Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

The Study of Interaction of Melphalan with SWCNT- BNNT Through Force Fields Molecular Mechanics and Quantum Calculations in Different Solvents and Temperatures

Author(s): Mohammad Hassan Jamshidi, Neda Hasanzadeh*, Hooriye Yahyaei and Amir Bahrami

Volume 20, Issue 7, 2023

Published on: 15 February, 2023

Page: [657 - 671] Pages: 15

DOI: 10.2174/1570178620666230118111018

Price: $65

Abstract

In this study, the interaction of Melphalan, which is an anti-cancer medicine, with Singlewall carbon nanotubes (SWCNTs) and Boron nitride nanotubes (BNNTs), was investigated. Calculations were performed by using two methods of quantum mechanics and molecular mechanics. Thermodynamic parameters and Frontier Molecular Orbitals (FMOs) of the title compounds were evaluated by using the Density Functional Theory (DFT) calculations. The Quantum Mechanics calculations proved that BNNTs are more suitable carriers for Melphalan. Moreover, the interaction of Melphalan with SWCNTs and BNNTs at different temperatures was evaluated by Monte Carlo calculations. The MM+ force field was chosen as the most efficient field, and the HCl solvent has the lowest amount of energy and proven to be the most stable solvent for the simulation. The most significant finding obtained from this study is that the results of all types of calculations are in line with each other regarding both thermodynamic properties and conformers.

Graphical Abstract

[1]
Parhi, P.; Mohanty, C.; Sahoo, S.K. Drug Discovery Today., 2012, 17, 1044-1052.
[2]
Thirumaran, R.; Prendergast, G.C.; Gilman, P.B. Cytotoxic chemotherapy in clinical treatment of cancer, in Cancer immunotherapy; Elsevier, 2007, pp. 101-116.
[3]
Vardanyan, R.; Hruby, V. Synthesis of best-seller drugs; Elsevier: London, 2016, pp. 495-547.
[4]
Emadi, A.; Jones, R.J.; Brodsky, R.A. Nature reviews Clinical oncology, 2009, 6, 638-647.
[5]
Ajazuddin; Alexander, A.; Amarji, B.; Kanaujia, P. Drug Dev. Ind. Pharm., 2013, 39, 1053-1062.
[6]
Krasnov, V.P.; Korolyova, M.A.e.; Vodovozova, E.L.v. Russian Chemical Reviews, 2013, 82, 783.
[7]
Tabatabaei, S.N.; Derbali, R.M.; Yang, C.; Superstein, R.; Hamel, P.; Chain, J.L.; Hardy, P. J.Controlled Release, 2019, 298, 177-185.
[8]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. Molecules, 2019, 25, 112.
[9]
Iijima, S. nature., 1991, 354, 56-58.
[10]
Li, Z.; de Barros, A.L.B.; Soares, D.C.F.; Moss, S.N.; Alisaraie, L. Int. J. Pharm., 2017, 524, 41-54.
[11]
Mu, W.; Chu, Q.; Liu, Y.; Zhang, N. Nano-Micro Letter., 2020, 12, 1-24.
[12]
Saifuddin, N.; Raziah, A.; Junizah, A. Journal of Chemistry., 2013, 2013, 676815.
[13]
Balasubramanian, K. Chemically Functionalized Carbon Nanotubes small., 1, 180-192.
[14]
Chopra, N.G.; Luyken, R.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G.; Zettl, A. science., 1995, 269, 966-967.
[15]
Dolati, S.; Fereidoon, A.; Kashyzadeh, K.R. methods., 2012, 49-52.
[16]
Xu, H.; Wang, Q.; Fan, G.; Chu, X. Theor. Chem. Acc., 2018, 137, 1-15.
[17]
Merlo, A.; Mokkapati, V.; Pandit, S.; Mijakovic, I. Biomater. Sci., 2018, 6, 2298-2311.
[18]
Gao, Z.; Zhi, C.; Bando, Y.; Golberg, D.; Serizawa, T. Nanobiomedicine , 2014, 1, 7.
[19]
Juárez, A.R.; Anota, E.C.; Cocoletzi, H.H.; Ramírez, J.S.; Castro, M. Fuller. Nanotub. Carbon Nanostructures., 2017, 25, 716-725.
[20]
Ciofani, G.; Genchi, G.G.; Liakos, I.; Athanassiou, A.; Dinucci, D.; Chiellini, F.; Mattoli, V. J. Colloid Interface Sci., 2012, 374, 308-314.
[21]
Khodadadi, V.; Hasanzadeh, N.; Yahyaei, H.; Rayatzadeh, A. J. Chil. Chem. Soc., 2021, 66, 5365-5379.
[22]
Shao, Y.; Molnar, L.F.; Jung, Y.; Kussmann, J.; Ochsenfeld, C.; Brown, S.T.; Gilbert, A.T.; Slipchenko, L.V.; Levchenko, S.V.; O’Neill, D.P. Phys. Chem. Chem. Phys., 2006, 8, 3172-3191.
[23]
Aihara, J-i. Phys. Chem. Chem. Phys., 2000, 2, 3121-3125.
[24]
Buonocore, F.; Trani, F.; Ninno, D.; Di Matteo, A.; Cantele, G.; Iadonisi, G. Nanotechnology, 2007, 19, 025711.
[25]
Saikia, N.; Deka, R.C. Comput. Theor. Chem., 2011, 964, 257-261.
[26]
O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. J. Comput. Chem., 2008, 29, 839-845.
[27]
O’Boyle, N. GaussSum, Version 2.0. 5,, 2007.
[28]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. 2009. See also: URL:http://www. gaussian. com
[29]
Lee, C.; Yang, W.; Parr, R.G. Phys. Rev. B Condens. Matter, 1988, 37, 785.
[30]
Johnson, B.; Seminario, J.; Politzer, P. Modern Density Function Theory: A Tool for Chemistry; Elsevier: Amsterdam, 1995.
[31]
Becke, A.D. J. Chem. Phys., 1993, 98, 5648-5652.
[32]
Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105, 2999-3094.
[33]
Shahab, S.; Sheikhi, M.; Filippovich, L.; Kumar, R.; Dikusar, E.; Yahyaei, H.; Khaleghian, M. J. Mol. Struct., 2017, 1148, 134-149.
[34]
Yahyaei, H.; Sharifi, S.; Shahab, S.; Sheikhi, M.; Ahmadianarog, M. Lett. Org. Chem., 2021, 18, 115-127.
[35]
Frisch, A.; Nielson, A.; Holder, A. Gaussian Inc.; Pittsburgh, PA; , 2000, p. 556.
[36]
Szczepanska, A.; Espartero, J.L.; Moreno-Vargas, A.J.; Carmona, A.T.; Robina, I.; Remmert, S.; Parish, C. J. Org. Chem., 2007, 72, 6776-6785.
[37]
Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. J. Chem. Phys., 1953, 21, 1087-1092.
[38]
HyperChem 7.0 for windows, Hypercube, Inc.;, 2002.
[39]
Yahyaei, H.; Monajjemi, M.; Aghaie, H.; Zare, K. J. Comput. Theor. Nanosci., 2013, 10, 2332-2341.
[40]
Kastner, M. Commun. Nonlinear Sci. Numer. Simul., 2010, 15, 1589-1602.
[41]
Hastings, W.K. Biometrika, 1970, 57, 97-109.
[42]
Liu, J.S.; Liang, F.; Wong, W.H. J. Am. Stat. Assoc., 2000, 95, 121-134.
[43]
Theodorou, D.N. Industrial & engineering chemistry research., 2010, 49, 3047-3058.
[44]
Cornell, W.; Cieplak, P.; Bayly, C.I.; Gould, I.R.; Merz, J. J. Am. Chem. Soc., 1995, 117, 5179-5197.
[45]
Jorgensen, W.L.; Tirado-Rives, J. J. Am. Chem. Soc., 1988, 110, 1657-1666.
[46]
MacKerell, A.D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R.L., Jr; Evanseck, J.D.; Field, M.J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. J. Phys. Chem. B, 1998, 102, 3586-3616.
[47]
Neria, E.; Fischer, S.; Karplus, M. The Journal of chemical physics., 1996, 105, 1902-1921.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy