Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Research Article

Preventive Potential of Extracts of Some Dietary Plants against SARSCoV- 2 Infection

Author(s): Saba Farooq, Atia-tul-Wahab, Muhamamd Iqbal Choudhary and Atta-ur-Rahman*

Volume 10, Issue 1, 2024

Published on: 24 February, 2023

Article ID: e160123212770 Pages: 9

DOI: 10.2174/2215083809666230116141143

Price: $65

Abstract

Background: Coronavirus disease 2019 (COVID-19) had emerged as an unprecedented global health crisis. The pandemic resulted in over 672 million confirmed cases, and 6.84 million deaths till date. Several dietary plants are known for their beneficial health effects due to their diverse bioactive metabolites. Some of them are already reported for their therapeutic potential against respiratory viral infections with excellent safety profiles. Thus they can serve as sources of bioactive agents for the prevention and treatment of SARS-CoV-2 infection.

Objective: With limited therapeutic options, the identification of safe, effective, and affordable medicines for the SARS-CoV-2 infection are urgently needed. The primary aim of the current study is to identify edible plant materials with preventive activity against SARS-CoV-2 infection.

Methods: Extracts of 30 dietary plants were evaluated for their in cellulo anti-SARS-CoV-2 potential. The antiviral activity was evaluated on SARS-CoV-2, propagated in Vero cell line (ATCCCCL- 81), followed by isolation of viral RNA, and its confirmation by qRT-PCR. Cytotoxicity of extracts was evaluated by using MTT assay in the Vero cell line, while the reduction in viral load was measured through plaque reduction assay. Furthermore, evaluations of the plant extracts on various treatment targets were also performed in cellulo.

Results: An extract of Trigonella foenum-graecum L. (Fenugreek leaves) was identified as a promising inhibitor of SARS-CoV-2 propagation with 98.7% reduction in the formation of plaques at 50 μg mL−1. Moreover, Trapa natans L. (Water caltrop, fruit) (part of the plant: fruit) also showed a 55.0% reduction in viral load at 50 μg mL−1. Both dietary plants exhibited prophylactic effects against SARS-CoV-2 infection.

Conclusion: Trigonella foenum-graecum L., and Trapa natans L. and their bioactive metabolites can be used as preventive agents against SARS-CoV-2 infection. These results can form the basis for the development of anti-viral nutraceutical formulations.

Graphical Abstract

[1]
Xiao, X.; Wang, C.; Chang, D.; Wang, Y.; Dong, X.; Jiao, T.; Zhao, Z.; Ren, L.; Dela Cruz, C.S.; Sharma, L.; Lei, X.; Wang, J. Identification of potent and safe antiviral therapeutic candidates against SARS-CoV-2. Front. Immunol., 2020, 11586572
[http://dx.doi.org/10.3389/fimmu.2020.586572]
[2]
Amin, B.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med., 2016, 82(1-2), 8-16.
[PMID: 26366755]
[3]
Tsai, Y.; Cole, L.; Davis, L.; Lockwood, S.; Simmons, V.; Wild, G. Antiviral properties of garlic: In vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Med., 1985, 51(5), 460-461.
[http://dx.doi.org/10.1055/s-2007-969553] [PMID: 3001801]
[4]
Mehrbod, P.; Amini, E.; Tavassoti-Kheiri, M. Antiviral activity of garlic extract on influenza virus. Iran. J. Virol., 2009, 3(1), 19-23.
[http://dx.doi.org/10.21859/isv.3.1.19]
[5]
Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: a review of potential therapeutic effects. Avicenna J. Phytomed., 2014, 4(1), 1-14.
[PMID: 25050296]
[6]
Santhi, V.P.; Sriramavaratharajan, V.; Murugan, R.; Masilamani, P.; Gurav, S.S.; Sarasu, V.P.; Parthiban, S.; Ayyanar, M. Edible fruit extracts and fruit juices as potential source of antiviral agents: a review. J. Food Meas. Charact., 2021, 15, 5181-5190.
[http://dx.doi.org/10.1007/s11694-021-01090-7]
[7]
Suárez, B.; Álvarez, Á.L.; García, Y.D.; Barrio, G.; Lobo, A.P.; Parra, F. Phenolic profiles, antioxidant activity and in vitro antiviral properties of apple pomace. Food Chem., 2010, 120(1), 339-342.
[http://dx.doi.org/10.1016/j.foodchem.2009.09.073]
[8]
Gaafar, A.A.; Asker, M.S.; Ali, M.A.; Salama, Z.A. The effectiveness of the functional components of Grape (Vitis vinifera) pomace as antioxidant, antimicrobial, and antiviral agents. Jordan J. Biol. Sci., 2019, 12(5), 625-635.
[9]
Haidari, M.; Ali, M.; Ward Casscells, S., III; Madjid, M. Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 2009, 16(12), 1127-1136.
[http://dx.doi.org/10.1016/j.phymed.2009.06.002] [PMID: 19586764]
[10]
Kotwal, G.J. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) mpounds (EVNCs). Vaccine, 2008, 26(24), 3055-3058.
[http://dx.doi.org/10.1016/j.vaccine.2007.12.008] [PMID: 18241960]
[11]
Asl Najjari, A.H.; Rajabi, Z.; Vasfi Marandi, M.; Dehghan, G. The effect of the hexanic extracts of fig (Ficus carica) and olive (Olea europaea) fruit and nanoparticles of selenium on the immunogenicity of the inactivated avian influenza virus subtype H9N2. Vet. Res. Forum, 2015, 6(3), 227-231.
[PMID: 26893813]
[12]
Chen, L.; Li, J.; Luo, C.; Liu, H.; Xu, W.; Chen, G.; Liew, O.W.; Zhu, W.; Puah, C.M.; Shen, X.; Jiang, H. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure–activity relationship studies reveal salient pharmacophore features. Bioorg. Med. Chem., 2006, 14(24), 8295-8306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[13]
Harazem, R.; Rahman, S.; Kenawy, A. Evaluation of antiviral activity of Allium cepa and Allium sativum extracts against newcastle disease virus. Alex. J. Vet. Sci., 2019, 61(1), 108-118.
[http://dx.doi.org/10.5455/ajvs.29663]
[14]
Ghosh, R.; Chakraborty, A.; Biswas, A.; Chowdhuri, S. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors-an in silico docking and molecular dynamics simulation study. J. Biomol. Struct. Dyn., 2021, 39(12), 4362-4374.
[PMID: 32568613]
[15]
Moradi, M.T.; Karimi, A.; Alidadi, S.; Hashemi, L. In vitro anti-adenovirus activity, antioxidant potential and total phenolic compounds of Melissa officinalis L. (lemon balm) extract. Int. J. Pharmacogn. Phyt., 2016, 8(9), 1471-1477.
[16]
Mendoza, E.J.; Manguiat, K.; Wood, H.; Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS‐CoV‐2. Curr. Protoc. Microbiol., 2020, 57(1)ecpmc105
[http://dx.doi.org/10.1002/cpmc.105] [PMID: 32475066]
[17]
Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol., 1938, 27(3), 493-497.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a118408]
[18]
Roshdy, W.H.; Rashed, H.A.; Kandeil, A.; Mostafa, A.; Moatasim, Y.; Kutkat, O.; Abo Shama, N.M.; Gomaa, M.R.; El-Sayed, I.H.; El Guindy, N.M.; Naguib, A.; Kayali, G.; Ali, M.A. EGYVIR: An immunomodulatory herbal extract with potent antiviral activity against SARS-CoV-2. PLoS One, 2020, 15(11)e0241739
[http://dx.doi.org/10.1371/journal.pone.0241739] [PMID: 33206688]
[19]
Hayden, F.G.; Douglas, R.G., Jr; Simons, R. Enhancement of activity against influenza viruses by combinations of antiviral agents. Antimicrob. Agents Chemother., 1980, 18(4), 536-541.
[http://dx.doi.org/10.1128/AAC.18.4.536] [PMID: 7447417]
[20]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582, 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y]
[21]
Cho, J.; Lee, Y.J.; Kim, J.H.; Kim, S.; Kim, S.S.; Choi, B.S.; Choi, J.H. Antiviral activity of digoxin and ouabain against SARS-CoV-2 infection and its implication for COVID-19. Sci. Rep., 2020, 10(1), 16200.
[http://dx.doi.org/10.1038/s41598-020-72879-7] [PMID: 33004837]
[22]
Kanjanasirirat, P.; Suksatu, A.; Manopwisedjaroen, S.; Munyoo, B.; Tuchinda, P.; Jearawuttanakul, K.; Seemakhan, S.; Charoensutthivarakul, S.; Wongtrakoongate, P.; Rangkasenee, N.; Pitiporn, S.; Waranuch, N.; Chabang, N.; Khemawoot, P.; Sa-ngiamsuntorn, K.; Pewkliang, Y.; Thongsri, P.; Chutipongtanate, S.; Hongeng, S.; Borwornpinyo, S.; Thitithanyanont, A. High-content screening of Thai medicinal plants reveals Boesenbergia rotunda extract and its component Panduratin A as anti-SARS-CoV-2 agents. Sci. Rep., 2020, 10, 19963.
[23]
Loying, P.; Sarma, V.; Hazarika, S.C. Dynamics of ORF1ab and N Gene among hospitalized COVID-19 positive cohorts: A hospital based retrospective study. medRxiv, 2020, pp. 2020-2011.
[http://dx.doi.org/10.1101/2020.11.22.20236240]
[24]
Dai, W.; Bi, J.; Li, F.; Wang, S.; Huang, X.; Meng, X.; Sun, B.; Wang, D.; Kong, W.; Jiang, C.; Su, W. Antiviral efficacy of flavonoids against Enterovirus 71 infection in vitro and in newborn mice. Viruses, 2019, 11(7), 625.
[http://dx.doi.org/10.3390/v11070625] [PMID: 31284698]
[25]
Adkar, P.; Dongare, A.; Ambavade, S.; Bhaskar, V.H. Trapa bispinosa Roxb.: A review on nutritional and pharmacological aspects. Adv. Pharmacol. Sci., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/959830] [PMID: 24669216]
[26]
Wong, K.P.; Wong, M.C. Extract of Trapa natans and methods of using the same. WO Patent 2004043345A2 , 2004.
[27]
Garber, A.; Barnard, L.; Pickrell, C. Review of whole plant extracts with activity against herpes simplex viruses in vitro and in vivo. J. Evid. Based Integr. Med., 2021, 26, 2515690X2097839.
[http://dx.doi.org/10.1177/2515690X20978394] [PMID: 33593082]
[28]
Albrecht, T.; Fons, M.; Boldogh, I.; Rabson, A.S. Effects on cells. Medical Microbiology, 4th ed; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, 1996.
[29]
Corovic, RC; Bradic, J; Tomovic, M; Dabanovic, V; Jakovljevic, V; Zarkovic, G; Roga, Z Chemical composition and biological activity of Trapa natans L. Ser. J. Exp. Clin. Res., 2021, Epubahead of Print.
[http://dx.doi.org/10.2478/sjecr-2021-0032]
[30]
Yadav, U.C.S.; Baquer, N.Z.; Najma, Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol., 2014, 52(2), 243-254.
[http://dx.doi.org/10.3109/13880209.2013.826247] [PMID: 24102093]
[31]
Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res., 2017, 61(6)1600950
[http://dx.doi.org/10.1002/mnfr.201600950]
[32]
Emtiazy, M.; Oveidzadeh, L.; Habibi, M.; Molaeipour, L.; Talei, D. jafari, Z.; Parvin, M.; Kamalinejad, M. Investigating the effectiveness of the Trigonella foenum-graecum L. (fenugreek) seeds in mild asthma: a randomized controlled trial. Allergy Asthma Clin. Immunol., 2018, 14(1), 19.
[http://dx.doi.org/10.1186/s13223-018-0238-9] [PMID: 29743896]
[33]
Krylova, N.V.; Popov, A.M.; Leonova, G.N.; Artiukov, A.A.; Maĭstrovskaia, O.S. Comparative study of antiviral activity of luteolin and 7,3′-disulfate luteolin. Antibiot. Khimioter., 2011, 56(11-12), 7-10.
[PMID: 22856150]
[34]
Fan, W.; Qian, S.; Qian, P.; Li, X. Antiviral activity of luteolin against Japanese encephalitis virus. Virus Res., 2016, 220, 112-116.
[http://dx.doi.org/10.1016/j.virusres.2016.04.021] [PMID: 27126774]
[35]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[36]
Mehla, R.; Bivalkar-Mehla, S.; Chauhan, A.; Flavonoid, A. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One, 2011, 6(11)e27915
[http://dx.doi.org/10.1371/journal.pone.0027915] [PMID: 22140483]
[37]
Ahmad, A.; Alghamdi, S.S.; Mahmood, K.; Afzal, M. Fenugreek a multipurpose crop: Potentialities and improvements. Saudi J. Biol. Sci., 2016, 23(2), 300-310.
[http://dx.doi.org/10.1016/j.sjbs.2015.09.015] [PMID: 27307778]
[38]
Aboubakr, H.A.; Nauertz, A.; Luong, N.T.; Agrawal, S.; El-Sohaimy, S.A.A.; Youssef, M.M.; Goyal, S.M. In vitro antiviral activity of clove and ginger aqueous extracts against feline calicivirus, a surrogate for human norovirus. J. Food Prot., 2016, 79(6), 1001-1012.
[http://dx.doi.org/10.4315/0362-028X.JFP-15-593] [PMID: 27296605]
[39]
Moradi-Kor, N.; Moradi, K. Physiological and pharmaceutical effects of fenugreek as a multipurpose and valuable medicinal plant. Glob. J. Med. Plant Res., 2013, pp. 199-206.
[40]
Zhang, C.J.; Li, W.; Li, H.Y.; Wang, Y.L.; Yun, T.; Song, Z.P.; Song, Y.; Zhao, X.W. In vivo and in vitro antiviral activity of five Tibetan medicinal plant extracts against herpes simplex virus type 2 infection. Pharm. Biol., 2009, 47(7), 598-607.
[http://dx.doi.org/10.1080/13880200902905904]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy