Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Research Article

MiR-223-3p Aggravates Ocular Inflammation in Sjögren’s Syndrome

Author(s): Xuan Qi*, Ronghua Wang, Lu Jin, Yu Tian, Hongtao Jin, Yuxiang Han, Chao Sun, Meng Ding and Huifang Guo*

Volume 23, Issue 8, 2023

Published on: 08 March, 2023

Page: [1087 - 1095] Pages: 9

DOI: 10.2174/1871530323666230103123831

Price: $65

Abstract

Background and Objectives: Sjogren’s syndrome (SS) is a chronic autoimmune disease, particularly involving the lacrimal and salivary glands, with dryness as the main symptom. To date, the pathogenesis of SS is not fully understood. Recently, numerous miRNAs were implicated in SS etiology and pathogenesis.

Methods: Ocular wash was collected from SS patients and healthy controls. INF-γ-treated salivary gland epithelial cells (SGECs) were utilized as SS in vitro models. Expressions of miR-223-3p and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) in ocular wash specimens and cells were measured by RT-qPCR assay and western blot analysis, respectively. ELISA assay was exploited to detect IL-6, IL-12, and TNF-γ levels. CCK-8, flow cytometry, and western blot assay were exploited to determine cell viability, apoptosis, and apoptosis-related protein levels.

Results: ITPR3 was a direct downstream gene of miR-223-3p and negatively modulated by miR-223- 3p. MiR-223-3p increased while ITPR3 decreased in samples from SS patients and INF-γ-induced SGECs. miR-223-3p knockdown facilitated INF-γ-induced SGECs cell viability and restrained apoptosis and inflammation response through the NF-κB pathway.

Conclusion: MiRNA-223-3p is implicated in the process of SS initiation and development. It may become one of the targets for the treatment of SS in the future, as well as a possible indicator for clinical monitoring of disease activity.

Graphical Abstract

[1]
Manfre, V.; Cafaro, G.; Riccucci, I.; Zabotti, A.; Perricone, C.; Bootsma, H.; De Vita, S.; Bartoloni, E. One year in review 2020: Comorbidities, diagnosis and treatment of primary Sjogren's syndrome. Clin Exp Rheumatol, 2020, 38(Suppl 126 (4)), 10-22.
[2]
Ono, J.; Toya, S.; Ogura, I.; Okada, Y. Study of clinical factors, focus score, lymphocyte type and NF-κB pathway in Sjögren’s syndrome Odontology, 2023, 111(1), 207-216.
[http://dx.doi.org/10.1007/s10266-022-00728-2] [PMID: 35915313]
[3]
Vivino, F.B. Sjogren’s syndrome: Clinical aspects. Clin. Immunol., 2017, 182, 48-54.
[http://dx.doi.org/10.1016/j.clim.2017.04.005 ] [PMID: 28428095]
[4]
Izmirly, P.M.; Buyon, J.P.; Wan, I.; Belmont, H.M.; Sahl, S.; Salmon, J.E.; Askanase, A.; Bathon, J.M.; Geraldino-Pardilla, L.; Ali, Y.; Ginzler, E.M.; Putterman, C.; Gordon, C.; Helmick, C.G.; Parton, H. The incidence and prevalence of adult primary Sjögren’s Syndrome in New York County. Arthritis Care Res., 2019, 71(7), 949-960.
[http://dx.doi.org/10.1002/acr.23707] [PMID: 30044541]
[5]
Gupta, S.; Gupta, N. Sjögren syndrome and pregnancy: A literature review. Perm. J., 2017, 21(1), 16-047.
[http://dx.doi.org/10.7812/TPP/16-047] [PMID: 28080954]
[6]
Pego-Reigosa, J.M.; Restrepo Vélez, J.; Baldini, C.; Rúa-Figueroa Fernández de Larrinoa, Í. Comorbidities (excluding lymphoma) in Sjögren’s syndrome. Rheumatology, 2021, 60(5), 2075-2084.
[http://dx.doi.org/10.1093/rheumatology/key329] [PMID: 30770715]
[7]
Ramos-Casals, M.; Brito-Zerón, P.; Bombardieri, S.; Bootsma, H.; De Vita, S.; Dörner, T.; Fisher, B.A.; Gottenberg, J.E.; Hernandez-Molina, G.; Kocher, A.; Kostov, B.; Kruize, A.A.; Mandl, T.; Ng, W.F.; Retamozo, S.; Seror, R.; Shoenfeld, Y.; Sisó-Almirall, A.; Tzioufas, A.G.; Vitali, C.; Bowman, S.; Mariette, X. EULAR recommendations for the management of Sjögren’s syndrome with topical and systemic therapies. Ann. Rheum. Dis., 2020, 79(1), 3-18.
[http://dx.doi.org/10.1136/annrheumdis-2019-216114] [PMID: 31672775]
[8]
Both, T.; Dalm, V.A.S.H.; van Hagen, P.M.; van Daele, P.L.A. Reviewing primary Sjögren’s syndrome: beyond the dryness - From pathophysiology to diagnosis and treatment. Int. J. Med. Sci., 2017, 14(3), 191-200.
[http://dx.doi.org/10.7150/ijms.17718] [PMID: 28367079]
[9]
Brito-Zerón, P.; Retamozo, S.; Kostov, B.; Baldini, C.; Bootsma, H.; De Vita, S.; Dörner, T.; Gottenberg, J.E.; Kruize, A.A.; Mandl, T.; Ng, W.F.; Seror, R.; Tzioufas, A.G.; Vitali, C.; Bowman, S.; Mariette, X.; Ramos-Casals, M. Efficacy and safety of topical and systemic medications: A systematic literature review informing the EULAR recommendations for the management of Sjögren’s syndrome. RMD Open, 2019, 5(2), e001064.
[http://dx.doi.org/10.1136/rmdopen-2019-001064] [PMID: 31749986]
[10]
Baer, A.N.; Walitt, B. Update on Sjögren syndrome and other causes of sicca in older adults. Rheum. Dis. Clin. North Am., 2018, 44(3), 419-436.
[http://dx.doi.org/10.1016/j.rdc.2018.03.002] [PMID: 30001784]
[11]
Farshbaf, A.; Mohtasham, N.; Zare, R.; Mohajertehran, F.; Rezaee, S.A. Potential therapeutic approaches of microRNAs for COVID-19: Challenges and opportunities. J. Oral Biol. Craniofac. Res., 2021, 11(2), 132-137.
[http://dx.doi.org/10.1016/j.jobcr.2020.12.006] [PMID: 33398242]
[12]
Godínez-Rubí, M.; Ortuño-Sahagún, D. miR-615 fine-tunes growth and development and has a role in cancer and in neural repair. Cells, 2020, 9(7), 1566.
[http://dx.doi.org/10.3390/cells9071566] [PMID: 32605009]
[13]
Bao, W.D.; Zhou, X.T.; Zhou, L.T.; Wang, F.; Yin, X.; Lu, Y.; Zhu, L.Q.; Liu, D. Targeting miR‐124/Ferroportin signaling ameliorated neuronal cell death through inhibiting apoptosis and ferroptosis in aged intracerebral hemorrhage murine model. Aging Cell, 2020, 19(11), e13235.
[http://dx.doi.org/10.1111/acel.13235] [PMID: 33068460]
[14]
Gerasymchuk, M.; Cherkasova, V.; Kovalchuk, O.; Kovalchuk, I. The role of microRNAs in organismal and skin aging. Int. J. Mol. Sci., 2020, 21(15), 5281.
[http://dx.doi.org/10.3390/ijms21155281] [PMID: 32722415]
[15]
Wu, R.; Zeng, J.; Yuan, J.; Deng, X.; Huang, Y.; Chen, L.; Zhang, P.; Feng, H.; Liu, Z.; Wang, Z.; Gao, X.; Wu, H.; Wang, H.; Su, Y.; Zhao, M.; Lu, Q. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Invest., 2018, 128(6), 2551-2568.
[http://dx.doi.org/10.1172/JCI97426] [PMID: 29757188]
[16]
Zou, Q.; Yang, M.; Yu, M.; Liu, C. Influences of regulation of miR-126 on inflammation,Th17/Treg subpopulation differentiation, and lymphocyte apoptosis through caspase signaling pathway in sepsis. Inflammation, 2020, 43(6), 2287-2300.
[http://dx.doi.org/10.1007/s10753-020-01298-7] [PMID: 32748275]
[17]
Pashangzadeh, S.; Motallebnezhad, M.; Vafashoar, F.; Khalvandi, A.; Mojtabavi, N. Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Front. Immunol., 2021, 12, 669382.
[http://dx.doi.org/10.3389/fimmu.2021.669382] [PMID: 34025671]
[18]
Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441), 384-388.
[http://dx.doi.org/10.1038/nature11993] [PMID: 23446346]
[19]
Shi, H.; Zheng, L.; Zhang, P.; Yu, C. miR-146a and miR-155 expression in PBMCs from patients with Sjögren’s syndrome. J. Oral Pathol. Med., 2014, 43(10), 792-797.
[http://dx.doi.org/10.1111/jop.12187] [PMID: 24931100]
[20]
Pilson, Q.; Smith, S.; Jefferies, C.A.; Ní Gabhann-Dromgoole, J.; Murphy, C.C. miR-744-5p contributes to ocular inflammation in patients with primary Sjogrens syndrome. Sci. Rep., 2020, 10(1), 7484.
[http://dx.doi.org/10.1038/s41598-020-64422-5] [PMID: 32366870]
[21]
Yao, Y.; Liu, Z.; Jallal, B.; Shen, N.; Rönnblom, L. Type I interferons in Sjögren’s syndrome. Autoimmun. Rev., 2013, 12(5), 558-566.
[http://dx.doi.org/10.1016/j.autrev.2012.10.006] [PMID: 23201923]
[22]
Roescher, N.; Tak, P.P.; Illei, G.G. Cytokines in Sjögren’s syndrome. Oral Dis., 2009, 15(8), 519-526.
[http://dx.doi.org/10.1111/j.1601-0825.2009.01582.x] [PMID: 19519622]
[23]
Xin, M.; Liang, H.; Wang, H.; Wen, D.; Wang, L.; Zhao, L.; Sun, M.; Wang, J. Mirt2 functions in synergy with miR-377 to participate in inflammatory pathophysiology of Sjögren’s syndrome. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 2473-2480.
[http://dx.doi.org/10.1080/21691401.2019.1626413] [PMID: 31198060]
[24]
Zhang, J.; Zhu, L.; Shi, H.; Zheng, H. Protective effects of miR-155-5p silencing on IFN-γ-induced apoptosis and inflammation in salivary gland epithelial cells. Exp. Ther. Med., 2021, 22(2), 882.
[http://dx.doi.org/10.3892/etm.2021.10314] [PMID: 34194560]
[25]
Martyniuk, C.J.; Martínez, R.; Kostyniuk, D.J.; Mennigen, J.A.; Zubcevic, J. Genetic ablation of bone marrow beta-adrenergic receptors in mice modulates miRNA-transcriptome networks of neuroinflammation in the paraventricular nucleus. Physiol. Genom, 2020, 52(4), 169-177.
[http://dx.doi.org/10.1152/physiolgenomics.00001.2020] [PMID: 32089076]
[26]
Wang, X.; Chi, J.; Dong, B.; Xu, L.; Zhou, Y.; Huang, Y.; Sun, S.; Wei, F.; Liu, Y.; Liu, C.; Che, K.; Lv, W.; Chen, Y.; Wang, Y. MiR‐223‐3p and miR‐22‐3p inhibit monosodium urate‐induced gouty inflammation by targeting NLRP3. Int. J. Rheum. Dis., 2021, 24(4), 599-607.
[http://dx.doi.org/10.1111/1756-185X.14089] [PMID: 33650318]
[27]
Wan, L.; Yuan, X.; Liu, M.; Xue, B. miRNA-223-3p regulates NLRP3 to promote apoptosis and inhibit proliferation of hep3B cells. Exp. Ther. Med., 2018, 15(3), 2429-2435.
[PMID: 29467847]
[28]
Liu, A.; Liu, Y.; Li, B.; Yang, M.; Liu, Y.; Su, J. Role of miR‐223‐3p in pulmonary arterial hypertension via targeting ITGB3 in the ECM pathway. Cell Prolif., 2019, 52(2), e12550.
[http://dx.doi.org/10.1111/cpr.12550] [PMID: 30507047]
[29]
Wang, Y.; Jiao, J.; Ren, P.; Wu, M. Upregulation of miRNA‐223‐3p ameliorates RIP3‐mediated necroptosis and inflammatory responses via targeting RIP3 after spinal cord injury. J. Cell. Biochem., 2019, 120(7), 11582-11592.
[http://dx.doi.org/10.1002/jcb.28438] [PMID: 30821011]
[30]
Liu, X.; Zhang, Y.; Du, W.; Liang, H.; He, H.; Zhang, L.; Pan, Z.; Li, X.; Xu, C.; Zhou, Y.; Wang, L.; Qian, M.; Liu, T.; Yin, H.; Lu, Y.; Yang, B.; Shan, H. MiR-223-3p as a novel MicroRNA regulator of expression of voltage-gated K+ channel Kv4.2 in acute myocardial infarction. Cell. Physiol. Biochem., 2016, 39(1), 102-114.
[http://dx.doi.org/10.1159/000445609] [PMID: 27322747]
[31]
Wu, Z.M.; Luo, J.; Shi, X.D.; Zhang, S.X.; Zhu, X.B.; Guo, J. Icariin alleviates rheumatoid arthritis via regulating miR-223-3p/NLRP3 signalling axis. Autoimmunity, 2020, 53(8), 450-458.
[http://dx.doi.org/10.1080/08916934.2020.1836488] [PMID: 33084415]
[32]
Dunaeva, M.; Blom, J.; Thurlings, R.; Pruijn, G.J.M. Circulating serum miR-223-3p and miR-16-5p as possible biomarkers of early rheumatoid arthritis. Clin. Exp. Immunol., 2018, 193(3), 376-385.
[http://dx.doi.org/10.1111/cei.13156] [PMID: 29892977]
[33]
Kim, B.S.; Jung, J.Y.; Jeon, J.Y.; Kim, H.A.; Suh, C.H. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus. HLA, 2016, 88(4), 187-193.
[http://dx.doi.org/10.1111/tan.12874] [PMID: 27596248]
[34]
Kim, Y.J.; Yeon, Y.; Lee, W.J.; Shin, Y.U.; Cho, H.; Sung, Y.K.; Kim, D.R.; Lim, H.W.; Kang, M.H. Comparison of MicroRNA expression in tears of normal subjects and Sjögren syndrome patients. Invest. Ophthalmol. Vis. Sci., 2019, 60(14), 4889-4895.
[http://dx.doi.org/10.1167/iovs.19-27062] [PMID: 31752018]
[35]
Rodrigues, M.A.; Gomes, D.A.; Cosme, A.L.; Sanches, M.D.; Resende, V.; Cassali, G.D. Inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) is overexpressed in cholangiocarcinoma and its expression correlates with S100 calcium-binding protein A4 (S100A4). Biomed. Pharmacother., 2022, 145, 112403.
[http://dx.doi.org/10.1016/j.biopha.2021.112403] [PMID: 34798470]
[36]
Zhang, M.; Wang, L.; Yue, Y.; Zhang, L.; Liu, T.; Jing, M.; Liang, X.; Ma, M.; Xu, S.; Wang, K.; Wang, X.; Fan, J. ITPR3 facilitates tumor growth, metastasis and stemness by inducing the NF-ĸB/CD44 pathway in urinary bladder carcinoma. J. Exp. Clin. Cancer Res., 2021, 40(1), 65.
[http://dx.doi.org/10.1186/s13046-021-01866-1] [PMID: 33573671]
[37]
Fan, G.W.; Zhang, Y.; Jiang, X.; Zhu, Y.; Wang, B.; Su, L.; Cao, W.; Zhang, H.; Gao, X. Anti-inflammatory activity of baicalein in LPSstimulated RAW264.7 macrophages via estrogen receptor and NF-κBdependent pathways. Inflammation, 2013, 36(6), 1584-1591.
[http://dx.doi.org/10.1007/s10753-013-9703-2] [PMID: 23892998]
[38]
Hu, R.; Wang, M.; Ni, S.; Wang, M.; Liu, L.; You, H.; Wu, X.; Wang, Y.; Lu, L.; Wei, L. Salidroside ameliorates endothelial inflammation and oxidative stress by regulating the AMPK/NF-κB/NLRP3 signaling pathway in AGEs-induced HUVECs. Eur. J. Pharmacol., 2020, 867, 172797.
[http://dx.doi.org/10.1016/j.ejphar.2019.172797] [PMID: 31747547]
[39]
Jang, S.I.; Tandon, M.; Teos, L.; Zheng, C.; Warner, B.M.; Alevizos, I. Dual function of miR-1248 links interferon induction and calcium signaling defects in Sjögren’s syndrome. EBioMedicine, 2019, 48, 526-538.
[http://dx.doi.org/10.1016/j.ebiom.2019.09.010] [PMID: 31597594]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy