Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Review on Computer Aided Breast Cancer Detection and Diagnosis using Machine Learning Methods on Mammogram Image

Author(s): Girija Ottathenggu Kuttan* and Mannathazhathu Sudheep Elayidom

Volume 19, Issue 12, 2023

Published on: 09 March, 2023

Article ID: e130223213596 Pages: 11

DOI: 10.2174/1573405619666230213093639

Price: $65

Abstract

Machine Learning (ML) plays an essential part in the research area of medical image processing. The advantages of ML techniques lead to more intelligent, accurate, and automatic computeraided detection (CAD) systems with improved learning capability. In recent years, deep learning-based ML approaches developed to improve the diagnostic capabilities of CAD systems. This study reviews image enhancement, ML and DL methods for breast cancer detection and diagnosis using mammogram images and provides an overview of these methods. The analysis of different ways of ML and DL shows that the usages of traditional ML approaches are limited. However, DL techniques have an excellent future for implementing medical image analysis and improving the ability to exist CAD systems. Despite the significant advancements in deep learning methods for analyzing medical images to detect breast cancer, challenges still exist regarding data quality, computational cost, and prediction accuracy.

[1]
Sultana Z, Rahman Khan MA, Jahan N. Early breast cancer detection utilizing artificial neural network. Wseas Trans Biol Biomed 2021; 18: 32-42.
[http://dx.doi.org/10.37394/23208.2021.18.4]
[2]
Sivakami G. Preparation and evaluation of momordicacharantiananophytosomes and efficacy on MDA-MB human breast cancer. Seman Scholor 2018; 2018: 199596374.
[3]
Vijayarajeswari R, Parthasarathy P, Vivekanandan S, Basha AA. Classification of mammogram for early detection of breast cancer using SVM classifier and Hough transform. Measurement 2019; 146: 800-5.
[http://dx.doi.org/10.1016/j.measurement.2019.05.083]
[4]
Kandhway P, Bhandari AK, Singh A. A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed Signal Process Control 2020; 56: 101677.
[http://dx.doi.org/10.1016/j.bspc.2019.101677]
[5]
Gardezi SJS, Elazab A, Lei B, Wang T. Breast cancer detection and diagnosis using mammographic data: Systematic review. J Med Internet Res 2019; 21(7): e14464.
[http://dx.doi.org/10.2196/14464] [PMID: 31350843]
[6]
Dabass J, Arora S. Mammogram image enhancement using entropy and CLAHE based intuitionistic fuzzy method. Int Conf Signal Proces Integr Networks (SPIN) 2019; 2019: 24-9.
[7]
Pawar M, Talbar S. Local entropy maximization based image fusion for contrast enhancement of mammogram. J King Saud Univ 2021; 33(2): 150-60.
[http://dx.doi.org/10.1016/j.jksuci.2018.02.008]
[8]
Mokni R, Gargouri N, Damak A, Sellami D, Feki W, Mnif Z. An automatic Computer-Aided Diagnosis system based on the Multimodal fusion of Breast Cancer (MF-CAD). Biomed Signal Process Control 2021; 69: 102914.
[http://dx.doi.org/10.1016/j.bspc.2021.102914]
[9]
Suradi SH, Abdullah KA, Isa NM. Improvement of image enhancement for mammogram images using fuzzy anisotropic diffusion histogram equalisation contrast adaptive limited (FADHECAL). Comput Methods Biomech Biomed Eng Imaging Vis 2021; 10(1): 67-75.
[10]
George M. Efficient preprocessing filters and mass segmentation techniques for mammogram images. IEEE Int Conf Circ Sys (ICCS) 2017; 2017: 408-13.
[http://dx.doi.org/10.1109/ICCS1.2017.8326032]
[11]
Ghanbarzadeh GA. High-sensing-capacity, bimodal mechatronic imaging system for early detection of breast cancer Dissertion. Boston, Massachusetts: Northeastern University 2018.
[12]
Dabass J, Arora S. Segmentation techniques for breast cancer imaging modalities-a review. Int Conf Cloud Comput Data Sci Eng (Confluence) 2019; 2019: 658-63.
[13]
Conti A, Duggento A. Radiomics in breast cancer classification and prediction. In: Seminars in cancer biology; USA: Academic Press 2021; 72: 238-50.
[14]
Bahl M, Gaffney S, McCarthy AM, Lowry KP, Dang PA, Lehman CD. Breast cancer characteristics associated with 2D digital mammography versus digital breast tomosynthesis for screening-detected and interval cancers. Radiology 2018; 287(1): 49-57.
[http://dx.doi.org/10.1148/radiol.2017171148] [PMID: 29272213]
[15]
Hmida M, Hamrouni K, Solaiman B, Boussetta S. Mammographic mass segmentation using fuzzy contours. Comput Methods Programs Biomed 2018; 164: 131-42.
[http://dx.doi.org/10.1016/j.cmpb.2018.07.005] [PMID: 30195421]
[16]
Raikhlin A, Curpen B, Warner E, Betel C, Wright B, Jong R. Breast MRI as an adjunct to mammography for breast cancer screening in high-risk patients: Retrospective review. AJR Am J Roentgenol 2015; 204(4): 889-97.
[http://dx.doi.org/10.2214/AJR.13.12264] [PMID: 25794083]
[17]
Indra P, Manikandan M. Multilevel Tetrolet transform based breast cancer classifier and diagnosis system for healthcare applications. J Ambient Intell Humaniz Comput 2021; 12(3): 3969-78.
[http://dx.doi.org/10.1007/s12652-020-01755-z]
[18]
Li H, Giger ML, Huynh BQ, Antropova NO. Deep learning in breast cancer risk assessment: evaluation of convolutional neural networks on a clinical dataset of full-field digital mammograms. J Med Imaging (Bellingham) 2017; 4(4): 1.
[http://dx.doi.org/10.1117/1.JMI.4.4.041304] [PMID: 28924576]
[19]
Suckling J, Parker J, Dance D, et al. Mammographic Image Analysis Society (MIAS) database. 2015. Available from: https://www.repository.cam.ac.uk/handle/1810/250394a
[20]
Chakravarty A, Sarkar T, Sathish R, Sethuraman R. Re-curated Breast Imaging Subset DDSM Dataset (RBIS-DDSM). IEEE Dataport 2022. [Epub ahead of print
[http://dx.doi.org/10.21227/nqp1-sp19]
[22]
Ramadan SZ. Methods used in computer-aided diagnosis for breast cancer detection using mammograms: A review. J Healthc Eng 2020; 2020: 9162464.
[http://dx.doi.org/10.1155/2020/9162464] [PMID: 32300474]
[23]
Saira C, Jaleed KM, Khurram K. Breast cancer detection in mammograms using convolutional neural network. Int Conf Comput Mathe Eng Technol (iCoMET) 2018; 2018: 1-5.
[24]
Hariraj V. Fuzzy multi-layer SVM classification of breast cancer mammogram images. Int J MechEngg Tech 2018; 9(8): 1281-99.
[25]
Mahmood T, Li J, Pei Y, Akhtar F. An automated in-depth feature learning algorithm for breast abnormality prognosis and robust characterization from mammography images using deep transfer learning. Biology (Basel) 2021; 10(9): 859.
[http://dx.doi.org/10.3390/biology10090859] [PMID: 34571736]
[26]
Telikani A, Gandomi AH, Shahbahrami A. A survey of evolutionary computation for association rule mining. Inf Sci 2020; 524: 318-52.
[http://dx.doi.org/10.1016/j.ins.2020.02.073]
[27]
Singh D, Singh AK. Role of image thermography in early breast cancer detection- Past, present and future. Comput Methods Programs Biomed 2020; 183: 105074.
[http://dx.doi.org/10.1016/j.cmpb.2019.105074] [PMID: 31525547]
[28]
Hoff SR, Abrahamsen AL, Samset JH, Vigeland E, Klepp O, Hofvind S. Breast cancer: missed interval and screening-detected cancer at full-field digital mammography and screen-film mammography-- results from a retrospective review. Radiology 2012; 264(2): 378-86.
[http://dx.doi.org/10.1148/radiol.12112074] [PMID: 22700555]
[29]
Yu K, Tan L, Lin L, Cheng X, Yi Z, Sato T. Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health. IEEE Wirel Commun 2021; 28(3): 54-61.
[http://dx.doi.org/10.1109/MWC.001.2000374]
[30]
Hu Q, Whitney HM, Giger ML. A deep learning methodology for improved breast cancer diagnosis using multiparametric MRI. Sci Rep 2020; 10(1): 10536.
[http://dx.doi.org/10.1038/s41598-020-67441-4] [PMID: 32601367]
[31]
Samala RK, Chan HP, Hadjiiski L, Helvie MA, Wei J, Cha K. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography. Med Phys 2016; 43(12): 6654-66.
[http://dx.doi.org/10.1118/1.4967345] [PMID: 27908154]
[32]
Samala R, Chan H, Hadjiiski L, Helvie M, Richter C, Cha K. Breast cancer diagnosis in digital breast tomosynthesis: Effects of training sample size on mul-stage transfer learning using deep neural nets. IEEE Trans Med Imaging 2019; 38(3): 686-96.
[http://dx.doi.org/10.1109/TMI.2018.2870343]
[33]
Chowdhary CL, Acharjya DP. Breast cancer detection using intuitionistic fuzzy histogram hyperbolization and possibilitic fuzzy c-mean clustering algorithms with texture feature based classification on mammography images. Proc Int Conf Adv Inform Commun Technol Comput 2016 2016; 1-6.
[http://dx.doi.org/10.1145/2979779.2979800]
[34]
Yousefikamal P. Breast tumor classification and segmentation using convolution netural networks. Computer Vision Pattern Recogn 2019; 2019: 1-12.
[35]
Sheba KU, Gladston Raj S. An approach for automatic lesion detection in mammograms. Cogent Engine 2018; 5(1): 1444320.
[http://dx.doi.org/10.1080/23311916.2018.1444320]
[36]
Kaur P, Singh G, Kaur P. Intellectual detection and validation of automated mammogram breast cancer images by multi-class SVM using deep learning classification. Inform Med Unlocked 2019; 16: 100151.
[http://dx.doi.org/10.1016/j.imu.2019.01.001]
[37]
Singh VK, Rashwan HA, Romani S, et al. Breast tumor segmentation and shape classification in mammograms using generative adversarial and convolutional neural network. Expert Syst Appl 2020; 139: 112855.
[http://dx.doi.org/10.1016/j.eswa.2019.112855]
[38]
Chowdhary CL, Acharjya DP. Clustering algorithm in possibilistic exponential fuzzy c-mean segmenting medical images. J Biomim Biomat Biomed Eng 2017; 30: 12-23.
[39]
Lbachir IA, Daoudi I, Tallal S. Automatic computer-aided diagnosis system for mass detection and classification in mammography. Multimedia Tools Appl 2021; 80(6): 9493-525.
[http://dx.doi.org/10.1007/s11042-020-09991-3]
[40]
Chakravarthy SR. Automatic detection and classification of mammograms using improved extreme learning machine with deep learning. IRBM 2022; 43(1): 49-61.
[41]
Sarangi S, Rath NP, Sahoo HK. Mammogram mass segmentation and detection using Legendre neural network-based optimal threshold. Med Biol Eng Comput 2021; 59(4): 947-55.
[http://dx.doi.org/10.1007/s11517-021-02348-4] [PMID: 33818716]
[42]
Zhang YD, Satapathy SC, Guttery DS, Górriz JM, Wang SH. Improved breast cancer classification through combining graph convolutional network and convolutional neural network. Inf Process Manage 2021; 58(2): 102439.
[http://dx.doi.org/10.1016/j.ipm.2020.102439]
[43]
Mambou S, Maresova P, Krejcar O, Selamat A, Kuca K. Breast cancer detection using infrared thermal imaging and a deep learning model. Sensors (Basel) 2018; 18(9): 2799.
[http://dx.doi.org/10.3390/s18092799] [PMID: 30149621]
[44]
Tsochatzidis L, Costaridou L, Pratikakis I. Deep learning for breast cancer diagnosis from mammograms—a comparative study. J Imaging 2019; 5(3): 37.
[http://dx.doi.org/10.3390/jimaging5030037] [PMID: 34460465]
[45]
Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology 2019; 292(1): 60-6.
[http://dx.doi.org/10.1148/radiol.2019182716] [PMID: 31063083]
[46]
Saadatmand S, Geuzinge HA, Rutgers EJT, et al. MRI versus mammography for breast cancer screening in women with familial risk (FaMRIsc): A multicentre, randomised, controlled trial. Lancet Oncol 2019; 20(8): 1136-47.
[http://dx.doi.org/10.1016/S1470-2045(19)30275-X] [PMID: 31221620]
[47]
Becker AS, Marcon M, Ghafoor S, Wurnig MC, Frauenfelder T, Boss A. Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer. Invest Radiol 2017; 52(7): 434-40.
[http://dx.doi.org/10.1097/RLI.0000000000000358] [PMID: 28212138]
[48]
Girija OK. Mammogram pectoral muscle removaland classification using HISTO-SIGMOID based ROI clustering and SDNN. Multimedia Tools Appl 2022; 81: 20993-026.
[49]
FirouzAbadi H, Reza M. An Automatic Method for the Characterization of Lung Airways based on CT Images. PhD Thesis; McMaster University: Canada 2009.
[50]
Kyono T, Gilbert FJ, Schaar MVD. Triage of 2d mammographic images using multi-view multi-task convolutional neural networks. ACM Transact Comp Healthcare 2021; 2(3): 1-24.
[http://dx.doi.org/10.1145/3453166]
[51]
Akselrod-Ballin A, Chorev M, Shoshan Y, et al. Predicting breast cancer by applying deep learning to linked health records and mammograms. Radiology 2019; 292(2): 331-42.
[http://dx.doi.org/10.1148/radiol.2019182622] [PMID: 31210611]
[52]
Rauscher GH, Conant EF, Khan JA, Berbaum ML. Mammogram image quality as a potential contributor to disparities in breastcancer stage at diagnosis: an observational study. BMC Cancer 2013; 13(1): 208.
[http://dx.doi.org/10.1186/1471-2407-13-208] [PMID: 23621946]
[53]
Farhan MN, Ayoub MG, Qassim HM, Eesee AK. Qualitative assessment of image enhancement algorithms for mammograms based on minimum EDV. TELKOMNIKA Telecommunication Computing Electronics and Control 2020; 18(2): 928-35.
[http://dx.doi.org/10.12928/telkomnika.v18i2.14085]
[54]
Radzi SFM, Muhammad Karim MKA, Saripan MI, et al. Impact of image contrast enhancement on stability of radiomics feature quantification on a 2D mammogram radiograph. IEEE Access 2020; 8: 127720-31.
[55]
Kyono T, Gilbert FJ, van der Schaar M. MAMMO: A deep learning solution for facilitating radiologist-machine collaboration in breast cancer diagnosis. arXiv 2018; 2018: 1811.02661
[56]
Arefan D, Mohamed AA, Berg WA, Zuley ML, Sumkin JH, Wu S. Deep learning modeling using normal mammograms for predicting breast cancer risk. Med Phys 2020; 47(1): 110-8.
[http://dx.doi.org/10.1002/mp.13886] [PMID: 31667873]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy