Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Sustainability of Visible Light-Driven Organic Transformations - A Review

Author(s): Geetika Patel, Ashok Raj Patel and Subhash Banerjee*

Volume 27, Issue 3, 2023

Published on: 27 January, 2023

Page: [166 - 189] Pages: 24

DOI: 10.2174/1385272827666221229110656

Price: $65

Abstract

The literature survey reveals the applications of visible light as a sustainable energy source in the various constructive organic transformations by using homogeneous and heterogeneous photocatalysts, catalysts under suitable solvents, or under solvent-free conditions to attain green and sustainable chemistry. Recently, the crises of energy sources demand a sustainable and renewable energy source worldwide. In these circumstances, visible lightdriven organic transformations attracted much attention as a good alternative energy source.

Due to the visible-light-driven organic synthesis offers several advantages such as natural abundance in the solar spectrum, friendly to the equipment, fewer side reactions, costfriendly, selective product formation, higher isolated yields of products, environmental friendliness and sustainability. On the other hand, the developments in chemistry are adopting the green culture, in this state of affairs, visible light will be a great substitute for non-renewable energy sources for chemical transformations and synthesis. It will reduce the consumption of fossil fuels which will lead the world toward achieving the goals of sustainable development.

A number of different organic molecules are synthesized using different homogeneous and heterogeneous photocatalysts under visible light via different methods such as one-pot multi-component protocol, multi-step method, coupling and condensation method, etc.

In this review paper, we have highlighted the basics and history of photochemical organic transformations using suitable photo-catalysts and dye-sensitized photochemical reactions. We have presented details of organic transformations under visible light using MOF, nano-material, COF, metal, graphitic carbon, organocatalyst as photocatalysts. We have also highlighted organic transformations using visible light in the absence of any metal or other catalysts. Thus, this review covers wide range of organic reactions under visible light and will benefit the synthetic organic chemist community.

Graphical Abstract

[1]
Roth, H.D. The beginning of organic photochemistry. Angew. Chem. Int. Ed. Engl., 1989, 28(9), 1193-1207.
[http://dx.doi.org/10.1002/anie.198911931]
[2]
Price, D.S. On the action of light upon sulphide of lead, and its bearing upon the preservation of paintings in picture galleries. J. Chem. Soc., 1865, 18(0), 245-249.
[http://dx.doi.org/10.1039/JS8651800245]
[3]
Beatty, J.M.; Dessauer, R.; Paris, P. Trade winds, saturday review, 1961, 5. J. Adv. Photochem., 1963, 1, 275-321.
[4]
Dai, L.; Chang, D.W.; Baek, J.B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small, 2012, 8(8), 1130-1166.
[http://dx.doi.org/10.1002/smll.201101594] [PMID: 22383334]
[5]
Chheda, J.N.; Huber, G.W.; Dumesic, J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Ed., 2007, 46(38), 7164-7183.
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[6]
a) Weinstein, L.A.; Loomis, J.; Bhatia, B.; Bierman, D.M.; Wang, E.N.; Chen, G. Concentrating solar power. Chem. Rev., 2015, 115(23), 12797-12838.
[http://dx.doi.org/10.1021/acs.chemrev.5b00397] [PMID: 26511904];
b) Gong, J.; Li, C.; Wasielewski, M.R. Advances in solar energy conversion. Chem. Soc. Rev., 2019, 48(7), 1862-1864.
[http://dx.doi.org/10.1039/C9CS90020A] [PMID: 30895987];
c) Gies, E. The real cost of energy. Nature, 2017, 551(7682), S145-S147.
[http://dx.doi.org/10.1038/d41586-017-07510-3]
[7]
a) Hu, B.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater., 2010, 22(7), 813-828.
[http://dx.doi.org/10.1002/adma.200902812] [PMID: 20217791];
b) Lai, X.; Halpert, J.E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci., 2012, 5(2), 5604-5618.
[http://dx.doi.org/10.1039/C1EE02426D];
c) Titirici, M.M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev., 2010, 39(1), 103-116.
[http://dx.doi.org/10.1039/B819318P] [PMID: 20023841];
d) Nocked, M.; Soffer, A.; Aurbach, D. The electrochemistry of activated carbonaceous materials: past, present and future. J. Solid State Electrochem., 2011, 15, 1563-1578.
[http://dx.doi.org/10.1007/s10008-011-1411-y]
[8]
Chen, C. Visible light photocatalysts for synthesis of fine organic chemicals on supported nanostructures Masters Thesis School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Australia,, 2013.
[9]
Liu, Q.; Wu, L.Z. Recent advances in visible-light-driven organic reactions. Natl. Sci. Rev., 2017, 4(3), 359-380.
[http://dx.doi.org/10.1093/nsr/nwx039]
[10]
Yang, X.; Zhang, S.; Li, P.; Gao, S.; Cao, R. Visible-light-driven photocatalytic selective organic oxidation reactions. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(40), 20897-20924.
[http://dx.doi.org/10.1039/D0TA05485B]
[11]
Li, P.; Terrett, J.A.; Zbieg, J.R. Visible-light photocatalysis as an enabling technology for drug discovery: a paradigm shift for chemical reactivity. ACS Med. Chem. Lett., 2020, 11(11), 2120-2130.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00436] [PMID: 33214820]
[12]
Chandrasekhar, D.; Borra, S.; Nanubolu, J.B.; Maurya, R.A. Visible light driven photocascade catalysis: Ru(bpy)3 (PF6)2/TBHP-mediated synthesis of fused β-Carbolines in batch and flow microreactors. Org. Lett., 2016, 18(12), 2974-2977.
[http://dx.doi.org/10.1021/acs.orglett.6b01321] [PMID: 27226119]
[13]
Aslan, E.; Karaman, M.; Yanalak, G.; Can, M.; Ozel, F.; Patir, I.H. The investigation of novel D-π-A type dyes (MK-3 and MK-4) for visible light driven photochemical hydrogen evolution. Dyes Pigments, 2019, 171, 107710.
[http://dx.doi.org/10.1016/j.dyepig.2019.107710]
[14]
Oshida, Y. Bioscience and Bioengineering of titanium materials 2nd ed.; Springer: Chem, 2013, 87-115.
[15]
Zhang, C.P.; Wang, Z.L.; Chen, Q.Y.; Zhang, C.T.; Gu, Y.C.; Xiao, J.C. Generation of the CF3 radical from trifluoromethylsulfonium triflate and its trifluoromethylation of styrenes. Chem. Commun. (Camb.), 2011, 47(23), 6632-6634.
[http://dx.doi.org/10.1039/c1cc11765c] [PMID: 21559547]
[16]
Nagib, D.A.; MacMillan, D.W.C. Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis. Nature, 2011, 480(7376), 224-228.
[http://dx.doi.org/10.1038/nature10647] [PMID: 22158245]
[17]
a) Ciamician, G. The photochemistry of the future. Science, 1912, 36(926), 385-394.
[http://dx.doi.org/10.1126/science.36.926.385] [PMID: 17836492];
b) Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[18]
a) Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res., 2016, 49(8), 1566-1577.
[http://dx.doi.org/10.1021/acs.accounts.6b00229] [PMID: 27482835];
b) Majek, M.; Jacobi von Wangelin, A. Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Acc. Chem. Res., 2016, 49(10), 2316-2327.
[http://dx.doi.org/10.1021/acs.accounts.6b00293] [PMID: 27669097]
[19]
a) Studer, A.A. “Renaissance” in radical trifluoromethylation. Angew. Chem. Int. Ed., 2012, 51(36), 8950-8958.
[http://dx.doi.org/10.1002/anie.201202624] [PMID: 22890985];
b) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev., 2015, 115(4), 1847-1935.
[http://dx.doi.org/10.1021/cr500368h] [PMID: 25635524]
[20]
a) Beatty, J.W.; Stephenson, C.R.J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res., 2015, 48(5), 1474-1484.
[http://dx.doi.org/10.1021/acs.accounts.5b00068] [PMID: 25951291];
b) Shi, L.; Xia, W. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev., 2012, 41(23), 7687-7697.
[http://dx.doi.org/10.1039/c2cs35203f] [PMID: 22869017]
[21]
Yoon, U.C.; Mariano, P.S. Mechanistic and synthetic aspects of amine-enone single electron transfer photochemistry. Acc. Chem. Res., 1992, 25(5), 233-240.
[http://dx.doi.org/10.1021/ar00017a005]
[22]
Skubi, K.L.; Blum, T.R.; Yoon, T.P. Dual catalysis strategies in photochemical synthesis. Chem. Rev., 2016, 116(17), 10035-10074.
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[23]
DiRocco, D.A.; Rovis, T. Catalytic asymmetric α-acylation of tertiary amines mediated by a dual catalysis mode: N-heterocyclic carbene and photoredox catalysis. J. Am. Chem. Soc., 2012, 134(19), 8094-8097.
[http://dx.doi.org/10.1021/ja3030164] [PMID: 22548244]
[24]
Hopkinson, M.N.; Sahoo, B.; Li, J.L.; Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry, 2014, 20(14), 3874-3886.
[http://dx.doi.org/10.1002/chem.201304823] [PMID: 24596102]
[25]
Allen, A.E.; MacMillan, D.W.C. Synergistic catalysis: A powerful synthetic strategy for new reaction development. Chem. Sci. (Camb.), 2012, 3(3), 633-658.
[http://dx.doi.org/10.1039/c2sc00907b] [PMID: 22518271]
[26]
Demir, H.; Sharma, S.K. Green Chemistry and Water Remediation; Research and Applications; Elsevier: Amsterdam, 2021.
[http://dx.doi.org/10.1016/B978-0-12-817742-6.00001-3]
[27]
Sandberg, M.; Håkansson, K.; Granberg, H. Paper machine manufactured photocatalysts - Lateral variations. J. Environ. Chem. Eng., 2020, 8(5), 104075.
[http://dx.doi.org/10.1016/j.jece.2020.104075]
[28]
a) Zeitler, K. Photoredox catalysis with visible light. Angew. Chem. Int. Ed., 2009, 48(52), 9785-9789.
[http://dx.doi.org/10.1002/anie.200904056] [PMID: 19946918];
b) Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341];
c) Teplý, F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect. Czech. Chem. Commun., 2011, 76(7), 859-917.
[http://dx.doi.org/10.1135/cccc2011078];
d) Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502];
e) Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883];
f) Reckenthäler, M.; Griesbeck, A.G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal., 2013, 355(14-15), 2727-2744.
[http://dx.doi.org/10.1002/adsc.201300751];
g) Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11(15), 2387-2403.
[http://dx.doi.org/10.1039/c3ob40137e] [PMID: 23426621];
h) Ravelli, D.; Protti, S.; Fagnoni, M.; Albini, A. Visible light photocatalysis. A green choice? Curr. Org. Chem., 2013, 17(21), 2366-2373.
[http://dx.doi.org/10.2174/13852728113179990051];
i) Xuan, J.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems. Eur. J. Org. Chem., 2013, 2013, (30), 6755-6770.
[http://dx.doi.org/10.1002/ejoc.201300596];
j) Schultz, D.M.; Yoon, T.P Solar synthesis prospects in visible light photocatalysis. Science, 2014, 343(6174), 1239176.
[http://dx.doi.org/10.1126/science.1239176] [PMID: 24578578]
[29]
a) Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic dyes as photoredox catalysts. Org. Biomol. Chem., 2014, 12(32), 6059-6071.
[http://dx.doi.org/10.1039/C4OB00843J] [PMID: 24984977];
b) Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal., 2014, 4(1), 355-360.
[http://dx.doi.org/10.1021/cs400956a];
c) Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev., 2013, 42(1), 97-113.
[http://dx.doi.org/10.1039/C2CS35250H] [PMID: 22990664];
d) Hari, D.P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. (Camb.), 2014, 50(51), 6688-6699.
[http://dx.doi.org/10.1039/C4CC00751D] [PMID: 24699920]
[30]
a) Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed., 2012, 51(1), 68-89.
[http://dx.doi.org/10.1002/anie.201101182] [PMID: 22109976];
b) Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 2014, 43(1), 473-486.
[http://dx.doi.org/10.1039/C3CS60188A] [PMID: 24162830];
c) Cherevatskaya, M.; König, B. Heterogeneous photocatalysts in organic synthesis. Russ. Chem. Rev., 2014, 83(3), 183-195.
[http://dx.doi.org/10.1070/RC2014v083n03ABEH004427]
[31]
a) Xiao, Q.; Jaatinen, E.; Zhu, H. Direct photocatalysis for organic synthesis by using plasmonic-metal nanoparticles irradiated with visible light. Chem. Asian J., 2014, 9(11), 3046-3064.
[http://dx.doi.org/10.1002/asia.201402310] [PMID: 25048419];
b) Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev., 2014, 43(20), 7188-7216.
[http://dx.doi.org/10.1039/C4CS00145A] [PMID: 25017125]
[32]
a) Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(37), 11473.
[http://dx.doi.org/10.1039/c3ta12645e];
b) Sun, D.; Ye, L.; Li, Z. Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl. Catal. B, 2015, 164, 428-432.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.054];
c) Xie, Z.; Wang, C.; deKrafft, K.E.; Lin, W. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc., 2011, 133(7), 2056-2059.
[http://dx.doi.org/10.1021/ja109166b] [PMID: 21275413];
d) Guo, S.; Zhang, H.; Huang, L.; Guo, Z.; Xiong, G.; Zhao, J. Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chem. Commun. (Camb.), 2013, 49(77), 8689-8691.
[http://dx.doi.org/10.1039/c3cc44486d] [PMID: 23949367]
[33]
Chen, J.; Cen, J.; Xu, X.; Li, X. The application of heterogeneous visible light photocatalysts in organic synthesis. Catal. Sci. Technol., 2016, 6(2), 349-362.
[http://dx.doi.org/10.1039/C5CY01289A]
[34]
Blankenship, R.E.; Tiede, D.M.; Barber, J.; Brudvig, G.W.; Fleming, G.; Ghirardi, M.; Gunner, M.R.; Junge, W.; Kramer, D.M.; Melis, A.; Moore, T.A.; Moser, C.C.; Nocera, D.G.; Nozik, A.J.; Ort, D.R.; Parson, W.W.; Prince, R.C.; Sayre, R.T. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science, 2011, 332(6031), 805-809.
[http://dx.doi.org/10.1126/science.1200165] [PMID: 21566184]
[35]
Leite, G.B.; Abdelaziz, A.E.M.; Hallenbeck, P.C. Algal biofuels: Challenges and opportunities. Bioresour. Technol., 2013, 145, 134-141.
[http://dx.doi.org/10.1016/j.biortech.2013.02.007] [PMID: 23499181]
[36]
Das, D. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy, 2001, 26(1), 13-28.
[http://dx.doi.org/10.1016/S0360-3199(00)00058-6]
[37]
Djurišić, A.B.; He, Y.; Ng, A.M.C. Visible-light photocatalysts: Prospects and challenges. APL Mater., 2020, 8(3), 030903.
[http://dx.doi.org/10.1063/1.5140497]
[38]
Molinari, R.; Lavorato, C.; Argurio, P. Visible-light photocatalysts and their perspectives for building photocatalytic membrane reactors for various liquid phase chemical conversions. Catalysts, 2020, 10(11), 1334.
[http://dx.doi.org/10.3390/catal10111334]
[39]
Ferreira, A.; Kunh, S.S.; Fagnani, K.C.; De Souza, T.A.; Tonezer, C.; Dos Santos, G.R.; Coimbra-Araújo, C.H. Economic overview of the use and production of photovoltaic solar energy in brazil. Renew. Sustain. Energy Rev., 2018, 81, 181-191.
[http://dx.doi.org/10.1016/j.rser.2017.06.102]
[40]
a) Davis, S.J.; Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl. Acad. Sci. USA, 2010, 107(12), 5687-5692.
[http://dx.doi.org/10.1073/pnas.0906974107] [PMID: 20212122];
b) Acar, C.; Dincer, I.; Zamfirescu, C. A review on selected heterogeneous photocatalysts for hydrogen production. Int. J. Energy Res., 2014, 38(15), 1903-1920.
[http://dx.doi.org/10.1002/er.3211]
[41]
a) Turner, J.A. Sustainable hydrogen production. Science, 2004, 305(5686), 972-974.
[http://dx.doi.org/10.1126/science.1103197] [PMID: 15310892];
b) Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy, 2015, 40(34), 11094-11111.
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.035]
[42]
Zhang, F.; Wang, X.; Liu, H.; Liu, C.; Wan, Y.; Long, Y.; Cai, Z. Recent advances and application of semiconductor photo catalytic technology. Appl. Sci. (Basel), 2019, 9(12), 2489.
[http://dx.doi.org/10.3390/app9122489]
[43]
Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater. Sci., 2018, 92, 33-63.
[http://dx.doi.org/10.1016/j.pmatsci.2017.09.002]
[44]
Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in photocatalysis: A review. Small, 2016, 12(48), 6640-6696.
[http://dx.doi.org/10.1002/smll.201600382] [PMID: 27805773]
[45]
Zhou, P.; Yu, J.; Jaroniec, M. All-solid-state Z-scheme photocatalytic systems. Adv. Mater., 2014, 26(29), 4920-4935.
[http://dx.doi.org/10.1002/adma.201400288] [PMID: 24888530]
[46]
Boyjoo, Y.; Sun, H.; Liu, J.; Pareek, V.K.; Wang, S. A review on photocatalysis for air treatment: From catalyst development to reactor design. Chem. Eng. J., 2017, 310, 537-559.
[http://dx.doi.org/10.1016/j.cej.2016.06.090]
[47]
Wang, W.; Li, G.; Xia, D.; An, T.; Zhao, H.; Wong, P.K. Photocatalytic nanomaterials for solar-driven bacterial inactivation: recent progress and challenges. Environ. Sci. Nano, 2017, 4(4), 782-799.
[http://dx.doi.org/10.1039/C7EN00063D]
[48]
Yu, X.Y.; Chen, J.R.; Xiao, W.J. Visible light-driven redical-mediated C-C bond cleavage/functionalization in organic synthesis. Chem. Rev., 2021, 121(1), 506-561.
[http://dx.doi.org/10.1021/acs.chemrev.0c00030] [PMID: 32469528]
[49]
Chen, Y.; Lu, L.Q.; Yu, D.G.; Zhu, C.J.; Xiao, W.J. Visible light-driven organic photochemical synthesis in China. Sci. China Chem., 2019, 62(1), 24-57.
[http://dx.doi.org/10.1007/s11426-018-9399-2]
[50]
Tang, J.H.; Sun, Y. Visible-light-driven organic transformations integrated with H 2 production on semiconductors. Mater. Adv., 2020, 1(7), 2155-2162.
[http://dx.doi.org/10.1039/D0MA00327A]
[51]
Deng, X.; Li, Z.; García, H. Visible-light induced organic transformations over metal-organic-frameworks (MOFs). Chemistry, 2017, 23(47), 11189-11209.
[http://dx.doi.org/10.1002/chem.201701460] [PMID: 28503763]
[52]
O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346), 737-740.
[http://dx.doi.org/10.1038/353737a0]
[53]
Zhao, J.; Chen, C.; Ma, W. Photocatalytic degradation of organic pollutants under visible light irradiation. Top. Catal., 2005, 35(3-4), 269-278.
[http://dx.doi.org/10.1007/s11244-005-3834-0]
[54]
Pitre, S.P.; McTiernan, C.D.; Scaiano, J.C. Library of cationic organic dyes for visible-light-driven photoredox transformations. ACS Omega, 2016, 1(1), 66-76.
[http://dx.doi.org/10.1021/acsomega.6b00058] [PMID: 31457117]
[55]
Chowdhury, P.; Moreira, J.; Gomaa, H.; Ray, A.K. Visible-solar-light-driven photocatalytic degradation of phenol with dye-sensitized TiO2: Parametric and kinetic study. Ind. Eng. Chem. Res., 2012, 51(12), 4523-4532.
[http://dx.doi.org/10.1021/ie2025213]
[56]
Hao, H.; Wang, Z.; Shi, J.L.; Li, X.; Lang, X. Improving the visible light photocatalytic aerobic oxidation of sulfides into sulfoxides on dye-sensitized TiO2. ChemCatChem, 2018, 10(20), 4545-4554.
[http://dx.doi.org/10.1002/cctc.201801304]
[57]
Wang, Z.; Lang, X. Visible light photocatalysis of dye-sensitized TiO2: The selective aerobic oxidation of amines to imines. Appl. Catal. B, 2018, 224, 404-409.
[http://dx.doi.org/10.1016/j.apcatb.2017.10.002]
[58]
Watanabe, M.; Hagiwara, H.; Iribe, A.; Ogata, Y.; Shiomi, K.; Staykov, A.; Ida, S.; Tanaka, K.; Ishihara, T. Spacer effects in metal-free organic dyes for visible-light-driven dye-sensitized photocatalytic hydrogen production. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(32), 12952-12961.
[http://dx.doi.org/10.1039/C4TA02720E]
[59]
Yang, X.; Huang, T.; Gao, S.; Cao, R. Boosting photocatalytic oxidative coupling of amines by a Ru-complex-sensitized metal-organic framework. J. Catal., 2019, 378, 248-255.
[http://dx.doi.org/10.1016/j.jcat.2019.08.038]
[60]
Ren, L.; Yang, M-M.; Tung, C-H.; Wu, L-Z.; Cong, H. Visible-light photocatalysis employing dye-sensitized semiconductor: Selective aerobic oxidation of benzyl ethers. ACS Catal., 2017, 7(12), 8134-8138.
[http://dx.doi.org/10.1021/acscatal.7b03029]
[61]
Dana, S.; Dey, P.; Patil, S.A.; Baidya, M. Enhancing Ru(II)-catalysis with visible-light-mediated dye-sensitized TiO2 photocatalysis for oxidative C−H olefination of arene carboxylic acids at room temperature. Chem. Asian J., 2019, 15(5), 564-567.
[http://dx.doi.org/10.1002/asia.201901718] [PMID: 32003942]
[62]
Zhang, Y.; Wang, Z.; Lang, X. Merging visible light photocatalysis of dye-sensitized TiO2 with TEMPO: the selective aerobic oxidation of alcohols. Catal. Sci. Technol., 2017, 7(21), 4955-4963.
[http://dx.doi.org/10.1039/C7CY01510K]
[63]
Yang, D.T.; Meng, Q.Y.; Zhong, J.J.; Xiang, M.; Liu, Q.; Wu, L.Z. Metal-free desulfonylation reaction through visible-light photoredox catalysis. Eur. J. Org. Chem., 2013, 2013(33), 7528-7532.
[http://dx.doi.org/10.1002/ejoc.201301105]
[64]
Yang, L.; Li, H.; Du, Y.; Cheng, K.; Qi, C. Visible light‐catalyzed decarboxylative alkynylation of arenediazonium salts with alkynyl carboxylic acids: Direct access to aryl alkynes by organic photoredox catalysis. Adv. Synth. Catal., 2019, 361(21), 5030-5041.
[http://dx.doi.org/10.1002/adsc.201900603]
[65]
Tang, L.; Wang, Z.L.; Wan, H.L.; He, Y.H.; Guan, Z. Visible-light-induced beckmann rearrangement by organic photoredox catalysis. Org. Lett., 2020, 22(15), 6182-6186.
[http://dx.doi.org/10.1021/acs.orglett.0c02168] [PMID: 32790434]
[66]
Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed., 2008, 47(50), 9730-9733.
[http://dx.doi.org/10.1002/anie.200803630] [PMID: 18985641]
[67]
Qiu, L.; Dong, A.; Zhang, S.; Wang, S.; Chang, Z.; Lu, Y.; Sui, Z.; Feng, L.; Chen, Q. Fluorinated phenylpyridine iridium (III) complex based on metal–organic framework as highly efficient heterogeneous photocatalysts for cross-dehydrogenative coupling reactions. J. Mater. Sci., 2020, 55(22), 9364-9373.
[http://dx.doi.org/10.1007/s10853-020-04674-8]
[68]
Shi, D.; Guo, X.; Lai, T.; Zheng, K.; Wu, Q.; Sun, C.; He, C.; Zhao, J. A tetrazole-containing triphenylamine-based metal–organic framework: Synthesis and photocatalytic oxidative C C coupling reaction. Inorg. Chem. Commun., 2019, 105, 9-12.
[http://dx.doi.org/10.1016/j.inoche.2019.04.021]
[69]
Ghaleno, M.R.; Ghaffari-Moghaddam, M.; Khajeh, M.; Reza Oveisi, A.; Bohlooli, M. Iron species supported on a mesoporous zirconium metal-organic framework for visible light driven synthesis of quinazolin-4(3H)-ones through one-pot three-step tandem reaction. J. Colloid Interface Sci., 2019, 535, 214-226.
[http://dx.doi.org/10.1016/j.jcis.2018.09.099] [PMID: 30293047]
[70]
Zhang, Y.; Guo, J.; Shi, L.; Zhu, Y.; Hou, K.; Zheng, Y.; Tang, Z. Tunable chiral metal organic frameworks toward visible light–driven asymmetric catalysis. Sci. Adv., 2017, 3(8), e1701162.
[http://dx.doi.org/10.1126/sciadv.1701162] [PMID: 28835929]
[71]
Wei, H.; Guo, Z.; Liang, X.; Chen, P.; Liu, H.; Xing, H. Selective photooxidation of amines and sulfides triggered by a superoxide radical using a novel visible-light-responsive metal–organic framework. ACS Appl. Mater. Interfaces, 2019, 11(3), 3016-3023.
[http://dx.doi.org/10.1021/acsami.8b18206] [PMID: 30629427]
[72]
Toyao, T.; Ueno, N.; Miyahara, K.; Matsui, Y.; Kim, T.H.; Horiuchi, Y.; Ikeda, H.; Matsuoka, M. Visible-light, photoredox catalyzed, oxidative hydroxylation of arylboronic acids using a metal–organic framework containing tetrakis(carboxyphenyl)porphyrin groups. Chem. Commun. (Camb.), 2015, 51(89), 16103-16106.
[http://dx.doi.org/10.1039/C5CC06163F] [PMID: 26391908]
[73]
Huang, Y.; Ma, T.; Huang, P.; Wu, D.; Lin, Z.; Cao, R.; Direct, C.H. Direct C-H bond arylation of indoles with aryl boronic acids catalyzed by palladium nanoparticles encapsulated in mesoporous metal-organic framework. ChemCatChem, 2013, 5(7), 1877-1883.
[http://dx.doi.org/10.1002/cctc.201200957]
[74]
Hu, Y.H.; Liu, C.X.; Wang, J.C.; Ren, X.H.; Kan, X.; Dong, Y.B. TiO2 @UiO-68-CIL: A metal–organic-framework-based bifunctional composite catalyst for a one-pot sequential asymmetric morita–baylis–hillman reaction. Inorg. Chem., 2019, 58(8), 4722-4730.
[http://dx.doi.org/10.1021/acs.inorgchem.8b02132] [PMID: 30299930]
[75]
Xie, M.H.; Yang, X.L.; Zou, C.; Wu, C.D.A. Sn(IV)-porphyrin-based metal-organic framework for the selective photo-oxygenation of phenol and sulfides. Inorg. Chem., 2011, 50(12), 5318-5320.
[http://dx.doi.org/10.1021/ic200295h] [PMID: 21568275]
[76]
Zeng, L.; Liu, T.; He, C.; Shi, D.; Zhang, F.; Duan, C. Organized aggregation makes insoluble perylene diimide efficient for the reduction of aryl halides via consecutive visible light-induced electron transfer processes. J. Am. Chem. Soc., 2016, 138(12), 3958-3961.
[http://dx.doi.org/10.1021/jacs.5b12931] [PMID: 26956083]
[77]
Tanaka, A.; Hashimoto, M.; Kimura, K.; Tada, H. A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition. Chem. Commun. (Camb.), 2011, 4, 3230.
[78]
Bai, M. Xin, H.; Guo, Z.; Guo, D.; Wang, Y.; Zhao, P.; Li, J. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide. Appl. Surf. Sci., 2017, 391, 617-626.
[http://dx.doi.org/10.1016/j.apsusc.2016.07.020]
[79]
Hosseini-Sarvari, M.; Jafari, F.; Mohajeri, A.; Hassani, N. Cu2O/TiO2 nanoparticles as visible light photocatalysts concerning C(sp2)–P bond formation. Catal. Sci. Technol., 2018, 8(16), 4044-4051.
[http://dx.doi.org/10.1039/C8CY00822A]
[80]
Jiao, Z.; Zhai, Z.; Guo, X.; Guo, X.Y. Visible-light-driven photocatalytic suzuki−miyaura coupling reaction on mott−schottky-type Pd/SiC catalyst. J. Phys. Chem., 2015, 119, 3238-3243.
[81]
Lee, H.R.; Park, J.H.; Raza, F.; Yim, D.; Jeon, S.J.; Kim, H.I.; Bong, K.W.; Kim, J.H. Photoactive WS2 nanosheets bearing plasmonic nanoparticles for visible light-driven reduction of nitrophenol. Chem. Commun. (Camb.), 2016, 52(36), 6150-6153.
[http://dx.doi.org/10.1039/C6CC00708B] [PMID: 27075825]
[82]
Meng, S.; Ning, X.; Chang, S.; Fu, X.; Ye, X.; Chen, S. Simultaneous dehydrogenation and hydrogenolysis of aromatic alcohols in one reaction system via visible-light-driven heterogeneous photocatalysis. J. Catal., 2018, 357, 247-256.
[http://dx.doi.org/10.1016/j.jcat.2017.11.015]
[83]
Ayed, C.; Huang, W.; Li, R.; da Silva, L.C.; Wang, D.; Suraeva, O.; Najjar, W.; Zhang, K.A.I. Conjugated microporous polymers with immobilized TiO2 nanoparticles for enhanced visible light photocatalysis. Part. Part. Syst. Charact., 2018, 35(1), 1700234.
[http://dx.doi.org/10.1002/ppsc.201700234]
[84]
Das, S.; Ray, S.; Ghosh, A.B.; Samanta, P.K.; Samanta, S.; Adhikary, B.; Biswas, P. Visible light driven amide synthesis in water at room temperature from Thioacid and amine using CdS nanoparticles as heterogeneous Photocatalyst. Appl. Organomet. Chem., 2018, 32(3), e4199.
[http://dx.doi.org/10.1002/aoc.4199]
[85]
Shiraishi, Y.; Sakamoto, H.; Sugano, Y.; Ichikawa, S.; Hirai, T. Pt-Cu bimetallic alloy nanoparticles supported on anatase TiO2: highly active catalysts for aerobic oxidation driven by visible light. ACS Nano, 2013, 7(10), 9287-9297.
[http://dx.doi.org/10.1021/nn403954p] [PMID: 24063681]
[86]
Zhang, Y.; Xiao, Q.; Bao, Y.; Zhang, Y.; Bottle, S.; Sarina, S.; Zhaorigetu, B.; Zhu, H. Direct photocatalytic conversion of aldehydes to esters using supported gold nanoparticles under visible light irradiation at room temperature. J. Phys. Chem., 2014, 118, 19062-19069.
[87]
Ke, X.; Zhang, X.; Zhao, J.; Sarina, S.; Barry, J.; Zhu, H. Selective reductions using visible light photocatalysts of supported gold nanoparticles. Green Chem., 2013, 15(1), 236-244.
[http://dx.doi.org/10.1039/C2GC36542A]
[88]
Qiu, G.; Wang, R.; Han, F.; Tao, X.; Xiao, Y.; Li, B. One-step synthesized Au–Bi2 WO6 hybrid nanostructures: Synergistic effects of Au nanoparticles and oxygen vacancies for promoting selective oxidation under visible light. Ind. Eng. Chem. Res., 2019, 58(37), 17389-17398.
[http://dx.doi.org/10.1021/acs.iecr.9b03371]
[89]
Xiao, Q.; Sarina, S.; Bo, A.; Jia, J.; Liu, H.; Arnold, D.P.; Huang, Y.; Wu, H.; Zhu, H. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal., 2014, 4(6), 1725-1734.
[http://dx.doi.org/10.1021/cs5000284]
[90]
Patel, A.R.; Patel, G.; Banerjee, S. Visible light-emitting diode light-driven Cu 0.9 Fe 0.1 @RCAC-catalyzed highly selective aerobic oxidation of alcohols and oxidative azo-coupling of anilines: Tandem one pot oxidation–condensation to imidazoles and imines. ACS Omega, 2019, 4(27), 22445-22455.
[http://dx.doi.org/10.1021/acsomega.9b03096] [PMID: 31909327]
[91]
Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mpg-C(3)N(4)-Catalyzed selective oxidation of alcohols using O(2) and visible light. J. Am. Chem. Soc., 2010, 132(46), 16299-16301.
[http://dx.doi.org/10.1021/ja102866p] [PMID: 21043489]
[92]
Dai, X.; Xie, M.; Meng, S.; Fu, X.; Chen, S. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B, 2014, 158-159, 382-390.
[http://dx.doi.org/10.1016/j.apcatb.2014.04.035]
[93]
Zhang, X.; Ke, X.; Zhu, H. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. Chemistry, 2012, 18(26), 8048-8056.
[http://dx.doi.org/10.1002/chem.201200368] [PMID: 22674851]
[94]
Shiraishi, Y.; Tsukamoto, D.; Sugano, Y.; Shiro, A.; Ichikawa, S.; Tanaka, S.; Hirai, T. Platinum nanoparticles supported on anatase titanium dioxide as highly active catalysts for aerobic oxidation under visible light irradiation. ACS Catal., 2012, 2(9), 1984-1992.
[http://dx.doi.org/10.1021/cs300407e]
[95]
a) Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc., 2012, 134(14), 6309-6315.
[http://dx.doi.org/10.1021/ja2120647] [PMID: 22440019];
b) Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Supported Au-Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew. Chem. Int. Ed., 2013, 52(20), 5295-5299.
[http://dx.doi.org/10.1002/anie.201301669] [PMID: 23585018];
c) Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hot-electron-induced highly efficient O 2 activation by pt nanoparticles supported on Ta 2 O 5 driven by visible light. J. Am. Chem. Soc., 2015, 137(29), 9324-9332.
[http://dx.doi.org/10.1021/jacs.5b04062] [PMID: 26158296]
[96]
Li, Q.; Lan, X.; An, G.; Ricardez-Sandoval, L.; Wang, Z.; Bai, G. Visible-light-responsive anthraquinone functionalized covalent organic frameworks for metal-free selective oxidation of sulfides: effects of morphology and structure. ACS Catal., 2020, 10(12), 6664-6675.
[http://dx.doi.org/10.1021/acscatal.0c00290]
[97]
Wei, L.; Zhang, J.; Xu, L. Visible-light-mediated aminoquinolate diarylboron-catalyzed metal-free hydroxylation of organoboronic acids under air and room temperature. ACS Sustain. Chem. Eng., 2020, 8(37), 13894-13899.
[http://dx.doi.org/10.1021/acssuschemeng.0c05121]
[98]
Liu, S.; Pan, W.; Wu, S.; Bu, X.; Xin, S.; Yu, J.; Xu, H.; Yang, X. Visible-light-induced tandem radical addition–cyclization of 2-aryl phenyl isocyanides catalysed by recyclable covalent organic frameworks. Green Chem., 2019, 21(11), 2905-2910.
[http://dx.doi.org/10.1039/C9GC00022D]
[99]
Bhadra, M.; Kandambeth, S.; Sahoo, M.K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic E – Z isomerization of olefins. J. Am. Chem. Soc., 2019, 141(15), 6152-6156.
[http://dx.doi.org/10.1021/jacs.9b01891] [PMID: 30945862]
[100]
Liu, H.; Li, C.; Li, H.; Ren, Y.; Chen, J.; Tang, J.; Yang, Q. Structural engineering of two-dimensional covalent organic frameworks for visible-light-driven organic transformations. ACS Appl. Mater. Interfaces, 2020, 12(18), 20354-20365.
[http://dx.doi.org/10.1021/acsami.0c00013] [PMID: 32272831]
[101]
Ding, S.Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.G.; Su, C.Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc., 2011, 133(49), 19816-19822.
[http://dx.doi.org/10.1021/ja206846p] [PMID: 22026454]
[102]
Liu, W.; Su, Q.; Ju, P.; Guo, B.; Zhou, H.; Li, G.; Wu, Q. A hydrazone-based covalent organic framework as an efficient and reusable photocatalyst for the cross-dehydrogenative coupling reaction of N -Aryltetrahydroisoquinolines. ChemSusChem, 2017, 10(4), 664-669.
[http://dx.doi.org/10.1002/cssc.201601702] [PMID: 28033455]
[103]
Pati Tripathi, B.; Mishra, A.; Rai, P.; Kumar Pandey, Y.; Srivastava, M.; Yadav, S.; Singh, J.; Singh, J. A green and clean pathway: one pot, multicomponent, and visible light assisted synthesis of pyrano[2,3-c]pyrazoles under catalyst-free and solvent-free conditions. New J. Chem., 2017, 41(19), 11148-11154.
[http://dx.doi.org/10.1039/C7NJ01688C]
[104]
Whalley, D.M.; Duong, H.A.; Greaney, M.F. Alkene carboarylation through catalyst‐free, visible light‐mediated smiles rearrangement. Chemistry, 2019, 25(8), 1927-1930.
[http://dx.doi.org/10.1002/chem.201805712] [PMID: 30536854]
[105]
Lu, J.; He, X.K.; Cheng, X.; Zhang, A.J.; Xu, G.Y.; Xuan, J. Photoredox catalyst free, visible light‐promoted C3−H Acylation of quinoxalin‐2(1 H)‐ones in Water. Adv. Synth. Catal., 2020, 362(11), 2178-2182.
[http://dx.doi.org/10.1002/adsc.202000116]
[106]
Liu, Q.; Wang, L.; Yue, H.; Li, J.S.; Luo, Z.; Wei, W. Catalyst-free visible-light-initiated oxidative coupling of aryldiazo sulfones with thiols leading to unsymmetrical sulfoxides in air. Green Chem., 2019, 21(7), 1609-1613.
[http://dx.doi.org/10.1039/C9GC00222G]
[107]
Cheng, R.; Qi, C.; Wang, L.; Xiong, W.; Liu, H.; Jiang, H. Visible light-promoted synthesis of organic carbamates from carbon dioxide under catalyst- and additive-free conditions. Green Chem., 2020, 22(15), 4890-4895.
[http://dx.doi.org/10.1039/D0GC00910E]
[108]
Zhao, Y.S.; Ruan, H.L.; Wang, X.Y.; Chen, C.; Song, P.F.; Lü, C.W.; Zou, L.W. Catalyst-free visible-light-induced condensation to synthesize bis(indolyl)methanes and biological activity evaluation of them as potent human carboxylesterase 2 inhibitors. RSC Advances, 2019, 9(68), 40168-40175.
[http://dx.doi.org/10.1039/C9RA08593A] [PMID: 35541371]
[109]
Hasegawa, E.; Nagakura, Y.; Izumiya, N.; Matsumoto, K.; Tanaka, T.; Miura, T.; Ikoma, T.; Iwamoto, H.; Wakamatsu, K. Visible Light and Hydroxynaphthylbenzimidazoline Promoted Transition-Metal-Catalyst-Free Desulfonylation of N- Sulfonylamides and N- Sulfonylamines. J. Org. Chem., 2018, 83(18), 10813-10825.
[http://dx.doi.org/10.1021/acs.joc.8b01536] [PMID: 30015483]
[110]
Huang, Y.; Lei, Y.Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X.F.; Zhang, X.; He, C.Y. Catalyst-free and visible light promoted trifluoromethylation and perfluoroalkylation of uracils and cytosines. Chem. Commun. (Camb.), 2018, 54(97), 13662-13665.
[http://dx.doi.org/10.1039/C8CC07759B] [PMID: 30382250]
[111]
Mishra, A.; Srivastava, M.; Rai, P.; Yadav, S.; Tripathi, B.P.; Singh, J.; Singh, J. Visible light triggered, catalyst free approach for the synthesis of thiazoles and imidazo[2,1-b]thiazoles in EtOH: H2O green medium. RSC Advances, 2016, 6(54), 49164-49172.
[http://dx.doi.org/10.1039/C6RA05385H]
[112]
Zhang, M.; Fu, Q.Y.; