Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Deep Learning Approaches and Biomarkers in Medical Diagnosis

Author(s): Pardeep Malik* and Sukhdip Singh

Volume 18, Issue 3, 2024

Published on: 17 April, 2023

Article ID: e300123213249 Pages: 14

DOI: 10.2174/1872212117666230130100048

Price: $65

Abstract

The size of the medical information system is growing gradually. Due to this, traditional data analysis for extracting helpful information for any disease has become inefficient in providing accurate real-time valid information. Traditional data mining and statistical learning techniques, which lack sufficient domain knowledge on a complicatedly colossal amount of data, need to stop adopting new advances in deep learning technologies. Thus, the use of sophisticated machines with in-depth understanding and analysis capability is vital to provide real-time information in detecting and diagnosing diseases in the healthcare system. In this paper, we study recent deep learning approaches which are capable of working on high-dimensional and multi-dimensional data. These approaches have been deployed to identify the root cause of various diseases like Cancer, Lung Diseases, Heart Diseases, Diabetes, Hepatitis, Alzheimer’s, Dengue, Parkinson’s, etc.

In this study, our key contributions are:

1. A decent overview of the deep learning techniques.

2. Several modalities in the diagnosis of various diseases.

3. Set out recent trends in various applications of deep learning in healthcare, some of which are analysis and diagnosis of medical images, precision medicine, drug discovery, predictive analysis to support clinical decisions, and sustainable public health.

4. Several deep learning approaches with their performance are described in detail.

5. Although deep learning has achieved notable performance in detecting AD, there are several limitations, especially the availability of the patient’s data for training deep learning models on a particular disease is comparatively much less than required.

Graphical Abstract

[1]
H. Wang, C.A. Liddell, M.M. Coates, M.D. Mooney, C.E. Levitz, A.E. Schumacher, H. Apfel, M. Iannarone, B. Phillips, K.T. Lofgren, L. Sandar, R.E. Dorrington, I. Rakovac, T.A. Jacobs, X. Liang, M. Zhou, J. Zhu, G. Yang, Y. Wang, S. Liu, Y. Li, A.A. Ozgoren, S.F. Abera, I. Abubakar, T. Achoki, A. Adelekan, Z. Ademi, Z.A. Alemu, P.J. Allen, M.A. AlMazroa, E. Alvarez, A.A. Amankwaa, A.T. Amare, W. Ammar, P. Anwari, S.A. Cunningham, M.M. Asad, R. Assadi, A. Banerjee, S. Basu, N. Bedi, T. Bekele, M.L. Bell, Z. Bhutta, J.D. Blore, B.B. Basara, S. Boufous, N. Breitborde, N.G. Bruce, L.N. Bui, J.R. Carapetis, R. Cárdenas, D.O. Carpenter, V. Caso, R.E. Castro, F. Catalá-Lopéz, A. Cavlin, X. Che, P.P.C. Chiang, R. Chowdhury, C.A. Christophi, T.W. Chuang, M. Cirillo, I. da Costa Leite, K.J. Courville, L. Dandona, R. Dandona, A. Davis, A. Dayama, K. Deribe, S.D. Dharmaratne, M.K. Dherani, U. Dilmen, E.L. Ding, K.M. Edmond, S.P. Ermakov, F. Farzadfar, S.M. Fereshtehnejad, D.O. Fijabi, N. Foigt, M.H. Forouzanfar, A.C. Garcia, J.M. Geleijnse, B.D. Gessner, K. Goginashvili, P. Gona, A. Goto, H.N. Gouda, M.A. Green, K.F. Greenwell, H.C. Gugnani, R. Gupta, R.R. Hamadeh, M. Hammami, H.L. Harb, S. Hay, M.T. Hedayati, H.D. Hosgood, D.G. Hoy, B.T. Idrisov, F. Islami, S. Ismayilova, V. Jha, G. Jiang, J.B. Jonas, K. Juel, E.K. Kabagambe, D.S. Kazi, A.P. Kengne, M. Kereselidze, Y.S. Khader, S.E.A.H. Khalifa, Y.H. Khang, D. Kim, Y. Kinfu, J.M. Kinge, Y. Kokubo, S. Kosen, B.K. Defo, G.A. Kumar, K. Kumar, R.B. Kumar, T. Lai, Q. Lan, A. Larsson, J.T. Lee, M. Leinsalu, S.S. Lim, S.E. Lipshultz, G. Logroscino, P.A. Lotufo, R. Lunevicius, R.A. Lyons, S. Ma, A.A. Mahdi, M.B. Marzan, M.T. Mashal, T.T. Mazorodze, J.J. McGrath, Z.A. Memish, W. Mendoza, G.A. Mensah, A. Meretoja, T.R. Miller, E.J. Mills, K.A. Mohammad, A.H. Mokdad, L. Monasta, M. Montico, A.R. Moore, J. Moschandreas, W.T. Msemburi, U.O. Mueller, M.M. Muszynska, M. Naghavi, K.S. Naidoo, K.M.V. Narayan, C. Nejjari, M. Ng, J. de Dieu Ngirabega, M.J. Nieuwenhuijsen, L. Nyakarahuka, T. Ohkubo, S.B. Omer, A.J.P. Caicedo, V.P. Wyk, D. Pope, F. Pourmalek, D. Prabhakaran, S.U.R. Rahman, S.M. Rana, R.Q. Reilly, D. Rojas-Rueda, L. Ronfani, L. Rushton, M.Y. Saeedi, J.A. Salomon, U. Sampson, I.S. Santos, M. Sawhney, J.C. Schmidt, M. Shakh-Nazarova, J. She, S. Sheikhbahaei, K. Shibuya, H.H. Shin, K. Shishani, I. Shiue, I.D. Sigfusdottir, J.A. Singh, V. Skirbekk, K. Sliwa, S.S. Soshnikov, L.A. Sposato, V.K. Stathopoulou, K. Stroumpoulis, K.M. Tabb, R.T. Talongwa, C.M. Teixeira, A.S. Terkawi, A.J. Thomson, A.L. Thorne-Lyman, H. Toyoshima, Z.T. Dimbuene, P. Uwaliraye, S.B. Uzun, T.J. Vasankari, A.M.N. Vasconcelos, V.V. Vlassov, S.E. Vollset, S. Waller, X. Wan, S. Weichenthal, E. Weiderpass, R.G. Weintraub, R. Westerman, J.D. Wilkinson, H.C. Williams, Y.C. Yang, G.K. Yentur, P. Yip, N. Yonemoto, M. Younis, C. Yu, K.Y. Jin, M. El Sayed Zaki, S. Zhu, T. Vos, A.D. Lopez, and C.J.L. Murray, "Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013", Lancet, vol. 384, no. 9947, pp. 957-979, 2014.
[http://dx.doi.org/10.1016/S0140-6736(14)60497-9] [PMID: 24797572]
[2]
R. Bellazzi, and B. Zupan, "Predictive data mining in clinical medicine: Current issues and guidelines", Int. J. Med. Inform., vol. 77, no. 2, pp. 81-97, 2008.
[http://dx.doi.org/10.1016/j.ijmedinf.2006.11.006] [PMID: 17188928]
[3]
Y. Bengio, A. Courville, and P. Vincent, "Representation learning: a review and new perspectives", IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 8, pp. 1798-1828, 2013.
[http://dx.doi.org/10.1109/TPAMI.2013.50] [PMID: 23787338]
[4]
J. Hirschberg, and C.D. Manning, "Advances in natural language processing", Science, vol. 349, no. 6245, pp. 261-266, 2015.
[http://dx.doi.org/10.1126/science.aaa8685] [PMID: 26185244]
[5]
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, vol. 521, no. 7553, pp. 436-444, 2015.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[6]
B. Tang, X. Liu, J. Lei, M. Song, D. Tao, S. Sun, and F. Dong, "DeepChart: Combining deep convolutional networks and deep belief networks in chart classification", Signal Processing, vol. 124, pp. 156-161, 2016.
[http://dx.doi.org/10.1016/j.sigpro.2015.09.027]
[7]
B.N. Lakshmi, T.S. Indumathi, and N. Ravi, "A study on C.5 decision tree classification algorithm for risk predictions during pregnancy", Procedia Technol., vol. 24, pp. 1542-1549, 2016.
[http://dx.doi.org/10.1016/j.protcy.2016.05.128]
[8]
P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, "Applications of deep learning in biomedicine", Mol. Pharm., vol. 13, no. 5, pp. 1445-1454, 2016.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00982] [PMID: 27007977]
[9]
H.C. Shin, H.R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura, and R.M. Summers, "Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning", IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1285-1298, 2016.
[http://dx.doi.org/10.1109/TMI.2016.2528162] [PMID: 26886976]
[10]
M. Brosnan, A.L. Gerche, S. Kumar, W. Lo, J. Kalman, and D. Prior, "Modest agreement in ECG interpretation limits the application of ECG screening in young athletes", Heart Rhythm, vol. 12, no. 1, pp. 130-136, 2015.
[http://dx.doi.org/10.1016/j.hrthm.2014.09.060] [PMID: 25285648]
[11]
K. Suzuki, "Overview of deep learning in medical imaging", Radiol. Phys. Technol., vol. 10, no. 3, pp. 257-273, 2017.
[http://dx.doi.org/10.1007/s12194-017-0406-5] [PMID: 28689314]
[12]
K. Shameer, "Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using mount sinai heart failure cohort", In: Biocomputing, 2017. WORLD SCIENTIFIC, 2016, pp. 276-287.
[http://dx.doi.org/10.1142/9789813207813_0027]
[13]
A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean, "A guide to deep learning in healthcare", Nat. Med., vol. 25, no. 1, pp. 24-29, 2019.
[http://dx.doi.org/10.1038/s41591-018-0316-z] [PMID: 30617335]
[14]
J.L. McClelland, and D.E. Rumelhart, "A simulation-based tutorial system for exploring parallel distributed processing", Behav. Res. Methods Instrum. Comput., vol. 20, no. 2, pp. 263-275, 1988.
[http://dx.doi.org/10.3758/BF03203842]
[15]
C.E. Chiang, T.D. Wang, K.C. Ueng, T.H. Lin, H.I. Yeh, C.Y. Chen, Y.J. Wu, W.C. Tsai, T.H. Chao, C.H. Chen, P.H. Chu, C.L. Chao, P.Y. Liu, S.H. Sung, H.M. Cheng, K.L. Wang, Y.H. Li, F.T. Chiang, J.H. Chen, W.J. Chen, S.J. Yeh, and S.J. Lin, "2015 guidelines of the taiwan society of cardiology and the taiwan hypertension Society for the management of hypertension", J. Chin. Med. Assoc., vol. 78, no. 1, pp. 1-47, 2015.
[http://dx.doi.org/10.1016/j.jcma.2014.11.005] [PMID: 25547819]
[16]
G. Hinton, "Deep learning-A technology with the potential to transform health care", JAMA, vol. 320, no. 11, pp. 1101-1102, 2018.
[http://dx.doi.org/10.1001/jama.2018.11100] [PMID: 30178065]
[17]
A.L. Beam, and I.S. Kohane, "Big data and machine learning in health care", JAMA, vol. 319, no. 13, pp. 1317-1318, 2018.
[http://dx.doi.org/10.1001/jama.2017.18391] [PMID: 29532063]
[18]
A. Esteva, B. Kuprel, R.A. Novoa, J. Ko, S.M. Swetter, H.M. Blau, and S. Thrun, "Dermatologist-level classification of skin cancer with deep neural networks", Nature, vol. 542, no. 7639, pp. 115-118, 2017.
[http://dx.doi.org/10.1038/nature21056] [PMID: 28117445]
[19]
J.H. Lee, D.H. Kim, S.N. Jeong, and S.H. Choi, "Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm", J. Dent., vol. 77, pp. 106-111, 2018.
[http://dx.doi.org/10.1016/j.jdent.2018.07.015] [PMID: 30056118]
[20]
D. Nie, H. Zhang, E. Adeli, L. Liu, and D. Shen, "3D Deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients", In: Medical Image Computing and Computer- Assisted Intervention – MICCAI 2016., 2016, pp. 212-220.
[http://dx.doi.org/10.1007/978-3-319-46723-8_25]
[21]
M. Havaei, N. Guizard, H. Larochelle, and P-M. Jodoin, "Deep learning trends for focal brain pathology segmentation in MRI", In: A. Holzinger, Ed., Machine Learning for Health Informatics: State-of-the-Art and Future Challenges., Springer International Publishing: Cham, 2016, pp. 125-148.
[http://dx.doi.org/10.1007/978-3-319-50478-0_6]
[22]
H. Greenspan, B. van Ginneken, and R.M. Summers, "Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique", IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1153-1159, 2016.
[http://dx.doi.org/10.1109/TMI.2016.2553401]
[23]
C. Hu, R. Ju, Y. Shen, P. Zhou, and Q. Li, "Clinical decision support for Alzheimer’s disease based on deep learning and brain network", In 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1-6
[http://dx.doi.org/10.1109/ICC.2016.7510831]
[24]
Y. Li, Q. Zheng, C. Bao, S. Li, W. Guo, J. Zhao, D. Chen, J. Gu, X. He, and S. Huang, "Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis", Cell Res., vol. 25, no. 8, pp. 981-984, 2015.
[http://dx.doi.org/10.1038/cr.2015.82] [PMID: 26138677]
[25]
D. Kuang, and L. He, "Classification on ADHD with Deep Learning",In 2014 International Conference on Cloud Computing and Big Data, 2014, pp. 27-32
[http://dx.doi.org/10.1109/CCBD.2014.42]
[26]
J. Lerouge, R. Herault, C. Chatelain, F. Jardin, and R. Modzelewski, "IODA: An input/output deep architecture for image labeling", Pattern Recognit., vol. 48, no. 9, pp. 2847-2858, 2015.
[http://dx.doi.org/10.1016/j.patcog.2015.03.017]
[27]
S. Takao, S. Kondo, J. Ueno, and T. Kondo, "Deep multi-layered GMDH-type neural network using revised heuristic self-organization and its application to medical image diagnosis of liver cancer", Artif. Life Robot., vol. 23, no. 1, pp. 48-59, 2018.
[http://dx.doi.org/10.1007/s10015-017-0392-z]
[28]
J. De Fauw, J.R. Ledsam, B. Romera-Paredes, S. Nikolov, N. Tomasev, S. Blackwell, H. Askham, X. Glorot, B. O’Donoghue, D. Visentin, G. van den Driessche, B. Lakshminarayanan, C. Meyer, F. Mackinder, S. Bouton, K. Ayoub, R. Chopra, D. King, A. Karthikesalingam, C.O. Hughes, R. Raine, J. Hughes, D.A. Sim, C. Egan, A. Tufail, H. Montgomery, D. Hassabis, G. Rees, T. Back, P.T. Khaw, M. Suleyman, J. Cornebise, P.A. Keane, and O. Ronneberger, "Clinically applicable deep learning for diagnosis and referral in retinal disease", Nat. Med., vol. 24, no. 9, pp. 1342-1350, 2018.
[http://dx.doi.org/10.1038/s41591-018-0107-6] [PMID: 30104768]
[29]
J. Andreu-Perez, C.C.Y. Poon, R.D. Merrifield, S.T.C. Wong, and G.Z. Yang, "Big data for health", IEEE J. Biomed. Health Inform., vol. 19, no. 4, pp. 1193-1208, 2015.
[http://dx.doi.org/10.1109/JBHI.2015.2450362] [PMID: 26173222]
[30]
Y. Tada, K. Wada, K. Shimada, H. Makino, E.I. Liang, S. Murakami, M. Kudo, K.T. Kitazato, S. Nagahiro, and T. Hashimoto, "Roles of hypertension in the rupture of intracranial aneurysms", Stroke, vol. 45, no. 2, pp. 579-586, 2014.
[http://dx.doi.org/10.1161/STROKEAHA.113.003072] [PMID: 24370755]
[31]
R. Miotte, B.A. Kidd, and J.T, Dudley., "Deep patient: an unsupervised representation to predict the future of patients from the electronic health records", Sci. Rep., vol. 6, no. 1, p. 26094, 2016.
[32]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, and L. Fei-Fei, "ImageNet large scale visual recognition challenge", Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
[http://dx.doi.org/10.1007/s11263-015-0816-y]
[33]
A.F.W. Ho, W. Wah, A. Earnest, Y.Y. Ng, Z. Xie, N. Shahidah, S. Yap, P.P. Pek, N. Liu, S.S.W. Lam, and M.E.H. Ong, "Health impacts of the Southeast Asian haze problem – A time-stratified case crossover study of the relationship between ambient air pollution and sudden cardiac deaths in Singapore", Int. J. Cardiol., vol. 271, pp. 352-358, 2018.
[http://dx.doi.org/10.1016/j.ijcard.2018.04.070] [PMID: 30223374]
[34]
R.L. Kendra, S. Karki, J.L. Eickholt, and L. Gandy, "Characterizing the discussion of antibiotics in the twittersphere: What is the bigger picture?", J. Med. Internet Res., vol. 17, no. 6, p. e154, 2015.
[http://dx.doi.org/10.2196/jmir.4220] [PMID: 26091775]
[35]
B. Zou, V. Lampos, R. Gorton, and I.J. Cox, "On infectious intestinal disease surveillance using social media content", Proceedings of the 6th International Conference on Digital Health Conference, 2016, pp. 157-161.
New York, NY, USA. [http://dx.doi.org/10.1145/2896338.2896372]
[36]
"Data, privacy, and the greater good | Science". Available from: https://www.science.org/doi/abs/10.1126/science.aac4520 (Accessed on: Aug. 25, 2022).
[37]
I. Hirra, M. Ahmad, A. Hussain, M.U. Ashraf, I.A. Saeed, S.F. Qadri, A.M. Alghamdi, and A.S. Alfakeeh, "Breast cancer classification from histopathological images using patch-based deep learning modeling", IEEE Access, vol. 9, pp. 24273-24287, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3056516]
[38]
J.M. Wolterink, T. Leiner, B.D. de Vos, R.W. van Hamersvelt, M.A. Viergever, and I. Išgum, "Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks", Med. Image Anal., vol. 34, pp. 123-136, 2016.
[http://dx.doi.org/10.1016/j.media.2016.04.004] [PMID: 27138584]
[39]
Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P.A. Heng, "3D deeply supervised network for automated segmentation of volumetric medical images", Med. Image Anal., vol. 41, pp. 40-54, 2017.
[http://dx.doi.org/10.1016/j.media.2017.05.001] [PMID: 28526212]
[40]
Y. Pan, "Brain tumor grading based on neural networks and convolutional neural networks", 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 699-702.
[http://dx.doi.org/10.1109/EMBC.2015.7318458]
[41]
A. Payan, and G. Montana, "Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks", arXiv, 2015.
[42]
A. Dubrovina, P. Kisilev, B. Ginsburg, S. Hashoul, and R. Kimmel, "Computational mammography using deep neural networks", Comput. Methods Biomech. Biomed. Eng. Imaging Vis., vol. 6, no. 3, pp. 243-247, 2018.
[http://dx.doi.org/10.1080/21681163.2015.1131197]
[43]
U.R. Acharya, H. Fujita, S.L. Oh, Y. Hagiwara, J.H. Tan, and M. Adam, "Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals", Inf. Sci., vol. 415-416, pp. 190-198, 2017.
[http://dx.doi.org/10.1016/j.ins.2017.06.027]
[44]
R. Mehta, A. Majumdar, and J. Sivaswamy, "BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures", J. Med. Imaging (Bellingham), vol. 4, no. 2, p. 024003, 2017.
[http://dx.doi.org/10.1117/1.JMI.4.2.024003] [PMID: 28439524]
[45]
Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, and H. Greenspan, "Chest pathology detection using deep learning with non-medical training", 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, pp. 294-297.
[http://dx.doi.org/10.1109/ISBI.2015.7163871]
[46]
K. Kamnitsas, C. Ledig, V.F.J. Newcombe, J.P. Simpson, A.D. Kane, D.K. Menon, D. Rueckert, and B. Glocker, "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation", Med. Image Anal., vol. 36, pp. 61-78, 2017.
[http://dx.doi.org/10.1016/j.media.2016.10.004] [PMID: 27865153]
[47]
A.A. Mohamed, W.A. Berg, H. Peng, Y. Luo, R.C. Jankowitz, and S. Wu, "A deep learning method for classifying mammographic breast density categories", Med. Phys., vol. 45, no. 1, pp. 314-321, 2018.
[http://dx.doi.org/10.1002/mp.12683] [PMID: 29159811]
[48]
G. González, S.Y. Ash, G. Vegas-Sánchez-Ferrero, J. Onieva Onieva, F.N. Rahaghi, J.C. Ross, A. Díaz, R. San José Estépar, and G.R. Washko, "Disease staging and prognosis in smokers using deep learning in chest computed tomography", Am. J. Respir. Crit. Care Med., vol. 197, no. 2, pp. 193-203, 2018.
[http://dx.doi.org/10.1164/rccm.201705-0860OC] [PMID: 28892454]
[49]
P. Looney, "Automatic 3D ultrasound segmentation of the first trimester placenta using deep learning", 2017 IEEE 14th International Symposium on Biomedical Imaging 2017, pp. 279-282, .
[http://dx.doi.org/10.1109/ISBI.2017.7950519]
[50]
H. Choi, and K.H. Jin, "Fast and robust segmentation of the striatum using deep convolutional neural networks", J. Neurosci. Methods, vol. 274, pp. 146-153, 2016.
[http://dx.doi.org/10.1016/j.jneumeth.2016.10.007] [PMID: 27777000]
[51]
B. Ehteshami Bejnordi, M. Veta, P. Johannes van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J.A.W.M. van der Laak, M. Hermsen, Q.F. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M.C.R.F. van Dijk, P. Bult, F. Beca, A.H. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H.J. Lin, P.A. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M.Ü. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y.W. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. Ahmady Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M.M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu, and R. Venâncio, "Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer", JAMA, vol. 318, no. 22, pp. 2199-2210, 2017.
[http://dx.doi.org/10.1001/jama.2017.14585] [PMID: 29234806]
[52]
J. Kleesiek, G. Urban, A. Hubert, D. Schwarz, K. Maier-Hein, M. Bendszus, and A. Biller, "Deep MRI brain extraction: A 3D convolutional neural network for skull stripping", Neuroimage, vol. 129, pp. 460-469, 2016.
[http://dx.doi.org/10.1016/j.neuroimage.2016.01.024] [PMID: 26808333]
[53]
R. Rasti, M. Teshnehlab, and S.L. Phung, "Breast cancer diagnosis in DCE-MRI using mixture ensemble of convolutional neural networks", Pattern Recognit., vol. 72, pp. 381-390, 2017.
[http://dx.doi.org/10.1016/j.patcog.2017.08.004]
[54]
R. Anirudh, J.J. Thiagarajan, T. Bremer, and H. Kim, "Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data", In: Medical Imaging 2016., Computer-Aided Diagnosis, vol. 9785. 2016, pp. 791-796.
[http://dx.doi.org/10.1117/12.2214876]
[55]
H.R. Roth, "DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation", In: Medical Image Computing and Computer-Assisted Intervention MICCAI 2015. Cham, 2015, pp. 556-564.
[http://dx.doi.org/10.1007/978-3-319-24553-9_68]
[56]
H. Pratt, F. Coenen, D.M. Broadbent, S.P. Harding, and Y. Zheng, "Convolutional neural networks for diabetic retinopathy", Procedia Comput. Sci., vol. 90, pp. 200-205, 2016.
[http://dx.doi.org/10.1016/j.procs.2016.07.014]
[57]
N. Bayramoglu, J. Kannala, and J. Heikkilä, "Deep learning for magnification independent breast cancer histopathology image classification", 2016 23rd International Conference on Pattern Recognition (ICPR), 2016, pp. 2440-2445.
[http://dx.doi.org/10.1109/ICPR.2016.7900002]
[58]
H. Fu, Y. Xu, D.W.K. Wong, and J. Liu, "Retinal vessel segmentation via deep learning network and fully-connected conditional random fields", 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 2016, pp. 698-701.
[http://dx.doi.org/10.1109/ISBI.2016.7493362]
[59]
Z. Akkus, A. Galimzianova, A. Hoogi, D.L. Rubin, and B.J. Erickson, "Deep learning for brain MRI segmentation: State of the art and future directions", J. Digit. Imaging, vol. 30, no. 4, pp. 449-459, 2017.
[http://dx.doi.org/10.1007/s10278-017-9983-4] [PMID: 28577131]
[60]
P. Moeskops, M.A. Viergever, A.M. Mendrik, L.S. de Vries, M.J.N.L. Benders, and I. Išgum, "Automatic segmentation of MR brain images with a convolutional neural network", IEEE Trans. Med. Imaging, vol. 35, no. 5, pp. 1252-1261, 2016.
[http://dx.doi.org/10.1109/TMI.2016.2548501] [PMID: 27046893]
[61]
Y. Li, X. Li, X. Xie, and L. Shen, "Deep learning based gastric cancer identification", 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, pp. 182-185.
[http://dx.doi.org/10.1109/ISBI.2018.8363550]
[62]
J. Chmelik, R. Jakubicek, P. Walek, J. Jan, P. Ourednicek, L. Lambert, E. Amadori, and G. Gavelli, "Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data", Med. Image Anal., vol. 49, pp. 76-88, 2018.
[http://dx.doi.org/10.1016/j.media.2018.07.008] [PMID: 30114549]
[63]
J.L. Causey, J. Zhang, S. Ma, B. Jiang, J.A. Qualls, D.G. Politte, F. Prior, S. Zhang, and X. Huang, "Highly accurate model for prediction of lung nodule malignancy with CT scans", Sci. Rep., vol. 8, no. 1, p. 9286, 2018.
[http://dx.doi.org/10.1038/s41598-018-27569-w] [PMID: 29915334]
[64]
A. Prasoon, K. Petersen, C. Igel, F. Lauze, E. Dam, and M. Nielsen, "Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network", In: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013. Berlin, Heidelberg, 2013, pp. 246-253.
[http://dx.doi.org/10.1007/978-3-642-40763-5_31]
[65]
V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P.C. Nelson, J.L. Mega, and D.R. Webster, "Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs", JAMA, vol. 316, no. 22, pp. 2402-2410, 2016.
[http://dx.doi.org/10.1001/jama.2016.17216] [PMID: 27898976]
[66]
A. Scarpa, D.K. Chang, K. Nones, V. Corbo, A.M. Patch, P. Bailey, R.T. Lawlor, A.L. Johns, D.K. Miller, A. Mafficini, B. Rusev, M. Scardoni, D. Antonello, S. Barbi, K.O. Sikora, S. Cingarlini, C. Vicentini, S. McKay, M.C.J. Quinn, T.J.C. Bruxner, A.N. Christ, I. Harliwong, S. Idrisoglu, S. McLean, C. Nourse, E. Nourbakhsh, P.J. Wilson, M.J. Anderson, J.L. Fink, F. Newell, N. Waddell, O. Holmes, S.H. Kazakoff, C. Leonard, S. Wood, Q. Xu, S.H. Nagaraj, E. Amato, I. Dalai, S. Bersani, I. Cataldo, A.P. Dei Tos, P. Capelli, M.V. Davì, L. Landoni, A. Malpaga, M. Miotto, V.L.J. Whitehall, B.A. Leggett, J.L. Harris, J. Harris, M.D. Jones, J. Humphris, L.A. Chantrill, V. Chin, A.M. Nagrial, M. Pajic, C.J. Scarlett, A. Pinho, I. Rooman, C. Toon, J. Wu, M. Pinese, M. Cowley, A. Barbour, A. Mawson, E.S. Humphrey, E.K. Colvin, A. Chou, J.A. Lovell, N.B. Jamieson, F. Duthie, M.C. Gingras, W.E. Fisher, R.A. Dagg, L.M.S. Lau, M. Lee, H.A. Pickett, R.R. Reddel, J.S. Samra, J.G. Kench, N.D. Merrett, K. Epari, N.Q. Nguyen, N. Zeps, M. Falconi, M. Simbolo, G. Butturini, G. Van Buren, S. Partelli, M. Fassan, K.K. Khanna, A.J. Gill, D.A. Wheeler, R.A. Gibbs, E.A. Musgrove, C. Bassi, G. Tortora, P. Pederzoli, J.V. Pearson, N. Waddell, A.V. Biankin, and S.M. Grimmond, "Whole-genome landscape of pancreatic neuroendocrine tumours", Nature, vol. 543, no. 7643, pp. 65-71, 2017.
[http://dx.doi.org/10.1038/nature21063] [PMID: 28199314]
[67]
L. Zhang, Y. Zhou, C. Cheng, H. Cui, L. Cheng, P. Kong, J. Wang, Y. Li, W. Chen, B. Song, F. Wang, Z. Jia, L. Li, Y. Li, B. Yang, J. Liu, R. Shi, Y. Bi, Y. Zhang, J. Wang, Z. Zhao, X. Hu, J. Yang, H. Li, Z. Gao, G. Chen, X. Huang, X. Yang, S. Wan, C. Chen, B. Li, Y. Tan, L. Chen, M. He, S. Xie, X. Li, X. Zhuang, M. Wang, Z. Xia, L. Luo, J. Ma, B. Dong, J. Zhao, Y. Song, Y. Ou, E. Li, L. Xu, J. Wang, Y. Xi, G. Li, E. Xu, J. Liang, X. Yang, J. Guo, X. Chen, Y. Zhang, Q. Li, L. Liu, Y. Li, X. Zhang, H. Yang, D. Lin, X. Cheng, Y. Guo, J. Wang, Q. Zhan, and Y. Cui, "Genomic analyses reveal mutational signatures and frequently altered genes in esophageal squamous cell carcinoma", Am. J. Hum. Genet., vol. 96, no. 4, pp. 597-611, 2015.
[http://dx.doi.org/10.1016/j.ajhg.2015.02.017] [PMID: 25839328]
[68]
D.R. Kelley, J. Snoek, and J.L. Rinn, "Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks", Genome Res., vol. 26, no. 7, pp. 990-999, 2016.
[http://dx.doi.org/10.1101/gr.200535.115] [PMID: 27197224]
[69]
B. Alipanahi, A. Delong, M.T. Weirauch, and B.J. Frey, "Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning", Nat. Biotechnol., vol. 33, no. 8, pp. 831-838, 2015.
[http://dx.doi.org/10.1038/nbt.3300] [PMID: 26213851]
[70]
C. Angermueller, H.J. Lee, W. Reik, and O. Stegle., “Deepcpg: accurate prediction of single-cell dna methylation states using deep learning” BMC, vol. 18, no. 67, 2017.
[71]
C. Gawad, W. Koh, and S.R. Quake, "Single-cell genome sequencing: current state of the science", Nat. Rev. Genet., vol. 17, no. 3, pp. 175-188, 2016.
[http://dx.doi.org/10.1038/nrg.2015.16] [PMID: 26806412]
[72]
Y. Qiu, "An initial investigation on developing a new method to predict short-term breast cancer risk based on deep learning technology", In: Medical Imaging 2016: Computer-Aided Diagnosis, vol. 9785. 2016, pp. 517-522.
[http://dx.doi.org/10.1117/12.2216275]
[73]
P. Danaee, R. Ghaeini, and D.A. Hendrix, "A deep learning approach for cancer detection and relevant gene identification", In: Biocomputing 2017., WORLD SCIENTIFIC, 2016, pp. 219-229.
[http://dx.doi.org/10.1142/9789813207813_0022]
[74]
Y. Xu, Z. Dai, F. Chen, S. Gao, J. Pei, and L. Lai, "Deep learning for drug-induced liver injury", J. Chem. Inf. Model., vol. 55, no. 10, pp. 2085-2093, 2015.
[http://dx.doi.org/10.1021/acs.jcim.5b00238] [PMID: 26437739]
[75]
X. Gao, S. Lin, and T.Y. Wong, "Automatic feature learning to grade nuclear cataracts based on deep learning", IEEE Trans. Biomed. Eng., vol. 62, no. 11, pp. 2693-2701, 2015.
[http://dx.doi.org/10.1109/TBME.2015.2444389] [PMID: 26080373]
[76]
A. Masood, "Self-supervised learning model for skin cancer diagnosis", 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), 2015, pp. 1012-1015.
[http://dx.doi.org/10.1109/NER.2015.7146798]
[77]
Z. Han, B. Wei, Y. Zheng, Y. Yin, K. Li, and S. Li, "Breast cancer multi-classification from histopathological images with structured deep learning model", Sci. Rep., vol. 7, no. 1, p. 4172, 2017.
[http://dx.doi.org/10.1038/s41598-017-04075-z] [PMID: 28646155]
[78]
Z. Zhang, D.L. Weaver, D. Olsen, J. deKay, Z. Peng, T. Ashikaga, and M.F. Evans, "Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology", J. Clin. Pathol., vol. 69, no. 1, pp. 76-81, 2016.
[http://dx.doi.org/10.1136/jclinpath-2015-203275] [PMID: 26323944]
[79]
K.H. Cha, L. Hadjiiski, R.K. Samala, H.P. Chan, E.M. Caoili, and R.H. Cohan, "Urinary bladder segmentation in CT urography using deep-learning convolutional neural network and level sets", Med. Phys., vol. 43, no. 4, pp. 1882-1896, 2016.
[http://dx.doi.org/10.1118/1.4944498] [PMID: 27036584]
[80]
F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K.H. Maier-Hein, "Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge", Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. Cham, pp. 287-297, 2018.
[http://dx.doi.org/10.1007/978-3-319-75238-9_25]
[81]
M.U. Dalmış, G. Litjens, K. Holland, A. Setio, R. Mann, N. Karssemeijer, and A. Gubern-Mérida, "Using deep learning to segment breast and fibroglandular tissue in MRI volumes", Med. Phys., vol. 44, no. 2, pp. 533-546, 2017.
[http://dx.doi.org/10.1002/mp.12079] [PMID: 28035663]
[82]
D. Kumar, A. Wong, and D.A. Clausi, "Lung nodule classification using deep features in CT images", 2015 12th Conference on Computer and Robot Vision 2015,, pp. 133-138, .
[http://dx.doi.org/10.1109/CRV.2015.25]
[83]
W. Sun, B. Zheng, and W. Qian, "Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis", Comput. Biol. Med., vol. 89, pp. 530-539, 2017.
[http://dx.doi.org/10.1016/j.compbiomed.2017.04.006] [PMID: 28473055]
[84]
R.K. Samala, H.P. Chan, L. Hadjiiski, M.A. Helvie, J. Wei, and K. Cha, "Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography", Med. Phys., vol. 43, no. 12, pp. 6654-6666, 2016.
[http://dx.doi.org/10.1118/1.4967345] [PMID: 27908154]
[85]
X. Wang, W. Yang, J. Weinreb, J. Han, Q. Li, X. Kong, Y. Yan, Z. Ke, B. Luo, T. Liu, and L. Wang, "Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning", Sci. Rep., vol. 7, no. 1, p. 15415, 2017.
[http://dx.doi.org/10.1038/s41598-017-15720-y] [PMID: 29133818]
[86]
J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and A. Madabhushi, "Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images", IEEE Trans. Med. Imaging, vol. 35, no. 1, pp. 119-130, 2016.
[http://dx.doi.org/10.1109/TMI.2015.2458702] [PMID: 26208307]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy