.010] [PMID: 20537300]
[64]
Ostergaard P, Simpson MA, Brice G, et al. Rapid identification of mutations in GJC2 in primary lymphoedema using whole exome sequencing combined with linkage analysis with delineation of the phenotype. J Med Genet 2011; 48(4): 251-5.
[http://dx.doi.org/10.1136/jmg.2010.085563] [PMID: 21266381]
[65]
Kanady JD, Dellinger MT, Munger SJ, Witte MH, Simon AM. Connexin37 and Connexin43 deficiencies in mice disrupt lymphatic valve development and result in lymphatic disorders including lymphedema and chylothorax. Dev Biol 2011; 354(2): 253-66.
[http://dx.doi.org/10.1016/j.ydbio.2011.04.004] [PMID: 21515254]
[66]
Simon AM, McWhorter AR. Vascular abnormalities in mice lacking the endothelial gap junction proteins connexin37 and connexin40. Dev Biol 2002; 251(2): 206-20.
[http://dx.doi.org/10.1006/dbio.2002.0826] [PMID: 12435353]
[67]
Geng X, Cha B, Mahamud MR, et al. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 2016; 409(1): 218-33.
[http://dx.doi.org/10.1016/j.ydbio.2015.10.022] [PMID: 26542011]
[68]
Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control. Circ Res 2000; 87(6): 474-9.
[http://dx.doi.org/10.1161/01.RES.87.6.474] [PMID: 10988239]
[69]
de Wit C, Roos F, Bolz SS, Pohl U. Lack of vascular connexin 40 is associated with hypertension and irregular arteriolar vasomotion. Physiol Genomics 2003; 13(2): 169-77.
[http://dx.doi.org/10.1152/physiolgenomics.00169.2002] [PMID: 12700362]
[70]
Wagner C, de Wit C, Kurtz L, Grünberger C, Kurtz A, Schweda F. Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 2007; 100(4): 556-63.
[http://dx.doi.org/10.1161/01.RES.0000258856.19922.45] [PMID: 17255527]
[71]
He L, Vanlandewijck M, Mäe MA, et al. Single-cell RNA sequencing of mouse brain and lung vascular and vessel-associated cell types. Sci Data 2018; 5(1): 180160.
[http://dx.doi.org/10.1038/sdata.2018.160] [PMID: 30129931]
[72]
Vanlandewijck M, He L, Mäe MA, et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 2018; 554(7693): 475-80.
[http://dx.doi.org/10.1038/nature25739] [PMID: 29443965]
[73]
Dobnikar L, Taylor A, Chappell J, et al. Disease-relevant transcriptional signatures identified in individual smooth muscle cells from healthy mouse vessels. Nat Commun 2018; 9(4567)
[74]
Gashev AA, Davis MJ, Delp MD, Zawieja DC. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 2004; 11(6): 477-92.
[http://dx.doi.org/10.1080/10739680490476033] [PMID: 15371129]
[75]
Kenney HM, Wu CL, Loiselle AE, Xing L, Ritchlin CT, Schwarz EM. Single-cell transcriptomics of popliteal lymphatic vessels and peripheral veins reveals altered lymphatic muscle and immune cell populations in the TNF-Tg arthritis model. Arthritis Res Ther 2022; 24(1): 64.
[http://dx.doi.org/10.1186/s13075-022-02730-z] [PMID: 35255954]
[76]
Jones D, Meijer EFJ, Blatter C, et al. Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med 2018; 10(424): eaam7964.
[http://dx.doi.org/10.1126/scitranslmed.aam7964] [PMID: 29343625]
[77]
Wang X, He Y, Zhang Q, Ren X, Zhang Z. Direct comparative analyses of 10X genomics chromium and smart-seq2. Genomics Proteomics Bioinformatics 2021; 19(2): 253-66.
