Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

Effects of SIRT1 on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells in Type 2 Diabetic Patients

Author(s): Xiangqun Deng*, Ling Deng, Min Xu, Yanlei Sun and Mei Yang

Volume 23, Issue 8, 2023

Published on: 24 February, 2023

Page: [1077 - 1086] Pages: 10

DOI: 10.2174/1871530323666230109124631

Price: $65

Abstract

Background: Patients with type 2 diabetes mellitus (T2DM) are at high risk for osteoporosis. SIRT1 plays an important regulatory role in the occurrence and development of diabetes mellitus; however, it is still not clear whether SIRT1 is directly related to the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) in T2DM patients.

Methods: We obtained BMSCs from patients with T2DM and healthy volunteers to determine the effect of SIRT1 expression on the osteogenic capacity of BMSCs. As a result, SIRT1 expression in BMSCs in T2DM was significantly lower compared to healthy volunteers, but the proliferative capacity of BMSCs in the T2DM group was not significantly different from that of healthy volunteers.

Results: During osteogenic differentiation, the expression of SIRT1 in MSCs from T2DM patients was significantly decreased, and the osteogenic differentiation ability of MSCs from T2DM patients was significantly lower than healthy volunteers. After intervention with resveratrol, the expression of SIRT1 increased significantly, and the apoptotic rate of MSCs in T2DM patients decreased significantly. Moreover, resveratrol promoted osteoblast differentiation of MSCs.

Conclusion: Our study confirmed that the expression of SIRT1 is directly related to the osteogenic potential of BMSCs in patients with T2DM. Resveratrol promoted the osteogenic differentiation of BMSCs by increasing the expression of SIRT1. The increased expression of SIRT1 significantly reduced BMSC apoptosis during osteogenic differentiation, which is one of the important mechanisms by which SIRT1 regulates the osteogenic ability of BMSCs. Our data also provide strong evidence that resveratrol may be used in the treatment of osteoporosis in patients with T2DM.

Graphical Abstract

[1]
Kirankumar, S.; Gurusamy, N.; Rajasingh, S.; Sigamani, V.; Vasanthan, J.; Perales, S.G.; Rajasingh, J. Modern approaches on stem cells and scaffolding technology for osteogenic differentiation and regeneration. Exp. Biol. Med., 2022, 247(5), 433-445.
[http://dx.doi.org/10.1177/15353702211052927] [PMID: 34648374]
[2]
Yamada, T.; Fukasawa, K.; Horie, T.; Kadota, T.; Lyu, J.; Tokumura, K.; Ochiai, S.; Iwahashi, S.; Suzuki, A.; Park, G.; Ueda, R.; Yamamoto, M.; Kitao, T.; Shirahase, H.; Ochi, H.; Sato, S.; Iezaki, T.; Hinoi, E. The role of CDK8 in mesenchymal stem cells in controlling osteoclastogenesis and bone homeostasis. Stem Cell Reports, 2022, 17(7), 1576-1588.
[http://dx.doi.org/10.1016/j.stemcr.2022.06.001] [PMID: 35777359]
[3]
Li, Y.M.; Deng, B.; Li, L.H.; Deng, L.P.; Gao, H.B.; Chen, L.L. Effects of glucose and insulin in the cell differentiation from bone marrow stem cells to osteoblasts. Zhonghua Yi Xue Za Zhi, 2009, 89(36), 2583-2585.
[PMID: 20137625]
[4]
Li, Y.; Jin, D.; Xie, W.; Wen, L.; Chen, W.; Xu, J.; Ding, J.; Ren, D. PPAR-γ and Wnt regulate the differentiation of MSCs into adipocytes and osteoblasts respectively. Curr. Stem Cell Res. Ther., 2018, 13(3), 185-192.
[http://dx.doi.org/10.2174/1574888X12666171012141908] [PMID: 29034841]
[5]
Muruganandan, S.; Ionescu, A.M.; Sinal, C.J. At the crossroads of the adipocyte and osteoclast differentiation programs: Future therapeutic perspectives. Int. J. Mol. Sci., 2020, 21(7), 2277.
[http://dx.doi.org/10.3390/ijms21072277] [PMID: 32224846]
[6]
Ye, X.; Li, M.; Hou, T.; Gao, T.; Zhu, W.; Yang, Y. Sirtuins in glucose and lipid metabolism. Oncotarget, 2017, 8(1), 1845-1859.
[http://dx.doi.org/10.18632/oncotarget.12157] [PMID: 27659520]
[7]
Chattopadhyay, T.; Maniyadath, B.; Bagul, H.P.; Chakraborty, A.; Shukla, N.; Budnar, S.; Rajendran, A.; Shukla, A.; Kamat, S.S.; Kolthur-Seetharam, U. Spatiotemporal gating of SIRT1 functions by O-GlcNAcylation is essential for liver metabolic switching and prevents hyperglycemia. Proc. Natl. Acad. Sci., 2020, 117(12), 6890-6900.
[http://dx.doi.org/10.1073/pnas.1909943117] [PMID: 32152092]
[8]
Deng, X.Q.; Chen, L.L.; Li, N.X. The expression of SIRT1 in nonalcoholic fatty liver disease induced by high-fat diet in rats. Liver Int., 2007, 27(5), 708-715.
[http://dx.doi.org/10.1111/j.1478-3231.2007.01497.x] [PMID: 17498258]
[9]
Deng, X.; Cheng, J.; Zhang, Y.; Li, N.; Chen, L. Effects of caloric restriction on SIRT1 expression and apoptosis of islet beta cells in type 2 diabetic rats. Acta Diabetol., 2010, 47(S1), 177-185.
[http://dx.doi.org/10.1007/s00592-009-0159-7] [PMID: 19876588]
[10]
Picard, F.; Kurtev, M.; Chung, N.; Topark-Ngarm, A.; Senawong, T.; Machado de Oliveira, R.; Leid, M.; McBurney, M.W.; Guarente, L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature, 2004, 429(6993), 771-776.
[http://dx.doi.org/10.1038/nature02583] [PMID: 15175761]
[11]
Shakibaei, M.; Shayan, P.; Busch, F.; Aldinger, C.; Buhrmann, C.; Lueders, C.; Mobasheri, A. Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: Potential role of Runx2 deacetylation. PLoS One, 2012, 7(4), e35712.
[http://dx.doi.org/10.1371/journal.pone.0035712] [PMID: 22539994]
[12]
Cohen-Kfir, E.; Artsi, H.; Levin, A.; Abramowitz, E.; Bajayo, A.; Gurt, I.; Zhong, L.; D’Urso, A.; Toiber, D.; Mostoslavsky, R.; Dresner-Pollak, R. Sirt1 is a regulator of bone mass and a repressor of Sost encoding for sclerostin, a bone formation inhibitor. Endocrinology, 2011, 152(12), 4514-4524.
[http://dx.doi.org/10.1210/en.2011-1128] [PMID: 21952235]
[13]
Deng, X.; Xu, M.; Shen, M.; Cheng, J. Effects of type 2 diabetic serum on proliferation and osteogenic differentiation of mesenchymal stem cells. J. Diabetes Res., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/5765478] [PMID: 29967795]
[14]
Shen, Y.; Wang, W.; Li, X.; Liu, Z.; Markel, D.C.; Ren, W. Impacts of age and gender on bone marrow profiles of BMP7, BMPRs and Stro-1+ cells in patients with total hip replacement. Int. Orthop., 2012, 36(4), 879-886.
[http://dx.doi.org/10.1007/s00264-011-1370-z] [PMID: 22048752]
[15]
de Boer, E.C.; Bevers, R.F.M.; Kurth, K.H.; Schamhart, D.H.J. Double fluorescent flow cytometric assessment of bacterial internalization and binding by epithelial cells. Cytometry, 1996, 25(4), 381-387.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19961201)25:4<381:AID-CYTO10>3.0.CO;2-R] [PMID: 8946146]
[16]
Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 2001, 29(9), 45e-45.
[http://dx.doi.org/10.1093/nar/29.9.e45] [PMID: 11328886]
[17]
Mabley, J.G.; Belin, V.; John, N.; Green, I.C. Insulin-like growth factor I reverses interleukin-1β inhibition of insulin secretion, induction of nitric oxide synthase and cytokine-mediated apoptosis in rat islets of Langerhans. FEBS Lett., 1997, 417(2), 235-238.
[http://dx.doi.org/10.1016/S0014-5793(97)01291-X] [PMID: 9395303]
[18]
Kitada, M.; Ogura, Y.; Monno, I.; Koya, D. Sirtuins and type 2 diabetes: Role in inflammation, oxidative stress, and mitochondrial function. Front. Endocrinol., 2019, 10, 187.
[http://dx.doi.org/10.3389/fendo.2019.00187] [PMID: 30972029]
[19]
Cipriani, C.; Colangelo, L.; Santori, R.; Renella, M.; Mastrantonio, M.; Minisola, S.; Pepe, J. The interplay between bone and glucose metabolism. Front. Endocrinol., 2020, 11, 122.
[http://dx.doi.org/10.3389/fendo.2020.00122] [PMID: 32265831]
[20]
Paschou, S.A.; Dede, A.D.; Anagnostis, P.G.; Vryonidou, A.; Morganstein, D.; Goulis, D.G Type 2 diabetes and osteoporosis: A guide to optimal management. J. Clin. Endocrinol. Metab., 2017, 102(10), 3621-3634.
[http://dx.doi.org/10.1210/jc.2017-00042] [PMID: 28938433]
[21]
Chiodini, I.; Catalano, A.; Gennari, L.; Gaudio, A. Osteoporosis and fragility fractures in type 2 diabetes. J. Diabetes Res., 2020, 2020, 1-2.
[http://dx.doi.org/10.1155/2020/9342696] [PMID: 32733970]
[22]
Farooqui, K.J.; Mithal, A.; Kerwen, A.K.; Chandran, M. Type 2 diabetes and bone fragility- An under-recognized association. Diabetes Metab. Syndr., 2021, 15(3), 927-935.
[http://dx.doi.org/10.1016/j.dsx.2021.04.017] [PMID: 33932745]
[23]
Abdulameer, S.A.; Sulaiman, S.A.; Hassali, M.A.; Subramaniam, K.; Sahib, M. Osteoporosis and type 2 diabetes mellitus: What do we know, and what we can do? Patient Prefer. Adherence, 2012, 6, 435-448.
[http://dx.doi.org/10.2147/PPA.S32745] [PMID: 22791981]
[24]
Al-Qarakhli, A.M.A.; Yusop, N.; Waddington, R.J.; Moseley, R. Effects of high glucose conditions on the expansion and differentiation capabilities of mesenchymal stromal cells derived from rat endosteal niche. BMC Mol. Cell Biol., 2019, 20(1), 51.
[http://dx.doi.org/10.1186/s12860-019-0235-y] [PMID: 31752674]
[25]
Tamimi, I.; Cortes, A.R.G.; Sánchez-Siles, J.M.; Ackerman, J.L.; González-Quevedo, D.; García, Á.; Yaghoubi, F.; Abdallah, M.N.; Eimar, H.; Alsheghri, A.; Laurenti, M.; Al-Subaei, A.; Guerado, E.; García-de-Quevedo, D.; Tamimi, F. Composition and characteristics of trabecular bone in osteoporosis and osteoarthritis. Bone, 2020, 140, 115558.
[http://dx.doi.org/10.1016/j.bone.2020.115558] [PMID: 32730941]
[26]
Muñoz-Garach, A.; García-Fontana, B.; Muñoz-Torres, M. Nutrients and dietary patterns related to osteoporosis. Nutrients, 2020, 12(7), 1986.
[http://dx.doi.org/10.3390/nu12071986] [PMID: 32635394]
[27]
Al Anouti, F.; Taha, Z.; Shamim, S.; Khalaf, K.; Al Kaabi, L.; Alsafar, H. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep., 2019, 11, 100216.
[http://dx.doi.org/10.1016/j.bonr.2019.100216] [PMID: 31372373]
[28]
Deng, Z.; Li, Y.; Liu, H.; Xiao, S.; Li, L.; Tian, J.; Cheng, C.; Zhang, G.; Zhang, F. The role of sirtuin 1 and its activator, resveratrol in osteoarthritis. Biosci. Rep., 2019, 39(5), BSR20190189.
[http://dx.doi.org/10.1042/BSR20190189] [PMID: 30996115]
[29]
Cao, W.; Dou, Y.; Li, A. Resveratrol boosts cognitive function by targeting SIRT1. Neurochem. Res., 2018, 43(9), 1705-1713.
[http://dx.doi.org/10.1007/s11064-018-2586-8] [PMID: 29943083]
[30]
Wu, L.; Zhang, G.; Guo, C.; Zhao, X.; Shen, D.; Yang, N. MiR-128-3p mediates TNF-α-induced inflammatory responses by regulating Sirt1 expression in bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun., 2020, 521(1), 98-105.
[http://dx.doi.org/10.1016/j.bbrc.2019.10.083] [PMID: 31635801]
[31]
Ren, B.; Zhang, Y.; Liu, S.; Cheng, X.; Yang, X.; Cui, X.; Zhao, X.; Zhao, H.; Hao, M.; Li, M.; Tie, Y.; Qu, L.; Li, X. Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1‐Foxo1 and PI3K‐Akt signalling pathways. J. Cell. Mol. Med., 2020, 24(21), 12355-12367.
[http://dx.doi.org/10.1111/jcmm.15725] [PMID: 32961025]
[32]
Wang, S.; Wang, J.; Zhao, A.; Li, J. SIRT1 activation inhibits hyperglycemia-induced apoptosis by reducing oxidative stress and mitochondrial dysfunction in human endothelial cells. Mol. Med. Rep., 2017, 16(3), 3331-3338.
[http://dx.doi.org/10.3892/mmr.2017.7027] [PMID: 28765962]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy