Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Research Article

Entropy Generation Effects on Hydromagnetic Williamson Nanofluid Flow through a Porous Media

Author(s): Sabyasachi Mondal*, Riya Ghosh and Ram Prakash Sharma

Volume 13, Issue 1, 2023

Published on: 07 February, 2023

Article ID: e230123213000 Pages: 11

DOI: 10.2174/2210681213666230123111027

Price: $65

Abstract

Background: Two-dimensional Williamson nanofluid flow with magnetic effects occurs through an extending surface immersed in a porous media. This includes the impact of the applied magnetic field, chemical reactions, variable thermal conductivity, and heat generation. Based on the above assumption, this study investigates a hydromagnetic Williamson nanofluid passed through a stretching surface embedded in a porous media that is being analysed by assuming the impact of thermal radiation and magnetic field on the flow properties.

Methods: After using an appropriate similarity transformation, the governing equations with boundary conditions were converted into a dimensionless form. These derived ordinary differential equations are highly nonlinear partial differential equations that are solved numerically using the spectral local linearisation method.

Results: An analysis and comparison of results with existing literature are reported here. Excellent agreement has been found between our results and those previously published. The impact of the magnetic field parameters, heat generation, variable thermal conductivity, and chemical reaction parameters on the velocity, thermal, and concentration profiles are inspected in graphical and tabular forms.

Conclusion: The outcomes indicate that the velocity reduces with the increase in Williamson, porosity, and magnetic field parameters, whereas the concentration profile improves with these parameters. Entropy generation rate is also enhanced when the concentration difference parameter, Reynolds number, and Brinkman number are increased. Our results are extremely relevant and prove the same. A rise in the porosity parameter drops the velocity profiles but increases the temperature and concentration profiles. The entropy generation number is enhanced when the concentration difference parameter, Reynolds, and Brinkman numbers are increased.

Graphical Abstract

[1]
Williamson, R.V. The flow of pseudoplastic materials. Ind. Eng. Chem., 1929, 21(11), 1108-1111.
[http://dx.doi.org/10.1021/ie50239a035]
[2]
Rapp, B.E. Microfluidics: Modeling, Mechanics and Mathematics; Elsevier, 2017.
[3]
Nadeem, S.; Hussain, S.T.; Lee, C. Flow of a Williamson fluid over a stretching sheet. Braz. J. Chem. Eng., 2013, 30(3), 619-625.
[http://dx.doi.org/10.1590/S0104-66322013000300019]
[4]
Khan, N.A.; Khan, H. A Boundary layer flows of non-Newtonian Williamson fluid. Nonlinear Eng., 2014, 3(2), 107-115.
[http://dx.doi.org/10.1515/nleng-2014-0002]
[5]
Zehra, I.; Yousaf, M.M.; Nadeem, S. Numerical solutions of Williamson fluid with pressure dependent viscosity. Results Phys., 2015, 5, 20-25.
[http://dx.doi.org/10.1016/j.rinp.2014.12.002]
[6]
Malik, M.Y.; Salahuddin, T.; Hussain, A.; Bilal, S.; Awais, M. Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method. AIP Adv., 2015, 5(10), 107227.
[http://dx.doi.org/10.1063/1.4934937]
[7]
Malik, M.Y.; Bibi, M.; Khan, F.; Salahuddin, T. Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption. AIP Adv., 2016, 6(3), 035101.
[http://dx.doi.org/10.1063/1.4943398]
[8]
Lyubimov, D.V.; Perminov, A.V. Motion of a thin oblique layer of a pseudoplastic fluid. J. Eng. Phys. Thermophy., 2002, 75(4), 920-924.
[http://dx.doi.org/10.1023/A:1020371203799]
[9]
Megahed, A.M. Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation. J. Egypt. Math. Soc., 2019, 12, 27.
[http://dx.doi.org/10.1186/s42787-019-0016-y]
[10]
Malik, M.Y.; Salahuddin, T. Numerical solution of MHD stagnation point flow of Williamson fluid model over a stretching cylinder. Int. J. Nonlinear Sci. Numer. Simul., 2015, 16(3-4), 161-164.
[http://dx.doi.org/10.1515/ijnsns-2014-0035]
[11]
Lund, L.A.; Omar, Z.; Khan, I. Analysis of dual solution for MHD flow of Williamson fluid with slippage. Heliyon, 2019, 5(3), e01345.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01345] [PMID: 30949601]
[12]
Hussain, Z.; Hayat, T.; Alsaedi, A.; Ullah, I. On MHD convective flow of Williamson fluid with homogeneous-heterogeneous reactions: A comparative study of sheet and cylinder. Int. Commun. Heat Mass Transf., 2021, 120, 105060.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.105060]
[13]
Bilal, M.; Sagheer, M.; Hussain, S.; Mehmood, Y. MHD stagnation point flow of Williamson fluid over a stretching cylinder with variable thermal conductivity and homogeneous/heterogeneous reaction. Commum. Theor. Phys., 2017, 67(6), 688-696.
[http://dx.doi.org/10.1088/0253-6102/67/6/688]
[14]
Shah, Z.; Bonyah, E.; Islam, S.; Khan, W.; Ishaq, M. Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet. Heliyon, 2018, 4(10), e00825.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00825] [PMID: 30345407]
[15]
Nadeem, S.; Hussain, S.T.H. Analysis of MHD Williamson nano fluid flow over a heated surface. J. Appl. Fluid Mech., 2016, 9(2), 729-739.
[http://dx.doi.org/10.18869/acadpub.jafm.68.225.21487]
[16]
Choi, S; Eastman, JA Enhancing thermal conductivity of fluids with nanoparticles., 1995.
[17]
Buongiorno, J. Convective transport in nanofluids. J. Heat Transfer, 2006, 128(3), 240-250.
[http://dx.doi.org/10.1115/1.2150834]
[18]
Nadeem, S.; Hussain, S.T. Flow and heat transfer analysis of Williamson nanofluid. App. Nano Sci, 2014, 4, 1005-1012.
[19]
Kho, Y.B.; Hussanan, A.; Anuar Mohamed, M.K.; Salleh, M.Z. Heat and mass transfer analysis on flow of Williamson nanofluid with thermal and velocity slips: Buongiorno model. Propul. Power Res., 2019, 8(3), 243-252.
[http://dx.doi.org/10.1016/j.jppr.2019.01.011]
[20]
Reddy, C. S.; Naikoti, K.; Rashidi, M.M. MHD flow and heat transfer characteristics of Williamson nanofluid over a stretching sheet with variable thickness and variable thermal conductivity. Transactions of A Razmadze Mathematical Institute, 2017, 171(2), 195-211.
[http://dx.doi.org/10.1016/j.trmi.2017.02.004]
[21]
Mabood, F.; Ibrahim, S.; Lorenzini, G.; Lorenzin, E. Radiation effects on Williamson nanofluid flow over a heated surface with magnetohydrodynamics. Int. J. Heat Technol., 2017, 35(1), 196-204.
[http://dx.doi.org/10.18280/ijht.350126]
[22]
Ibrahim, W.; Gamachu, D. Nonlinear convection flow of Williamson nanofluid past a radially stretching surface. AIP Adv., 2019, 9(8), 085026.
[http://dx.doi.org/10.1063/1.5113688]
[23]
Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Ahmad, S.; Yook, S.J. Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO). Case Stud. Therm. Eng., 2022, 35, 102046.
[http://dx.doi.org/10.1016/j.csite.2022.102046]
[24]
Shah, N.A.; Wakif, A.; El-Zahar, E.R.; Thumma, T.; Yook, S.J. Heat transfers thermodynamic activity of a second-grade ternary nanofluid flow over a vertical plate with Atangana-Baleanu time-fractional integral. Alex. Eng. J., 2022, 61(12), 10045-10053.
[http://dx.doi.org/10.1016/j.aej.2022.03.048]
[25]
Sabu, A.S.; Wakif, A.; Areekara, S.; Mathew, A.; Shah, N.A. Significance of nanoparticles’ shape and thermo-hydrodynamic slip constraints on MHD alumina-water nanoliquid flows over a rotating heated disk: The passive control approach. Int. Commun. Heat Mass Transf., 2021, 129, 105711.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2021.105711]
[26]
Rasool, G.; Shah, N.A.; El-Zahar, E.R.; Wakif, A. Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: application of passive control strategy and generalized transfer laws. Waves Random Complex Media, 2022, 2022, 1-20.
[http://dx.doi.org/10.1080/17455030.2022.2074571]
[27]
Oyelakin, I.S.; Ghosh, R.; Mondal, S.; Sibanda, P. Entropy generation in Casson nanofluid flow past an electromagnetic stretching Riga plate. Malaysian J. Mathe. Sci., 2021, 15(3), 425-445.
[28]
Oyelakin, I.S.; Mondal, P.; Mondal, S.; Mahapatra, T.R.; Sibanda, P. Rheological analysis of suspended Single-Walled Carbon nanotubes in a Walters’ B fluid. Nanosci. Nanotechnol. Asia, 2021, 11(6), e070921193181.
[http://dx.doi.org/10.2174/2210681210999200819160223]
[29]
Karmakar, S.; Mpendulo, M.V.; Mondal, S. Rheological analysis of CNT suspended Nanofluid with convective boundary condition using spectral method. Nanosci. Nanotechnol. Asia, 2021, 11(2), 163-173.
[http://dx.doi.org/10.2174/2210681210666200319150308]
[30]
Aldabesh, A.; Haredy, A.; Al-Khaled, K.; Khan, S.U.; Tlili, I. Darcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells. Sci. Rep., 2022, 12(1), 7514.
[http://dx.doi.org/10.1038/s41598-022-11528-7] [PMID: 35525904]
[31]
Haq, F.; Khan, M.I.; El-Zahar, E.R.M.; Khan, S.U.; Farooq, S.; Guedri, K. Theoretical investigation of radiative viscous hybrid nanofluid towards a permeable surface of cylinder. Zhongguo Wuli Xuekan, 2022, 77, 2761-2772.
[http://dx.doi.org/10.1016/j.cjph.2022.05.013]
[32]
Hayat, T.; Shafiq, A.; Alsaedi, A. Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation. Alex. Eng. J., 2016, 55(3), 2229-2240.
[http://dx.doi.org/10.1016/j.aej.2016.06.004]
[33]
Shafiq, A.; Sindhu, T.N. Statistical study of hydromagnetic boundary layer flow of Williamson fluid regarding a radiative surface. Results Phys., 2017, 7, 3059-3067.
[http://dx.doi.org/10.1016/j.rinp.2017.07.077]
[34]
Kumar, A.; Tripathi, R.; Singh, R.; Chaurasiya, V.K. Simultaneous effects of nonlinear thermal radiation and Joule heating on the flow of Williamson nanofluid with entropy generation. Physica A, 2020, 551, 123972.
[http://dx.doi.org/10.1016/j.physa.2019.123972]
[35]
Hussain, A.; Zetoon, R.; Ali, S.; Nadeem, S. Magneto-hydro dynamic squeezed flow of Williamson fluid transiting a sensor surface. Heliyon, 2020, 6(9), e04875.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04875] [PMID: 32995599]
[36]
Mishra, S.R.; Mathur, P. Williamson nanofluid flow through porous medium in the presence of melting heat transfer boundary condition: semi-analytical approach. Multidiscip. Model. Mater. Struct., 2020, 17(1), 19-33.
[http://dx.doi.org/10.1108/MMMS-12-2019-0225]
[37]
Shateyi, S.; Muzara, H. On the numerical analysis of unsteady MHD boundary layer flow of Williamson fluid over a stretching sheet and heat and mass transfers. Computation, 2020, 8(2), 55.
[http://dx.doi.org/10.3390/computation8020055]
[38]
Kebede, T.; Haile, E.; Awgichew, G.; Walelign, T. Heat and mass transfer in unsteady boundary layer flow of Williamson nanofluids. J. Appl. Math., 2020, 2020(1890972), 1-13.
[http://dx.doi.org/10.1155/2020/1890972]
[39]
Vasudev, C.; Rao, U.R.; Reddy, M.V.S.; Rao, G.P. Peristaltic Pumping of Williamson fluid through a porous medium in a horizontal channel with heat transfer. Am. J. Sci. Indust. Res., 2010, 1(3), 656-666.
[http://dx.doi.org/10.5251/ajsir.2010.1.3.656.666]
[40]
Qayyum, S.; Khan, M.I.; Masood, F.; Chu, Y.M.; Kadry, S.; Nazeer, M. Interpretation of entropy generation in Williamson fluid flow with nonlinear thermal radiation and first‐order velocity slip. Math. Methods Appl. Sci., 2021, 44(9), 7756-7765.
[http://dx.doi.org/10.1002/mma.6735]
[41]
Bellman, R.E; Kalaba, R.E. Quasilinerization and nonlinear boundary value problems. 1965. Available from: https://www.rand.org/pubs/reports/R438.html
[42]
Agbaje, T.M.; Mondal, S.; Makukula, Z.G.; Motsa, S.S.; Sibanda, P. A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet. Ain Shams Eng. J., 2018, 9(2), 233-243.
[http://dx.doi.org/10.1016/j.asej.2015.10.015]
[43]
Goqo, S.P.; Mondal, S.; Sibanda, S.; Motsa, S.S. An unsteady MHD Jeffery nanofluid flow over a shrinking sheet with thermal radiation and convective boundary condition using spectral quasilinearisation method. J. Comput. Theor. Nanosci., 2016, 13, 7483-7492.
[http://dx.doi.org/10.1166/jctn.2016.5743]
[44]
Khan, M.; Azam, M. Unsteady heat and mass transfer mechanisms in MHD Carreau nanofluid flow. J. Mol. Liq., 2017, 225, 554-562.
[http://dx.doi.org/10.1016/j.molliq.2016.11.107]
[45]
Bibi, M. Khalil-Ur-Rehman; Malik, M.Y.; Tahir, M. Numerical study of unsteady Williamson fluid flow and heat transfer in the presence of MHD through a permeable stretching surface. Eur. Phys. J. Plus, 2018, 133(4), 154.
[http://dx.doi.org/10.1140/epjp/i2018-11991-2]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy