Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Recent Patents on Motorized Spindle Cooling Strategies

Author(s): Weiwei Li, Ye Dai*, Gang Wang, Qinghai Wang and Jian Pang

Volume 18, Issue 1, 2024

Published on: 09 March, 2023

Article ID: e090223213559 Pages: 16

DOI: 10.2174/1872212117666230209161842

Price: $65

Abstract

High-speed motorized spindle is the core component of high-speed machining machine tools, and thermal error is the main factor affecting the machining accuracy of the motorized spindle. Reducing thermal error has become the most important research topic in the case of motorized spindles. The development status of the cooling strategy of the motorized spindle is explored, and the methods to improve the cooling efficiency of the motorized spindle are discussed. Some representative research results of the cooling strategy of motorized spindles at home and abroad are reviewed. Based on summarizing the related research results on cooling strategies for the core components, such as the stator, rotor and bearing of the motorized spindle, this paper analyzes the advantages and disadvantages of various cooling strategies and their applicable working conditions, and the future development direction of motorized spindle cooling strategies is discussed. The combination of various channel structures and the cooling strategy of the stator outer ring of the motorized spindle will improve the cooling efficiency of the motorized spindle, and research on the motorized spindle core cooling will become more and more important. In addition, the cooling system of the motorized spindle bearing, stator, and rotor can be improved at the same time, and the heating problem of the motorized spindle can be solved.

Graphical Abstract

[1]
Y.L. Chen, Z.S. Duan, and W.L. Xiong, "Research status and development of high-speed electric spindle technology", Mech. Res. Appl., vol. 04, pp. 10-11, 2004.
[2]
H.M. Liu, "Application of thermal error compensation technology for nc machine tools based on mechanical origin migration principle", Electron. Technol. Software Eng., vol. 23, pp. 115-116, 2019.
[3]
J. Ji, J.Z. Zhang, and C.H. Wang, "Numerical Investigation on Influence of Main Structural Parameters in Lamilloy Cooling Configuration with a Sparse Hole Array", J. Nanjing Univ. Aeronaut. Astronaut., vol. 51, no. 06, pp. 848-856, 2019.
[4]
Y.L. Zheng, "Reliability modeling and evaluation of motorized spindle without sudden failure information. D. Thesis, Jilin University, Jilin, ON, China", 2021.
[5]
S.N. Grama, A. Mathur, and A.N. Badhe, "A model-based cooling strategy for motorized spindle to reduce thermal errors", Int. J. Mach. Tools Manuf., vol. 132, pp. 3-16, 2018.
[http://dx.doi.org/10.1016/j.ijmachtools.2018.04.004]
[6]
R. Ramesh, M.A. Mannan, and A.N. Poo, "Error compensation in machine tools-a review: Part i: Geometric, cutting-force induced and fixture-dependent errors", Int. J. Mach. Tools Manuf., vol. 40, pp. 1235-1256, 2000.
[http://dx.doi.org/10.1016/S0890-6955(00)00009-2]
[7]
D. Bachrathy, T. Insperger, and G. Stépán, "Surface properties of the machined workpiece for helical mills", Mach. Sci. Technol., vol. 13, no. 2, pp. 227-245, 2009.
[http://dx.doi.org/10.1080/10910340903012167]
[8]
I. Mancisidor, M. Zatarain, J. Munoa, and Z. Dombovari, Fixed Boundaries Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction. Advanced Materials Research., vol. 223. Trans Tech Publications Ltd. 2011, pp. 622-631.
[9]
J. Bryan, "International status of thermal error research (1990)", CIRP Ann., vol. 39, no. 2, pp. 645-656, 1990.
[http://dx.doi.org/10.1016/S0007-8506(07)63001-7]
[10]
R. Ramesh, M.A. Mannan, and A.N. Poo, "Error compensation in machine tools-a review: Part ii: thermal errors", Int. J. Mach. Tools Manuf., vol. 40, pp. 1257-1284, 2000.
[http://dx.doi.org/10.1016/S0890-6955(00)00010-9]
[11]
J. Mayr, J. Jedrzejewski, E. Uhlmann, M. Alkan Donmez, W. Knapp, F. Härtig, K. Wendt, T. Moriwaki, P. Shore, R. Schmitt, C. Brecher, T. Würz, and K. Wegener, "Thermal issues in machine tools", CIRP Ann., vol. 61, no. 2, pp. 771-791, 2012.
[http://dx.doi.org/10.1016/j.cirp.2012.05.008]
[12]
E. Abele, Y. Altintas, and C. Brecher, "Machine tool spindle units", CIRP Ann., vol. 59, no. 2, pp. 781-802, 2010.
[http://dx.doi.org/10.1016/j.cirp.2010.05.002]
[13]
C. Ma, L. Zhao, X. Mei, H. Shi, and J. Yang, "Thermal error compensation of high-speed spindle system based on a modified BP neural network", Int. J. Adv. Manuf. Technol., vol. 89, no. 9-12, pp. 3071-3085, 2017.
[http://dx.doi.org/10.1007/s00170-016-9254-4]
[14]
T. Liu, W.G. Gao, D.W. Zhang, Y.F. Zhang, W.F. Chang, C.M. Liang, and Y.L. Tian, "Analytical modeling for thermal errors of motorized spindle unit", Int. J. Adv. Manuf. Technol., vol. 112, pp. 53-70, 2016.
[15]
J. Ni, "CNC machine accuracy enhancement through real-time error compensation", J. Manuf. Sci. Eng., vol. 119, no. 4B, pp. 717-725, 1997.
[http://dx.doi.org/10.1115/1.2836815]
[16]
C. Zhang, F. Gao, and L. Yan, "Thermal error characteristic analysis and modeling for machine tools due to time-varying environmental temperature", Precis. Eng., vol. 47, pp. 231-238, 2017.
[http://dx.doi.org/10.1016/j.precisioneng.2016.08.008]
[17]
H.M. Zhou, and Z. Wang, "Cooling prediction of motorized spindle based on multivariate linear regression", J. Phys. Conf. Ser., vol. 012196, p. 2021, 1820.
[18]
D.X. Zheng, and W.F. Chen, "Effect of a cooling unit on high-speed motorized spindle temperature with a scaling factor", Int. J. Adv. Manuf. Technol., vol. 1, p. 14, 2021.
[19]
H.R. Cao, X.W. Zhang, and X.F. Chen, "The concept and progress of intelligent spindles: a review", Int. J. Adv. Manuf. Technol., vol. 112, pp. 21-52, 2017.
[20]
A.H. Slocum, Precision Machine Design., Society of Manufacturing Engineers Michigan: USA, 1992.
[21]
E. Gomez-Acedo, A. Olarra, M. Zubieta, G. Kortaberria, E. Ariznabarreta, and L.N. López de Lacalle, "Method for measuring thermal distortion in large machine tools by means of laser multilateration", Int. J. Adv. Manuf. Technol., vol. 80, no. 1-4, pp. 523-534, 2015.
[http://dx.doi.org/10.1007/s00170-015-7000-y]
[22]
X.Y. Sun, "Investigation on Thermal Characteristics and Cooling Method for High-Speed Motorized Spindl", M.S. thesis, Shanghai Jiao Tong University, Shanghai, ON, China, 2019.
[23]
X.M. Huang, B.L. Zhang, and S.H. Xiao, "Finite element analysis of thermal properties for high speed motorized spindle", Aeronaut. Manuf. Technol., vol. 10. 2003, pp. 20-23.
[24]
H.X. Zhang, Z. Liu, and G.Q. Tian, "Experimental study on the influence of oil-air lubrication parameters on thermal characteristics of high-speed electric spindle", Mach. Tool Hydraul., vol. 49, no. 18, pp. 55-61, 2021.
[25]
B. Denkena, B. Bergmann, and H. Klemme, "Cooling of motor spindles-a review", Int. J. Adv. Manuf. Technol., vol. 110, no. 11-12, pp. 3273-3294, 2020.
[http://dx.doi.org/10.1007/s00170-020-06069-0]
[26]
K. Gebert, Ein Beitrag zur Thermischen Modellbildung von schnelldrehenden Motorspindeln, 1997.
[27]
B. Denkena, B. Bergmann, H. Klemme, and D. Dahlmann, "Cooling Potential of Heat Pipes and Heat Exchangers within a Ma-chine Tool Spindle", Conference on Thermal Issues in Machine Tool, 2018, pp. 295-305. Dresden, Germany.
[28]
L. Zhang, W. Li, and W. Gong, "Analysis on the effects of air gap on cooling of motorized spindle", AIP Conf. Proc., vol. 1971, no. 1, p. 2018.040048, .
[http://dx.doi.org/10.1063/1.5041190]
[29]
Z.L Liu, "device for improving temperature control precision of electric spindle cooling equipment of numerical control machine tool", C.N. Patent 21,049,948,8U, 2020.
[30]
J.K Han, and J.H Kim, "Method for providing service for interlocking offline to mobile by using user own touch module", K.R. Patent 007,169,6A, 2017.
[31]
Y.G. Yao, T. Zhang, Y.T. Zhu, G.H. Wang, and P. Yu, "Reliability analysis of motorized spindle cooling system based on FMEA", Mech. Elect. Eng. Technol, vol. 50, no. 06, pp. 101-103, 2021.
[32]
B.J. Yan, D. Cai, J.T. Kuang, and H.F. Nie, "Electric main shaft cooling system, electric main shaft and machine tool", C.N. Patent 21,650,382,2U, 2022.
[33]
X. H. Yao, C. C. Luan, J. Z. Fu, Y. He, Z. C. Che, and J. T. Lai, "Motorized spindle cooling device with temperature self-detection function", C.N. Patent 10,419,095,8A, 2014.
[34]
R.J. Feng, B.Z. Li, J.G. Yang, and Z.P. Wu, "Optimization design of cooling piping for stator of high-speed grinding motorized spindle unit based on matlab", Mach. Des. Manuf., vol. 1, pp. 15-17, 2012.
[http://dx.doi.org/10.19356/j.cnki.1001-3997.2012.01.006]
[35]
Z. Gao, Study of Solid-Thermal Coupling Characteristics of High-Speed Motorized Spindle, 2021.
[36]
K.Y. Li, W.J. Luo, and S.J. Wei, "Machining accuracy enhancement of a machine tool by a cooling channel design for a built-in spindle", Appl. Sci., vol. 10, no. 11, p. 3991, 2020.
[http://dx.doi.org/10.3390/app10113991]
[37]
W. He, "Electric spindle cooling mechanism", C.N. Patent 21,058,719,3U, 2020.
[38]
Y.J. Sun, Thermal Characteristics Mechanism Analysis and Cooling Experiment Study of Motorized Spindle, 2019.
[39]
K. Wang, J.X. Liu, and X.W. Sun, "Comparative fluid-solid coupling analysis of spiral channel and axial channel water cooling system", Modular Mach. Tool Autom. Manufactur. Tech., vol. 11, pp. 46-48, 2014.
[40]
J. Weber, L. Shabi, and J. Weber, "State of the art and optimization of the energy flow in cooling systems of motorized high-speed spindles in machine tools", Procedia CIRP, vol. 67, pp. 81-86, 2018.
[http://dx.doi.org/10.1016/j.procir.2017.12.180]
[41]
L. Eric, P. Yannick, D. Jean-Philippe, H. Martin, D. Jean-Philippe, L. Mathieu, and D. Francois, "Electric machine provided with an enclosed cooling assembly paired to an open cooling assembly", U.S. Patent 11,218,057,B2, 2020.
[42]
S. Murakami, M. Ikeda, and T. Okazawa, "Stator cooling structure", E.P. Patent 39,753,92,A1, 2020.
[43]
L.F. Wang, Thermal State Analysis of High Speed Electric Spindle and Experimental Study of Cooling System, 2020.
[44]
Y. Zhang, L. Wang, Y. Zhang, and Y. Zhang, "Design and thermal characteristic analysis of motorized spindle cooling system", Adv. Mech. Eng., vol. 13, no. 5, 2021.
[http://dx.doi.org/10.1177/16878140211020878]
[45]
M.Y. Wu, B.W. Li, Y.J. Sun, W.Q. Jiang, and Y.N. Cheng, "Experimental research on cooling system of high-speed motorized spindle", Machine Tool & Hydraulics, vol. 49, no. 01, pp. 56-62, 2021.
[46]
P.M. Chen, "Structure design and simulation analysis of cooling channel for kx-1 spindle motor", Mech. Electric. Engineer. Technol., vol. 50, no. 06, pp. 88-92, 2021.
[47]
Z. T. He, J. Q. Geng, Y. L. Liu, and Z. X. Wang, "Electro spindle and electro spindle coolant jacket", C.N. Patent 20,909,456,8U, 2019.
[48]
C.H. Xia, Research on fast identification method for machine tool spindle temperature rise characteristics and a novel cooling structure design, 2015.
[49]
Y. M. Wu, G. X. Zhang, Y. L. Zhang, J. Y. Zhang, and Y. N. Cheng, "High-efficient electric main shaft cooling jacket easy to assemble", C.N. Patent 21,426,391,1U, 2021.
[50]
X.L. Deng, S.J. Pang, R.Q. Li, Y.B. Zhou, J.C. Wang, and F.J. Zhong, "Thermal design of cooling structure for cnc machine tool spindle system based on insect wing vein bionic channel", Chin. J. Eng. Des., vol. 25, no. 05, pp. 583-589, 2018.
[51]
X.L. Sun, R.Q. Li, J.N. Hu, and X.M. Cao, "Fluid-structure interaction thermal design of cooling structure for spindle system based on cumby bionic channel", Jisuanji Fangzhen, vol. 37, no. 03, pp. 183-188, 2020.
[52]
Y.L. Jiao, Study on thermal characteristics of new laminated cooling water jacket for high-speed motorized spindle, 2020.
[53]
Y. Tang, X. Jing, W. Li, Y. He, and J. Yao, "Analysis of influence of different convex structures on cooling effect of rectangular water channel of motorized spindle", Appl. Therm. Eng., vol. 198. 2021, p. 117478.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117478]
[54]
Y. Li, M.L. Yu, D.X. Su, H.J. Zhang, W.H. Zhao, and L. Xu, "Method for improving structure of electric spindle cooling water jacket", C.N. Patent 11,274,311,3A, 2021.
[55]
W.G. Li, H.M. Zhu, Q.Q. Liu, and M.S. Mo, "Innovative design of cooling system of high-speed motorized spindle", Manufact. Technol. Mach. Tool., vol. 4, pp. 36-39, 2009.
[56]
R.R. Kasibhatla, "Fluid cooling arrangement and electrical machine having a fluid cooling arrangement", W.O. Patent 008,524,A1, 2022.
[57]
P. Matthew, and S. Marx, "Electric machine with internal cooling passage", J.P. Patent 52,221,1A, 2022.
[58]
A. Meta, "Liquid cooled electric motor", G.B. Patent 25,996,16A, 2022.
[59]
S. Michael, G. Jonah, and S. Ivan, "Electric motor with unique cooling system", K.R. Patent 2022,006,498,4A, 2022.
[60]
C.H. Chien, and J.Y. Jang, "3-D numerical and experimental analysis of a built-in motorized high-speed spindle with helical water cooling channel", Appl. Therm. Eng., vol. 28, no. 17-18, pp. 2327-2336, 2008.
[http://dx.doi.org/10.1016/j.applthermaleng.2008.01.015]
[61]
W.K. Guo, Z.H. Wu, Q. Lei, L.Z. Luo, and L.Z. Liang, "Optimization of spindle cooling structure based on doe", Mech. Res. Appl., vol. 29, no. 06, pp. 103-105, 2016.
[62]
X.Z. Chen, Q.H. Gong, Y.M. Xia, S.W. Zhu, F. Wang, and Y. Luo, "Design and implementation of testing platform for oil and gas lubricated motorized spindle", Lubr. Eng., vol. 43, pp. 108-114, 2018.
[63]
A. Shimada, "Magnetic bearing device", U.S. Patent 20,060,163,962,A1, 2006.
[64]
R. Nakamura, and T. Yoshikazu, "Spindle head unit", J.P. Patent 45,346,86B2, 2010.
[65]
D.G. Ma, X.B. Jiang, and Y. Ma, "Design and analysis of dynamic characteristics of motorized spindle for high speed wood-working machinery", Wood Process. Mach., vol. 3, pp. 33-36, 2012.
[66]
W. Zhang, "Development of high speed electric spindle technology for wood processing", Wood Process. Mach., vol. 3, pp. 26-28, 2008.
[67]
S.Y. Yang, X.H. Gao, X.X. Liu, J.L. Chen, and C. Wang, "Simulation on solid-fluid coupled heat transfer of water cooling system in high-speed electro-spindle", Mach. Tool Hydraul., vol. 39, pp. 102-104, 2011.
[68]
L.X. Zhang, C.Q. Li, J.P. Li, and Y.H. Wu, "Influence analysis of cooling water parameters on high-speed spindle temperature field", Mech. Sci. Technol. Aerospace Eng., vol. 36, pp. 1414-1420, 2017.
[69]
L.X. Yang, T. Liu, and C.Q. Li, “Research on the effects of cooling water velocity on temperature rise of the water-cooled motor in motorized spindle”, Modular Mach. Tool Automat. Manufact. Tech., vol. 8, pp. 36-38, 2015.
[70]
K. Zhang, N. Chen, L.X. Zhang, and Y.H. Wu, "Simulation and experimental analysis of the influence of the cooling water channel width on ceramic motorized spindle temperature rise", Mach. Des. Manufact., vol. 3, p. 28, 2015.
[71]
N. Chen, analysis on the effect of cooling water system on the properties of temperature rise of motorized spindle, 2014.
[72]
F. Lu, Q. Wang, L.X. Zhang, K. Zhang, and Y.H. Wu, "Modeling on coolant system parameters of high-speed motorized spindle", Mech. Sci. Technol. Aerosp. Eng., vol. 37, pp. 430-436, 2018.
[73]
Y. Liu, Y.X. Ma, Q.Y. Meng, X.C. Xin, and S.S. Ming, "Improved thermal resistance network model of motorized spindle system considering temperature variation of cooling system", Adv. Manufact., vol. 6, no. 4, pp. 384-400, 2018.
[http://dx.doi.org/10.1007/s40436-018-0239-4]
[74]
Z.N. Chu, Y.H. Zhang, X. Liang, and Y.D. Zhao, "Friction stir welding of aluminum alloy spindle cooling system design and simulation", Modular Mach. Tool Automat. Manufact. Tech., vol. 3, pp. 75-77, 2015.
[75]
J. Deng, and G.H. Xu, "The design of high-speed electric spindle based on shaft core cooling", Equip. Manufact. Technol., vol. 7, pp. 52-53, 2010.
[76]
K. Zhu, X.J. Shi, J.M. Gao, and F.J. Li, "Thermal characteristics analysis for a motorized spindle with shaft core cooling based on numerical simulation and experimental research", J. Xi’an Jiaotong Univ., vol. 52, pp. 40-47, 2018.
[77]
K. Okada, Y. Makino, and K. Sugiura, "Cooling structure of motor", U.S. Patent 20,110,074,233,A1, 2011.
[78]
Y.R. Kang, X.J. Shi, J.M. Gao, and F.J. Li, "Thermal behavior analysis of a motorized spindle with novel shaft core cooling", J. Xi’an Jiaotong Univ., vol. 51, pp. 13-18, 2017.
[79]
B.C. Zhou, thermal-structural coupling analysis for high-speed motorized spindle, 2013.
[80]
Y. S. Cui, and Y. M. Ren, "A kind of numerically controlled lathe novel electric spindle cooling device", C.N. Patent 20,900,721,1U, 2019.
[81]
D. Y. Li, K. Huang, S. M. Song, J. Ye, Q. B. Niu, H. T. Zheng, and Z. Q. Zhang, "Electric main shaft and knife striking cylinder assembly for electric main shaft", C.N. Patent 11,202,491,0B, 2021.
[82]
Y. N. Cheng, X. P. Zhang, G. X. Zhang, W. Q. Jiang, and B. W. Li, "Efficient high-speed electric main shaft core cooling device", C.N. Patent 11,323,188,5A, 2021.
[83]
S. Y. Gao, Y. G. Shi, S. Yang, H. Chen, L. S. Xu, B. X. Zhu, and X. M. Zhang, "High-speed air-floatation motorized spindle", C.N. Patent 21,084,834,7U, 2020.
[84]
Heat Pipe., Science Press: Beijing, China, 1975.
[85]
L. Jiang, Y. Tang, W. Zhou, L. Jiang, T. Xiao, Y. Li, and J. Gao, "Design and fabrication of sintered wick for miniature cylindrical heat pipe", Trans. Nonferrous Met. Soc. China, vol. 24, no. 1, pp. 292-301, 2014.
[http://dx.doi.org/10.1016/S1003-6326(14)63060-0]
[86]
J. Zhuang, and H. Zhang, Heat Pipe Technology and Its Engineering Applications., Chemical Industry Press: Beijing, China, 2000.
[87]
X.J. Shi, Y.A. Wang, G.Q. Chen, X.D. Zhang, and X.S. Mei, "Numerical simulation of flow and heat transfer of heat pipe used for stator cooling of motorized spindle", J. Xi’an Jiaotong Univ., vol. 10, pp. 60-67, 2021.
[88]
G.Q. Zhang, Z.J. Wu, Z.H. Rao, and L.P. Fu, "Experimental invesitigation on heat pipe cooling effect for power battery", Chem. Indust. Engineer. Prog., vol. 28, pp. 1165-1168, 2009.
[89]
J. Zheng, and G.H. Xu, "Heat pipe cooling of electric spindle based on high-speed machine", Mod. Manufact. Technol. Equip., vol. 3, pp. 62-63, 2010.
[90]
L.M. Xie, J. Yang, and L. Jin, "Simulation analysis of the temperature field of the heat pipe cooling spindle", Machine Building & Automation, vol. 45, pp. 102-114, 2016.
[91]
L.N. Bi, Research on performance and experimen of heat pipe for machine tool motorized spindle, 2008.
[92]
G.H. Xu, J. Deng, S.Y. Zhong, Y.B. Huang, S.M. Lai, C.Y. Lin, Z.F. Ye, S.W. Xu, H.J. Xu, and J.Y. Luo, "High-speed precise electric spindle cooling system", C.N. Patent 10,212,026,6A, 2020.
[93]
T. Wakaoka, A. Kishimoto, and T. Miura, "Sheet-shaped heat pipe", U.S. Patent 10,544,994,B2, 2020.
[94]
F. Liang, J. Gao, and L. Xu, "Investigation on a grinding motorized spindle with miniature-revolving-heat-pipes central cooling structure", Int. Commun. Heat Mass Transf., vol. 112. 2020, p. 104502.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104502]
[95]
F. Li, J. Gao, X. Shi, Z. Wang, D. Wang, and Z. Lin, "Visualization research on a pentane loop thermosyphon for shaft cooling", Heat Mass Transf., vol. 58, no. 3, pp. 489-498, 2022.
[http://dx.doi.org/10.1007/s00231-021-03081-2]
[96]
M. Misale, and M. Frogheri, "Stabilization of a single-phase natural circulation loop by pressure drops", Proceedings of the International Thermal Science Seminar, 2000, pp. 121-126. Bled, Slovenia.
[97]
F. Li, J. Gao, X. Shi, F. Liang, K. Zhu, and Y. Li, "Experimental investigation of an R600a two-phase loop thermosiphon to cool a motorized spindle shaft", Int. Commun. Heat Mass Transf., vol. 97, pp. 9-16, 2018.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.06.005]
[98]
F. Li, J. Gao, X. Shi, L. Xu, and K. Zhu, "Evaluation of R404a single loop thermosyphon for shaft cooling in motorized spindle", Appl. Therm. Eng., vol. 142, pp. 262-268, 2018.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.06.072]
[99]
X. Shi, Y. Mu, G. Chen, and X. Zhang, "Experimental investigation on the start-up characteristics of single loop thermosyphon for motorized spindle bearing-shaft system cooling", Int. Commun. Heat Mass Transf., vol. 120. 2021, p. 104989.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104989]
[100]
F. Li, J. Gao, X. Shi, Z. Wang, and D. Wang, "Experimental investigation into rotating loop thermosyphons for cooling shafts of motorized spindles", Heat Mass Transf., vol. 56, no. 11, pp. 3127-3134, 2020.
[http://dx.doi.org/10.1007/s00231-020-02919-5]
[101]
F. Liang, J. Gao, F. Li, and L. Xu, "An experimental work on thermal features of the miniature revolving heat pipes", Appl. Therm. Eng., vol. 146, pp. 295-305, 2019.
[http://dx.doi.org/10.1016/j.applthermaleng.2018.09.091]
[102]
F. Li, J. Gao, X. Shi, F. Liang, and K. Zhu, "Experimental investigation of single loop thermosyphons utilized in motorized spindle shaft cooling", Appl. Therm. Eng., vol. 134, pp. 229-237, 2018.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.11.141]
[103]
F. Song, D. Ewing, and C.Y. Ching, "Fluid flow and heat transfer model for high-speed rotating heat pipes", Int. J. Heat Mass Transf., vol. 46, no. 23, pp. 4393-4401, 2003.
[http://dx.doi.org/10.1016/S0017-9310(03)00292-8]
[104]
X. Shi, B. Yin, G. Chen, X. Zhang, and X. Mei, "Numerical study on two-phase flow and heat transfer characteristics of loop rotating heat pipe for cooling motorized spindle", Appl. Therm. Eng., vol. 192. 2021, p. 116927.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.116927]
[105]
P.E. Phelan, "An introduction to heat pipes", Exp. Therm. Fluid Sci., vol. 12, no. 1, pp. 105-105, 1996.
[http://dx.doi.org/10.1016/S0894-1777(96)90020-5]
[106]
H. Shen, Y.C. Zhao, H.Q. Nie, L.M. Xie, and L. Jin, "Thermal Characteristics Analysis for Spindle of HMC80 Horizontal Machining Center", Machin. Des. Manufact., vol. 6, pp. 7-9, 2011.
[107]
J. Liu, C. Ma, S. Wang, S. Wang, B. Yang, and H. Shi, "Thermal-structure interaction characteristics of a high-speed spindle- bearing system", Int. J. Mach. Tools Manuf., vol. 137, pp. 42-57, 2019.
[http://dx.doi.org/10.1016/j.ijmachtools.2018.10.004]
[108]
R.Y. Zhang, X.Z. Chen, F. Gong, and L.Y. Li, "“Research on the influence factors of high-speed spindle-bearing temperature”, machine tool & amp", Hydraulics, vol. 48, pp. 27-30, 2020.
[109]
S. Ma, H.J. San, Z.H. Wu, H.W. Zhang, and Q. Lei, "Overview of high-speed motorized spindle technology", Machinery, vol. 52, pp. 16-19, 2014.
[110]
X. Peng, and Z. Li, "Review of spindle motor technology", Dianzi Celiang Jishu, vol. 43, pp. 1-7, 2020.
[http://dx.doi.org/10.19651/j.cnki.emt.2004177]
[111]
L. Zhang, S. Yu, Y. Wu, K. Zhang, Q. Shi, and D. An, "Parameter optimization of a motorized spindle lubrication system using biogeography-based optimization", Adv. Mech. Eng., vol. 11, no. 1, 2019.
[http://dx.doi.org/10.1177/1687814018819889]
[112]
S.Y. Yu, Prediction of operating enxironment quality of motorized spindle based on oil-air lubrication, 2018.
[113]
K. Yan, Y. Wang, Y. Zhu, J. Hong, and Q. Zhai, "Investigation on heat dissipation characteristic of ball bearing cage and inside cavity at ultrahigh rotation speed", Tribol. Int., vol. 93, pp. 470-481, 2016.
[http://dx.doi.org/10.1016/j.triboint.2015.09.030]
[114]
F. Gao, W. Jia, Y. Li, D. Zhang, and Z. Wang, "Analysis and experimental research on the fluid–solid coupled heat transfer of high-speed motorized spindle bearing under oil–air lubrication", J. Tribol., vol. 143. 2021, no. 7, p. 071801.
[http://dx.doi.org/10.1115/1.4048883]
[115]
I. Hiroyoshi, and T. Masaya, "Lubricating oil supply unit and bearing device", W.O. Patent 189,188,A1, 2020.
[116]
Z. T. He, Y. L. Liu, and J. Q. Geng, "Electric main shaft cooling and lubricating structure, electric main shaft and numerical control machine tool", C.N. Patent 11,134,728,8A, 2020.
[117]
T. Liu, L. Zhou, W. Gao, Y. Zhang, W. Chang, J. Zhang, and D. Zhang, "Thermal simulation speculation-based active coolant control onto spindle bearings", Int. J. Adv. Manuf. Technol., vol. 113, no. 1-2, pp. 337-350, 2021.
[http://dx.doi.org/10.1007/s00170-021-06613-6]
[118]
N.A. Raykovskiy, V.L. Yusha, A.V. Tretyakov, and A.G. Zyrin, "Development of a numerical method for studying heat exchange and temperature fields in a self-lubricating turbocharger bearing under cooling", AIP Conf Pro, vol. 2007, p. 030059, 2018.
[http://dx.doi.org/10.1063/1.5051920]
[119]
W. Gao, and S. T. He, "spindle cooling structure, motorized spindle and machining equipment", C.N. Patent 21,391,733,2U, 2021.
[120]
S. T. He, Y. L. Liu, J. Q. Geng, Z. X. Wang, and L. Lu, "Motorized spindle cooling lubrication structure, electric spindle, cnc machine tools", C.N. Patent 11,134,728,8A, 2020.
[121]
Y.G. Lu, "A motorized spindle cooling structure", C.N. Patent 21,408,050,9U, 2021.
[122]
F. Zhang, "A motorized spindle core cooling device", C.N. Paten 21,216,980,1U, 2020.
[123]
K. Schneider, and D. Ateffen, "Shaft cooling for a tool motor spindle", U.S. Patent 0,252,236,A1, 2010.
[124]
V.S. Joachim, T. Udo, and F. Eugen, "Motor spindle", U.S. Patent 11,273,528,B2, 2022.
[125]
J. N Huang, "Cooling structure of high-speed electric spindle", C.N. Patent 21,259,890,4U, 2021.
[126]
S. Guitar, M. Aoki, Y. Inagaki, and Y. Morita, "Main shaft device and machine tool with the same", K.R. Patent 100,658,406,B1, 2006.
[127]
J. Greif, and P. Mohr, "Working spindle cooling device and machine tool processing unit with a similar working spindle cooling device", E.P. Patent 32,755,89,A1, 2018.
[128]
K. Nasu, K. Fukada, and T. Obata, "Bearing device cooling structure, and main spindle device of machine tool", E.P. Patent 38,516,92,A1, 2021.
[129]
Y.F. Lu, and X.Q. Tan, "Air cooling structure for lathe spindle", W.O. Patent 114,483,A1, 2019.
[130]
S. Morimura, "Cooling structure of machine tool spindle", J.P. Patent 2018,01,214,2A, 2018.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy