Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Mini-Review Article

A Recent Update on SARS-CoV-2 Transmission and its Variants: Transmission, Pathogenic Mechanism, and Treatment

Author(s): Veer Singh, Shreyans K. Jain and Vishal Mishra*

Volume 4, Issue 1, 2023

Published on: 17 January, 2023

Article ID: e020123212321 Pages: 13

DOI: 10.2174/2666796704666230102121225

Price: $65

Abstract

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 virus was first reported in China. As of April 17, 2022, over 500 million confirmed cases and over 6 million deaths have been reported worldwide. COVID-19 is transmitted through respiratory droplets and other contact routes in the human community. Fine respiratory droplets and aerosol particles enter into the respiratory tract and come in the contact with mucous membranes. The SARS-CoV-2-containing droplets spread into the environment by quiet breathing, speaking, exercise, coughing, and sneezing of COVID-19-infected individuals. World Health Organization (WHO) have been released several guidelines for controlling COVID-19 which include maintaining personal hygiene, social distance, and COVID-19 vaccination. A higher transmission rate of SARS-CoV-2 has been reported and the transmission rate also depends on several variants of SARS-CoV-2. SARS-CoV-2 genome is a single-stranded positive (+) sense RNA of about 26- 32 kb nucleotides and has 80% similarity to the bat SARS-CoV. SARS-CoV-2 enters the host cell through the interaction between spike proteins of the virus and the host cell surface receptor. Acute Respiratory Distress Syndrome and lung injury lead to the death of SARS-CoV-2-infected people. Several vaccines for COVID-19 have been developed, giving protection from COVID-19 and reducing the transmission rate. Developed vaccines are not 100% effective against SARS-CoV-2 due to variations in the genetic makeup of SARS-CoV-2. Thereby, further research is the need of the hour. This review summarizes SARS-CoV-2 and its several variants and their transmission, genomic characterization, pathogenhost interaction mechanisms, diagnostic methods, and potential treatment approach for SARS-CoV-2.

Graphical Abstract

[1]
Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet, 2020, 395(10223), 470-473.
[http://dx.doi.org/10.1016/S0140-6736(20)30185-9] [PMID: 31986257]
[2]
Wang, N.; Shi, X.; Jiang, L. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res., 2013, 23(8), 986-993.
[http://dx.doi.org/10.1038/cr.2013.92] [PMID: 23835475]
[3]
Zhong, N.S.; Zheng, B.J.; Li, Y.M. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet, 2003, 362(9393), 1353-1358.
[http://dx.doi.org/10.1016/S0140-6736(03)14630-2] [PMID: 14585636]
[4]
Lam, C.W.K.; Chan, M.H.M.; Wong, C.K. Severe acute respiratory syndrome: Clinical and laboratory manifestations. Clin. Biochem. Rev., 2004, 25(2), 121-132.
[PMID: 18458712]
[5]
Shereen, M.A.; Khan, S.; Kazmi, A.; Bashir, N.; Siddique, R. COVID-19 infection: Emergence, transmission, and characteristics of human coronaviruses. J. Adv. Res., 2020, 24, 91-98.
[http://dx.doi.org/10.1016/j.jare.2020.03.005] [PMID: 32257431]
[6]
Hackethal, V. Medscape medical news. Diabetes, CVD tied to worse prognosis for COVID-19 infection. Available from: https://www. medscape.com/viewarticle/925681
[7]
Li, Q.; Guan, X.; Wu, P. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[8]
Centers for Disease Control and Preventions (CDCP). Coronavirus disease 2019 (COVID-19). 2019. Available from: https://www.cdc.gov/coronavirus/2019-ncov/downloads/stop-the-spread-of-germs-11x17-en.pdf
[9]
Centers for Disease Control and Preventions (CDCP). Coronavirus disease 2019 (COVID-19). 2019. Available from: https://www.cdc. gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html
[10]
Song, F.; Shi, N.; Shan, F. Emerging coronavirus 2019-nCoV pneumonia. Radiology, 2020, 295(1), 210-217.
[http://dx.doi.org/10.1148/radiol.2020200274] [PMID: 32027573]
[11]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11-20.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[12]
Singhal, T. A review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[13]
Zhao, J.; Cui, W.; Tian, B. The potential intermediate hosts for SARS-CoV-2. Front. Microbiol., 2020, 11, 580137.
[http://dx.doi.org/10.3389/fmicb.2020.580137] [PMID: 33101254]
[14]
Zhang, C.; Zheng, W.; Huang, X.; Bell, E.W.; Zhou, X.; Zhang, Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediates host and the unique similarity between its spike protein insertions and HIV-1. J. Proteome Res., 2020, 19(4), 1351-1360.
[http://dx.doi.org/10.1021/acs.jproteome.0c00129] [PMID: 32200634]
[15]
Xu, X.; Chen, P.; Wang, J. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[16]
Yang, P.; Wang, X. COVID-19: A new challenge for human beings. Cell. Mol. Immunol., 2020, 17(5), 555-557.
[http://dx.doi.org/10.1038/s41423-020-0407-x] [PMID: 32235915]
[17]
Ong, S.W.X.; Tan, Y.K.; Chia, P.Y. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA, 2020, 323(16), 1610-1612.
[http://dx.doi.org/10.1001/jama.2020.3227] [PMID: 32129805]
[18]
van Doremalen, N.; Bushmaker, T.; Morris, D.H. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med., 2020, 382(16), 1564-1567.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[19]
Cheng, V.C.C.; Wong, S.C.; Chen, J.H.K. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect. Control Hosp. Epidemiol., 2020, 41(5), 493-498.
[http://dx.doi.org/10.1017/ice.2020.58] [PMID: 32131908]
[20]
Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[21]
Xia, J.; Tong, J.; Liu, M.; Shen, Y.; Guo, D. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS‐CoV‐2 infection. J. Med. Virol., 2020, 92(6), 589-594.
[http://dx.doi.org/10.1002/jmv.25725] [PMID: 32100876]
[22]
Harvard Health and Publishing (HHP). (Harvard Medical School). Coronavirus resource center. Available from: https://www.health. harvard.edu/diseases-and-conditions/coronavirus-resource-center
[23]
World Health Organization (WHO). Coronavirus disease (COVID-19) advice for the public. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
[24]
WHO. Tracking SARS-CoV-2 variants. 2022. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants
[25]
Aleem, A.; Akbar Samad, A.B.; Slenker, A.K. Emerging variants of SARS-CoV-2 and novel therapeutics against coronavirus (COVID-19). StatPearls; StatPearls Publishing: Treasure Island, FL, 2021. Internet
[26]
Forchette, L.; Sebastian, W.; Liu, T. A comprehensive review of COVID-19 virology, vaccines, variants, and therapeutics. Curr. Med. Sci., 2021, 41(6), 1037-1051.
[http://dx.doi.org/10.1007/s11596-021-2395-1] [PMID: 34241776]
[27]
Kannan, S.R.; Spratt, A.N.; Cohen, A.R. Evolutionary analysis of the delta and delta plus variants of the SARS-CoV-2 viruses. J. Autoimmun., 2021, 124, 102715.
[http://dx.doi.org/10.1016/j.jaut.2021.102715] [PMID: 34399188]
[28]
Chan, J.F.W.; Kok, K.H.; Zhu, Z. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[29]
Lu, R.; Zhao, X.; Li, J. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[30]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[31]
Zhu, N.; Zhang, D.; Wang, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[32]
Tang, C.; Deng, Z.; Li, X. Helicase of Type 2 porcine reproductive and respiratory syndrome virus strain HV reveals a unique structure. Viruses, 2020, 12(2), 215-232.
[http://dx.doi.org/10.3390/v12020215] [PMID: 32075207]
[33]
Müller, C.; Schulte, F.W.; Lange-Grünweller, K. Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Res., 2018, 150, 123-129.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.010] [PMID: 29258862]
[34]
Naqvi, A.A.T.; Fatima, K.; Mohammad, T. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(10), 165878.
[http://dx.doi.org/10.1016/j.bbadis.2020.165878] [PMID: 32544429]
[35]
Graham, R.L.; Baric, R.S. SARS-CoV-2: Combating coronavirus emergence. Immunity, 2020, 52(5), 734-736.
[http://dx.doi.org/10.1016/j.immuni.2020.04.016] [PMID: 32392464]
[36]
Chen, L.; Liu, W.; Zhang, Q. RNA based mNGS approach identifies a novel human coronavirus from two individual pneumonia cases in 2019 Wuhan outbreak. Emerg. Microbes Infect., 2020, 9(1), 313-319.
[http://dx.doi.org/10.1080/22221751.2020.1725399] [PMID: 32020836]
[37]
Almeida, M.S.; Johnson, M.A.; Herrmann, T.; Geralt, M.; Wüthrich, K. Novel beta-barrel fold in the nuclear magnetic resonance structure of the replicase nonstructural protein 1 from the severe acute respiratory syndrome coronavirus. J. Virol., 2007, 81(7), 3151-3161.
[http://dx.doi.org/10.1128/JVI.01939-06] [PMID: 17202208]
[38]
Peti, W.; Johnson, M.A.; Herrmann, T. Structural genomics of the severe acute respiratory syndrome coronavirus: Nuclear magnetic resonance structure of the protein nsP7. J. Virol., 2005, 79(20), 12905-12913.
[http://dx.doi.org/10.1128/JVI.79.20.12905-12913.2005] [PMID: 16188992]
[39]
Zhai, Y.; Sun, F.; Li, X. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat. Struct. Mol. Biol., 2005, 12(11), 980-986.
[http://dx.doi.org/10.1038/nsmb999] [PMID: 16228002]
[40]
Hui, D.S.; I Azhar, E.; Madani, T.A. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[41]
Wu, A.; Peng, Y.; Huang, B. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[42]
Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. J. Med. Virol., 2020, 92(4), 433-440.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[43]
Li, B.; Si, H.R.; Zhu, Y. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere, 2020, 5(1), e00807-e00819.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[44]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[45]
Gralinski, L.E.; Menachery, V.D. Return of the Coronavirus: 2019-nCoV. Viruses, 2020, 12(2), 135-142.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[46]
Xu, Z.; Shi, L.; Wang, Y. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[47]
Peiris, J.S.M.; Guan, Y.; Yuen, K.Y. Severe acute respiratory syndrome. Nat. Med., 2004, 10(S12)(Suppl.), S88-S97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[48]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[49]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[50]
Belouzard, S.; Chu, V.C.; Whittaker, G.R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. USA, 2009, 106(14), 5871-5876.
[http://dx.doi.org/10.1073/pnas.0809524106] [PMID: 19321428]
[51]
Simmons, G.; Reeves, J.D.; Rennekamp, A.J.; Amberg, S.M.; Piefer, A.J.; Bates, P. Characterization of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc. Natl. Acad. Sci. USA, 2004, 101(12), 4240-4245.
[http://dx.doi.org/10.1073/pnas.0306446101] [PMID: 15010527]
[52]
Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, 14(8), e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[53]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[54]
Hoffmann, M.; Kleine-Weber, H.; Kruger, N.; Muller, M.; Drosten, C.; Pohlmann, S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.01.31.929042]
[55]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[56]
Li, W.; Moore, M.J.; Vasilieva, N. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[57]
Kuba, K.; Imai, Y.; Rao, S. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[58]
Wu, F.; Zhao, S.; Yu, B. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[59]
Wang, H.; Yang, P.; Liu, K. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res., 2008, 18(2), 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[60]
Kuba, K.; Imai, Y.; Ohto-Nakanishi, T.; Penninger, J.M. Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther., 2010, 128(1), 119-128.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[61]
de Wit, E.; van Doremalen, N.; Falzarano, D.; Munster, V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol., 2016, 14(8), 523-534.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[62]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[63]
Hajeer, A.; Balkhy, H.; Johani, S.; Yousef, M.; Arabi, Y. Association of human leukocyte antigen class II alleles with severe Middle East respiratory syndrome-coronavirus infection. Ann. Thorac. Med., 2016, 11(3), 211-213.
[http://dx.doi.org/10.4103/1817-1737.185756] [PMID: 27512511]
[64]
Astuti, I. Ysrafil. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[65]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[66]
Liu, J.; Wu, P.; Gao, F. Novel immunodominant peptide presentation strategy: A featured HLA-A*2402-restricted cytotoxic T-lymphocyte epitope stabilized by intrachain hydrogen bonds from severe acute respiratory syndrome coronavirus nucleocapsid protein. J. Virol., 2010, 84(22), 11849-11857.
[http://dx.doi.org/10.1128/JVI.01464-10] [PMID: 20844028]
[67]
Keicho, N.; Itoyama, S.; Kashiwase, K. Association of human leukocyte antigen class II alleles with severe acute respiratory syndrome in the Vietnamese population. Hum. Immunol., 2009, 70(7), 527-531.
[http://dx.doi.org/10.1016/j.humimm.2009.05.006] [PMID: 19445991]
[68]
Ezekowitz, R.A. Role of the mannose-binding lectin in innate immunity. J. Infect. Dis., 2003, 187(s2)(Suppl. 2), S335-S339.
[http://dx.doi.org/10.1086/374746] [PMID: 12792848]
[69]
Jack, D.L.; Klein, N.J.; Turner, M.W. Mannose-binding lectin: Targeting the microbial world for complement attack and opsonophagocytosis. Immunol. Rev., 2001, 180(1), 86-99.
[http://dx.doi.org/10.1034/j.1600-065X.2001.1800108.x] [PMID: 11414367]
[70]
Neth, O.; Jack, D.L.; Johnson, M.; Klein, N.J.; Turner, M.W. Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J. Immunol., 2002, 169(8), 4430-4436.
[http://dx.doi.org/10.4049/jimmunol.169.8.4430] [PMID: 12370377]
[71]
Auriti, C.; Prencipe, G.; Moriondo, M. Mannose-binding lectin: biologic characteristics and role in the susceptibility to infections and ischemia-reperfusion related injury in critically ill neonates. J. Immunol. Res., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/7045630] [PMID: 28246614]
[72]
Tu, X.; Chong, W.P.; Zhai, Y. Functional polymorphisms of the CCL2 and MBL genes cumulatively increase susceptibility to severe acute respiratory syndrome coronavirus infection. J. Infect., 2015, 71(1), 101-109.
[http://dx.doi.org/10.1016/j.jinf.2015.03.006] [PMID: 25818534]
[73]
Ip, W.K.E.; Chan, K.H.; Law, H.K.W. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J. Infect. Dis., 2005, 191(10), 1697-1704.
[http://dx.doi.org/10.1086/429631] [PMID: 15838797]
[74]
McKechnie, J.L.; Blish, C.A. The innate immune system: Fighting on the front lines or fanning the flames of COVID-19? Cell Host Microbe, 2020, 27(6), 863-869.
[http://dx.doi.org/10.1016/j.chom.2020.05.009] [PMID: 32464098]
[75]
Li, G.; Chen, X.; Xu, A. Profile of specific antibodies to the SARS-associated coronavirus. N. Engl. J. Med., 2003, 349(5), 508-509.
[http://dx.doi.org/10.1056/NEJM200307313490520] [PMID: 12890855]
[76]
Wang, F.; Nie, J.; Wang, H. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis., 2020, 221(11), 1762-1769.
[http://dx.doi.org/10.1093/infdis/jiaa150] [PMID: 32227123]
[77]
Tang, F.; Quan, Y.; Xin, Z.T. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: A six-year follow-up study. J. Immunol., 2011, 186(12), 7264-7268.
[http://dx.doi.org/10.4049/jimmunol.0903490] [PMID: 21576510]
[78]
Fan, Y.Y.; Huang, Z.T.; Li, L. Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection. Arch. Virol., 2009, 154(7), 1093-1099.
[http://dx.doi.org/10.1007/s00705-009-0409-6] [PMID: 19526193]
[79]
Huang, C.; Wang, Y.; Li, X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506. a
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[80]
Channappanavar, R.; Perlman, S. Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol., 2017, 39(5), 529-539.
[http://dx.doi.org/10.1007/s00281-017-0629-x] [PMID: 28466096]
[81]
Cameron, M.J.; Bermejo-Martin, J.F.; Danesh, A.; Muller, M.P.; Kelvin, D.J. Human immunopathogenesis of severe acute respiratory syndrome (SARS). Virus Res., 2008, 133(1), 13-19.
[http://dx.doi.org/10.1016/j.virusres.2007.02.014] [PMID: 17374415]
[82]
Min, C.K.; Cheon, S.; Ha, N.Y. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci. Rep., 2016, 6(1), 25359-25360.
[http://dx.doi.org/10.1038/srep25359] [PMID: 27146253]
[83]
Bhatia, M.; Zemans, R.L.; Jeyaseelan, S. Role of chemokines in the pathogenesis of acute lung injury. Am. J. Respir. Cell Mol. Biol., 2012, 46(5), 566-572.
[http://dx.doi.org/10.1165/rcmb.2011-0392TR] [PMID: 22323365]
[84]
Coperchini, F.; Chiovato, L.; Croce, L.; Magri, F.; Rotondi, M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev., 2020, 53, 25-32.
[http://dx.doi.org/10.1016/j.cytogfr.2020.05.003] [PMID: 32446778]
[85]
Jiang, S.; Hillyer, C.; Du, L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol., 2020, 41(5), 355-359.
[http://dx.doi.org/10.1016/j.it.2020.03.007] [PMID: 32249063]
[86]
Chu, H.; Chan, J.F.W.; Wang, Y. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin. Infect. Dis., 2020, 71(6), 1400-1409.
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[87]
Chen, G.; Wu, D.; Guo, W. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest., 2020, 130(5), 2620-2629.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[88]
Shukla, A.M.; Archibald, L.K.; Wagle, S.A.; Mehta, H.J.; Cherabuddi, K. Chloroquine and hydroxychloroquine in the context of COVID-19. Drugs Context, 2020, 9, 1-8.
[http://dx.doi.org/10.7573/dic.2020-4-5] [PMID: 32373183]
[89]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[90]
da Silva, J.C.; Mariz, H.A.; da Rocha Júnior, L.F. Hydroxychloroquine decreases Th17-related cytokines in systemic lupus erythematosus and rheumatoid arthritis patients. Clinics, 2013, 68(6), 766-771.
[http://dx.doi.org/10.6061/clinics/2013(06)07] [PMID: 23778483]
[91]
Zhao, M. Cytokine storm and immunomodulatory therapy in COVID-19: Role of chloroquine and anti-IL-6 monoclonal antibodies. Int. J. Antimicrob. Agents, 2020, 55(6), 105982.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105982] [PMID: 32305588]
[92]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[93]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[94]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 3, 1-3.
[95]
Zhou, P.; Yang, X.L.; Wang, X.G. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[96]
Tanaka, T.; Narazaki, M.; Kishimoto, T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy, 2016, 8(8), 959-970.
[http://dx.doi.org/10.2217/imt-2016-0020] [PMID: 27381687]
[97]
Shi, Y.; Wang, Y.; Shao, C. COVID-19 infection: The perspectives on immune responses. Cell Death Differ., 2020, 27(5), 1451-1454.
[http://dx.doi.org/10.1038/s41418-020-0530-3] [PMID: 32205856]
[98]
Nagai, A.; Matsumiya, H.; Hayashi, M.; Yasui, S.; Okamoto, H.; Konno, K. Effects of nicotinamide and niacin on bleomycin-induced acute injury and subsequent fibrosis in hamster lungs. Exp. Lung Res., 1994, 20(4), 263-281.
[http://dx.doi.org/10.3109/01902149409064387] [PMID: 7527336]
[99]
World Health Organization (WHO). Advice on the use of point-ofcare immunodiagnostic tests for COVID-19. Available from: https://www.who.int/news-room/commentaries/detail/advice-on-the-use-of-point-of-care-immunodiagnostic-tests-for-COVID-19
[100]
U.S. Food and Drug Administration (FDA). Coronavirus (COVID- 19) Update: FDA authorizes first antigen test to help in the rapid detection of the virus that causes COVID-19 in patients. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-COVID-19-update-fda-authorizes-first-antigen-testhelp- rapid-detection-virus-causes
[101]
Bruning, A.H.L.; Leeflang, M.M.G.; Vos, J.M.B.W. Rapid tests for influenza, respiratory syncytial virus, and other respiratory viruses: A systematic review and meta-analysis. Clin. Infect. Dis., 2017, 65(6), 1026-1032.
[http://dx.doi.org/10.1093/cid/cix461] [PMID: 28520858]
[102]
Liu, Y.; Liu, Y.; Diao, B.; Ren, F.; Wang, Y.; Ding, J. Diagnostic indexes of a rapid IgG/IgM combined antibody test for SARS-CoV-2. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.26.20044883]
[103]
Okba, N.M.A.; Müller, M.A.; Li, W. Severe acute respiratory syndrome 2- specific antibody responses in coronavirus disease patients. Emerg. Infect. Dis., 2020, 26(7), 1478-1488.
[http://dx.doi.org/10.3201/eid2607.200841] [PMID: 32267220]
[104]
Lou, B.; Li, T.; Zheng, S.; Su, Y.; Li, Z.; Liu, W. Serology characteristics of SARS-CoV-2 infection since the exposure and post symptoms onset. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.23.20041707]
[105]
Che, X.; Qiu, L.; Liao, Z. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J. Infect. Dis., 2005, 191(12), 2033-2037.
[http://dx.doi.org/10.1086/430355] [PMID: 15897988]
[106]
Corman, V.M.; Landt, O.; Kaiser, M. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3), 2000045-2000052.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[107]
Mulangu, S.; Dodd, L.E.; Davey, R.T., Jr Randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med., 2019, 381(24), 2293-2303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[108]
Sheahan, T.P.; Sims, A.C.; Graham, R.L. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med., 2017, 9(396), eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[109]
Wang, M.; Cao, R.; Zhang, L. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[110]
National Institute of Health (NIH). NIH clinical trial shows Remdesivir accelerates recovery from advanced COVID-19. Available from: https://www.nih.gov/news-events/news-releases/nih-clinical-trial-shows-remdesivir-accelerates-recovery-advanced-COVID-19
[111]
U.S. Food and Drug Administration (FDA). Coronavirus (COVID- 19) Update: FDA issues emergency use authorization for potential covid-19 treatment. Available from: https://www.fda.gov/news-events/press-announcements/coronavirus-COVID-19-update-fda-issues-emergency-use-authorization-potential-COVID-19-treatment
[112]
Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106054] [PMID: 32534188]
[113]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/1875533XMTA1tODYl1] [PMID: 32297571]
[114]
Pharmaceutical Technology (PT). Glenmark gets regulatory approval for Favipiravir to treat COVID-19. Available from: https://www.pharmaceutical-technology.com/news/glenmark-favipiravir-COVID-nod/
[115]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[116]
Savarino, A.; Di Trani, L.; Donatelli, I.; Cauda, R.; Cassone, A. New insights into the antiviral effects of chloroquine. Lancet Infect. Dis., 2006, 6(2), 67-69.
[http://dx.doi.org/10.1016/S1473-3099(06)70361-9] [PMID: 16439323]
[117]
Yan, Y.; Zou, Z.; Sun, Y. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res., 2013, 23(2), 300-302.
[http://dx.doi.org/10.1038/cr.2012.165] [PMID: 23208422]
[118]
Vincent, M.J.; Bergeron, E.; Benjannet, S. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69-78.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[119]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J.M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944-105945.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[120]
Gautret, P.; Lagier, J.C.; Parola, P. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1), 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[121]
Ferreira, A.; Oliveira-e-Silva, A.; Bettencourt, P. Chronic treatment with hydroxychloroquine and SARS-CoV-2 infection. J. Med. Virol., 2020, 93(2), 755-759.
[http://dx.doi.org/10.1002/jmv.26286] [PMID: 32644224]
[122]
Arshad, S.; Kilgore, P.; Chaudhry, Z.S. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int. J. Infect. Dis., 2020, 97, 396-403.
[http://dx.doi.org/10.1016/j.ijid.2020.06.099] [PMID: 32623082]
[123]
Indian Council of Medical Research (ICMR). India. Revised advisory on the use of hydroxychloroquine (HCQ) as prophylaxis for SARSCoV- 2 infection. 2020. Available from: https://www.icmr.gov.in/pdf/COVID/techdoc/V5_Revised_advisory_ on_the_use_of_ HCQ_ SARS_CoV2_i nfection.pdf
[124]
World Health Organization (WHO). WHO discontinues hydroxychloroquine and lopinavir/ritonavir treatment arms for COVID- 19. Available from: https://www.who.int/news-room/detail/04-07-2020-who-discontinues-hydroxychloroquine-and-lopinavir-ritonavir-treatment-arms-for-COVID-19
[125]
Warren, T.K.; Jordan, R.; Lo, M.K. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature, 2016, 531(7594), 381-385.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[126]
Regalado, A. Which COVID-19 drugs work best? MIT technology review. Available from: https://www.technologyreview.com/2020/03/23/950385/COVID-19-coronavirus-best-drugs-in-treating-the-outbreak
[127]
Bloch, E.M.; Shoham, S.; Casadevall, A. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J. Clin. Invest., 2020, 130(6), 2757-2765.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[128]
Duan, K.; Liu, B.; Li, C. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc. Natl. Acad. Sci. USA, 2020, 117(17), 9490-9496.
[http://dx.doi.org/10.1073/pnas.2004168117] [PMID: 32253318]
[129]
Pharmaceutical Technology (PT). Biocon’s drug I tolizumab gets approval to treat COVID-19. Available from: https://www.pharma-ceutical-technology.com/news/biocon-itolizumab-approval
[130]
Singh, V.; Mishra, V. Coronavirus disease 2019 (COVID-19): Current situation and therapeutic options. Coronaviruses, 2021, 2(4), 481-491.
[http://dx.doi.org/10.2174/2666796701999201005211854]
[131]
Singh, V.; Mishra, V. Environmental impacts of coronavirus disease 2019 (COVID-19). Bioresour. Technol. Rep., 2021, 15, 100744.
[http://dx.doi.org/10.1016/j.biteb.2021.100744] [PMID: 34189443]
[132]
Singh, N.; Rai, S.N.; Singh, V.; Singh, M.P. Molecular characterization, pathogen-host interaction pathway and in silico approaches for vaccine design against COVID-19. J. Chem. Neuroanat., 2020, 110, 101874.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101874] [PMID: 33091590]
[133]
Balz, K.; Trassl, L.; Härtel, V.; Nelson, P.P.; Skevaki, C. Virus-induced T cell-mediated heterologous immunity and vaccine development. Front. Immunol., 2020, 11, 513.
[http://dx.doi.org/10.3389/fimmu.2020.00513] [PMID: 32296430]
[134]
Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol., 2021, 21(2), 83-100.
[http://dx.doi.org/10.1038/s41577-020-00479-7] [PMID: 33353987]
[135]
Graham, B.S. Advances in antiviral vaccine development. Immunol. Rev., 2013, 255(1), 230-242.
[http://dx.doi.org/10.1111/imr.12098] [PMID: 23947359]
[136]
Regulatory Affairs Professionals Society (RAPS). COVID-19 vaccine tracker. Available from: https://www.raps.org/news-and-articles/news-articles/2020/3/COVID-19-vaccine-tracker
[137]
World Health Organization (WHO). WHO can take the Pfizer-BioNTech COVID-19 vaccine? Available from: https://www.who. int/news-room/feature-stories/detail/who-can-take-the-pfizer-biontech-COVID-19-vaccine
[138]
Biotech B. VAXIN® - India's first indigenous COVID-19 vaccine. Available from: https://www.bharatbiotech.com/covaxin.html
[139]
Serum Institute of India (SII). ChAdOx1 nCoV- 19 Corona Virus Vaccine (Recombinant). Available from: https://www.seruminstitute. com/product_covishield.php
[140]
Moderna, Inc. USA. Moderna and catalent announce collaboration for fill-finish manufacturing of moderna’s COVID-19 vaccine candidate. 2021. Available from: https://investors.modernatx.com/news-releases/news-release-details/moderna-and-catalent-announce-collaboration-fill-finish
[141]
RFERL. Russia approves covivac, its third coronavirus vaccine. 2021. Available from: https://www.rferl.org/a/russia-coronavirus-vaccine-covivac/31113697.html
[142]
Biotech, B. An Indian COVID-19 vaccine made by Bharat Biotech is set to enter human trials. 2020. Available from: https://www. businessinsider.in/india/news/an-indian-COVID-19-vaccine-made-by-bharat-biotech-is-set-to-enter-human trials/articleshow/76702286 cms (Accessed on: June 30, 2020).
[143]
Menni, C.; May, A.; Polidori, L. COVID-19 vaccine waning and effectiveness and side-effects of boosters: A prospective community study from the ZOE COVID Study. Lancet Infect. Dis., 2022, 22(7), 1002-1010.
[http://dx.doi.org/10.1016/S1473-3099(22)00146-3] [PMID: 35405090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy