Abstract
Machine Learning (ML) plays an essential part in the research area of medical image processing. The advantages of ML techniques lead to more intelligent, accurate, and automatic computeraided detection (CAD) systems with improved learning capability. In recent years, deep learning-based ML approaches developed to improve the diagnostic capabilities of CAD systems. This study reviews image enhancement, ML and DL methods for breast cancer detection and diagnosis using mammogram images and provides an overview of these methods. The analysis of different ways of ML and DL shows that the usages of traditional ML approaches are limited. However, DL techniques have an excellent future for implementing medical image analysis and improving the ability to exist CAD systems. Despite the significant advancements in deep learning methods for analyzing medical images to detect breast cancer, challenges still exist regarding data quality, computational cost, and prediction accuracy.
[http://dx.doi.org/10.37394/23208.2021.18.4]
[http://dx.doi.org/10.1016/j.measurement.2019.05.083]
[http://dx.doi.org/10.1016/j.bspc.2019.101677]
[http://dx.doi.org/10.2196/14464] [PMID: 31350843]
[http://dx.doi.org/10.1016/j.jksuci.2018.02.008]
[http://dx.doi.org/10.1016/j.bspc.2021.102914]
[http://dx.doi.org/10.1109/ICCS1.2017.8326032]
[http://dx.doi.org/10.1148/radiol.2017171148] [PMID: 29272213]
[http://dx.doi.org/10.1016/j.cmpb.2018.07.005] [PMID: 30195421]
[http://dx.doi.org/10.2214/AJR.13.12264] [PMID: 25794083]
[http://dx.doi.org/10.1007/s12652-020-01755-z]
[http://dx.doi.org/10.1117/1.JMI.4.4.041304] [PMID: 28924576]
[http://dx.doi.org/10.21227/nqp1-sp19]
[http://dx.doi.org/10.1155/2020/9162464] [PMID: 32300474]
[http://dx.doi.org/10.3390/biology10090859] [PMID: 34571736]
[http://dx.doi.org/10.1016/j.ins.2020.02.073]
[http://dx.doi.org/10.1016/j.cmpb.2019.105074] [PMID: 31525547]
[http://dx.doi.org/10.1148/radiol.12112074] [PMID: 22700555]
[http://dx.doi.org/10.1109/MWC.001.2000374]
[http://dx.doi.org/10.1038/s41598-020-67441-4] [PMID: 32601367]
[http://dx.doi.org/10.1118/1.4967345] [PMID: 27908154]
[http://dx.doi.org/10.1109/TMI.2018.2870343]
[http://dx.doi.org/10.1145/2979779.2979800]
[http://dx.doi.org/10.1080/23311916.2018.1444320]
[http://dx.doi.org/10.1016/j.imu.2019.01.001]
[http://dx.doi.org/10.1016/j.eswa.2019.112855]
[http://dx.doi.org/10.1007/s11042-020-09991-3]
[http://dx.doi.org/10.1007/s11517-021-02348-4] [PMID: 33818716]
[http://dx.doi.org/10.1016/j.ipm.2020.102439]
[http://dx.doi.org/10.3390/s18092799] [PMID: 30149621]
[http://dx.doi.org/10.3390/jimaging5030037] [PMID: 34460465]
[http://dx.doi.org/10.1148/radiol.2019182716] [PMID: 31063083]
[http://dx.doi.org/10.1016/S1470-2045(19)30275-X] [PMID: 31221620]
[http://dx.doi.org/10.1097/RLI.0000000000000358] [PMID: 28212138]
[http://dx.doi.org/10.1145/3453166]
[http://dx.doi.org/10.1148/radiol.2019182622] [PMID: 31210611]
[http://dx.doi.org/10.1186/1471-2407-13-208] [PMID: 23621946]
[http://dx.doi.org/10.12928/telkomnika.v18i2.14085]
[http://dx.doi.org/10.1002/mp.13886] [PMID: 31667873]