[http://dx.doi.org/10.1016/j.gpb.2020.02.005] [PMID: 33662621]
[78]
Choi K, Chen Y, Skelly D, Churchill G. Bayesian model selection reveals biological origins of zero inflation in single-cell transcriptomics. Genome Biol 2020; 21(183)
[79]
Buechler MB, Pradhan RN, Krishnamurty AT, et al. Cross-tissue organization of the fibroblast lineage. Nature 2021; 593(7860): 575-9.
[http://dx.doi.org/10.1038/s41586-021-03549-5] [PMID: 33981032]
[80]
Singhmar P, Trinh RTP, Ma J, et al. The fibroblast-derived protein PI16 controls neuropathic pain. Proc Natl Acad Sci USA 2020; 117(10): 5463-71.
[http://dx.doi.org/10.1073/pnas.1913444117] [PMID: 32079726]
[81]
Sigmund EC, Baur L, Schineis P, et al. Lymphatic endothelial-cell expressed ACKR3 is dispensable for postnatal lymphangiogenesis and lymphatic drainage function in mice. PLoS One 2021; 16(4): e0249068.
[http://dx.doi.org/10.1371/journal.pone.0249068] [PMID: 33857173]
[82]
Klein KR, Karpinich NO, Espenschied ST, et al. Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Dev Cell 2014; 30(5): 528-40.
[http://dx.doi.org/10.1016/j.devcel.2014.07.012] [PMID: 25203207]
[83]
Ohtani Y, Ohtani O. Postnatal development of lymphatic vessels and their smooth muscle cells in the rat diaphragm: A confocal microscopic study. Arch Histol Cytol 2001; 64(5): 513-22.
[http://dx.doi.org/10.1679/aohc.64.513] [PMID: 11838711]
[84]
Kumar A, D’Souza SS, Moskvin OV, et al. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep 2017; 19(9): 1902-16.
[http://dx.doi.org/10.1016/j.celrep.2017.05.019] [PMID: 28564607]
[85]
Hungerford J, Little C. Developmental biology of the vascular smooth muscle cell: Building a multilayered vessel wall. J Vasc Res 1999; 36(1): 2-27.
[http://dx.doi.org/10.1159/000025622] [PMID: 10050070]
[86]
Norrmén C, Ivanov KI, Cheng J, et al. FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 2009; 185(3): 439-57.
[http://dx.doi.org/10.1083/jcb.200901104] [PMID: 19398761]
[87]
Yaniv K, Isogai S, Castranova D, Dye L, Hitomi J, Weinstein BM. Live imaging of lymphatic development in the zebrafish. Nat Med 2006; 12(6): 711-6.
[http://dx.doi.org/10.1038/nm1427] [PMID: 16732279]
[88]
Srinivasan RS, Dillard ME, Lagutin OV, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev 2007; 21(19): 2422-32.
[http://dx.doi.org/10.1101/gad.1588407] [PMID: 17908929]
[89]
Olguín HC, Pisconti A. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med 2012; 16(5): 1013-25.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01348.x] [PMID: 21615681]
[90]
Tapscott SJ, Davis RL, Thayer MJ, Cheng PF, Weintraub H, Lassar AB. MyoD1: A nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Sci 1988; 242(4877): 405-11.
[http://dx.doi.org/10.1126/science.3175662] [PMID: 3175662]
[91]
Stone OA, Stainier DYR. Paraxial mesoderm is the major source of lymphatic endothelium. Dev Cell 2019; 50(2): 247-255.e3.
[http://dx.doi.org/10.1016/j.devcel.2019.04.034] [PMID: 31130354]
[92]
Majesky MW, Dong XR, Regan JN, Hoglund VJ. Vascular smooth muscle progenitor cells: building and repairing blood vessels. Circ Res 2011; 108(3): 365-77.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223800] [PMID: 21293008]
[93]
Hu Y, Zhang Z, Torsney E, et al. Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 2004; 113(9): 1258-65.
[http://dx.doi.org/10.1172/JCI19628] [PMID: 15124016]
[94]
Passman JN, Dong XR, Wu SP, et al. A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA 2008; 105(27): 9349-54.
[http://dx.doi.org/10.1073/pnas.0711382105] [PMID: 18591670]
[95]
Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996; 174(2): 221-32.
[http://dx.doi.org/10.1006/dbio.1996.0068] [PMID: 8631495]
[96]
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18(5): 368-79.
[http://dx.doi.org/10.1038/s41569-020-00489-x] [PMID: 33462421]
[97]
Peyrot SM, Martin BL, Harland RM. Lymph heart musculature is under distinct developmental control from lymphatic endothelium. Dev Biol 2010; 339(2): 429-38.
[http://dx.doi.org/10.1016/j.ydbio.2010.01.002] [PMID: 20067786]
[98]
Kampmeier O. Evolution and comparative morphology of the lymphatic system. Springfield, Illinois: Thomas 1969.
[99]
Satoh Y, Nitatori T. On the fine structure of lymph hearts in amphibia and reptiles. Elsevier 1980.
[http://dx.doi.org/10.1016/B978-0-12-119401-7.50011-6]
[100]
Valasek P, Macharia R, Neuhuber WL, Wilting J, Becker DL, Patel K. Lymph heart in chick - somitic origin, development and embryonic oedema. Development 2007; 134(24): 4427-36.
[http://dx.doi.org/10.1242/dev.004697] [PMID: 18003736]
[101]
Wilting J, Aref Y, Huang R, et al. Dual origin of avian lymphatics. Dev Biol 2006; 292(1): 165-73.
[http://dx.doi.org/10.1016/j.ydbio.2005.12.043] [PMID: 16457798]
[102]
Kampmeier OF. The development of the jugular lymph sacs in the light of vestigial, provisional and definitive phases of morphogenesis. Am J Anat 1960; 107(2): 153-75.
[http://dx.doi.org/10.1002/aja.1001070205] [PMID: 13751093]
[103]
Tammela T, Saaristo A, Holopainen T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 2007; 13(12): 1458-66.
[http://dx.doi.org/10.1038/nm1689] [PMID: 18059280]
[104]
Hellström M. Kal n M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 1999; 126(14): 3047-55.
[http://dx.doi.org/10.1242/dev.126.14.3047] [PMID: 10375497]
[105]
Meinecke AK, Nagy N, Lago GDA, et al. Aberrant mural cell recruitment to lymphatic vessels and impaired lymphatic drainage in a murine model of pulmonary fibrosis. Blood 2012; 119(24): 5931-42.
[http://dx.doi.org/10.1182/blood-2011-12-396895] [PMID: 22547584]
[106]
Maisonpierre PC, Suri C, Jones PF, et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322): 55-60.
[http://dx.doi.org/10.1126/science.277.5322.55] [PMID: 9204896]
[107]
Teichert-Kuliszewska K, Maisonpierre PC, Jones N, et al. Biological action of angiopoietin-2 in a fibrin matrix model of angiogenesis is associated with activation of Tie2. Cardiovasc Res 2001; 49(3): 659-70.
[http://dx.doi.org/10.1016/S0008-6363(00)00231-5] [PMID: 11166279]
[108]
Dellinger M, Hunter R, Bernas M, et al. Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice. Dev Biol 2008; 319(2): 309-20.
[http://dx.doi.org/10.1016/j.ydbio.2008.04.024] [PMID: 18514180]
[109]
Gale NW, Thurston G, Hackett SF, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 2002; 3(3): 411-23.
[http://dx.doi.org/10.1016/S1534-5807(02)00217-4] [PMID: 12361603]
[110]
Petrova TV, Karpanen T, Norrmén C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004; 10(9): 974-81.
[http://dx.doi.org/10.1038/nm1094] [PMID: 15322537]
[111]
Bouvrée K, Brunet I, del Toro R, et al. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res 2012; 111(4): 437-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.269316] [PMID: 22723296]
[112]
Jurisic G, Maby-El Hajjami H, Karaman S, et al. An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res 2012; 111(4): 426-36.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.269399] [PMID: 22723300]
[113]
Neese RA, Misell LM, Turner S, et al. Measurement in vivo of proliferation rates of slow turnover cells by H2O labeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci USA 2002; 99(24): 15345-50.
[http://dx.doi.org/10.1073/pnas.232551499] [PMID: 12424339]
[114]
Jiao D, Liu Y, Hou T, et al. Notoginsenoside R1 (NG-R1) promoted lymphatic drainage function to ameliorating rheumatoid arthritis in TNF-Tg mice by suppressing NF-κB signaling pathway. Front Pharmacol 2022; 12(730579): 730579.
[http://dx.doi.org/10.3389/fphar.2021.730579]
[115]
Kenney HM, Peng Y, Bell RD, et al. Persistent popliteal lymphatic muscle cell coverage defects despite amelioration of arthritis and recovery of popliteal lymphatic vessel function in TNF-Tg mice following anti-TNF therapy. Sci Rep 2022; 12(1): 12751.
[http://dx.doi.org/10.1038/s41598-022-16884-y] [PMID: 35882971]
[116]
Tang J, Wang H, Huang X, et al. arterial sca1+ vascular stem cells generate de novo smooth muscle for artery repair and regeneration. Cell Stem Cell 2020; 26(1): 81-96.e4.
[http://dx.doi.org/10.1016/j.stem.2019.11.010] [PMID: 31883835]
[117]
Kolesnichenko M, Vogt PK. Understanding PLZF. Cell Cycle 2011; 10(5): 771-5.
[http://dx.doi.org/10.4161/cc.10.5.14829] [PMID: 21311223]
[118]
Shi J, Sun M, Vogt PK. Smooth muscle α-actin is a direct target of PLZF: Effects on the cytoskeleton and on susceptibility to oncogenic transformation. Oncotarget 2010; 1(1): 9-21.
[http://dx.doi.org/10.18632/oncotarget.104] [PMID: 20634973]
[119]
Breslin JW. Mechanical forces and lymphatic transport. Microvasc Res 2014; 96: 46-54.
[http://dx.doi.org/10.1016/j.mvr.2014.07.013] [PMID: 25107458]
[120]
McHale NG, Roddie IC. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol 1976; 261(2): 255-69.
[http://dx.doi.org/10.1113/jphysiol.1976.sp011557] [PMID: 988184]
[121]
Davis MJ, Scallan JP, Wolpers JH, Muthuchamy M, Gashev AA, Zawieja DC. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload. Am J Physiol Heart Circ Physiol 2012; 303(7): H795-808.
[http://dx.doi.org/10.1152/ajpheart.01097.2011] [PMID: 22886407]
[122]
Zhou Q, Wood R, Schwarz EM, Wang YJ, Xing L. Near-infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute versus chronic phases of arthritis in mice. Arthritis Rheum 2010; 62(7): 1881-9.
[PMID: 20309866]
[123]
Zhou Q, Guo R, Wood R. Boyce et al. VEGF-C attenuates joint damage in chronic inflammatory arthritis by accelerating local lymphatic drainage. Arthritis Rheumatol 2011; 63(8): 2318-28.
[http://dx.doi.org/10.1002/art.30421] [PMID: 21538325]
[124]
Bell R, Rahimi H, Kenney H, Lieberman A, Wood R, Schwarz E, et al. Altered lymphatic vessel anatomy and markedly diminished lymphatic clearance in the rheumatoid hand with active arthritis. Arthritis Rheumatol 2020; 72(9): 1447-55.
[http://dx.doi.org/10.1002/art.41311] [PMID: 32420693]
[125]
Lam AD, Cao E, Leong N, et al. Intra-articular injection of biologic anti-rheumatic drugs enhances local exposure to the joint-draining lymphatics. Eur J Pharm Biopharm 2022; 173(22): 34-44. Online ahead of print
[http://dx.doi.org/10.1016/j.ejpb.2022.02.014] [PMID: 35219864]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy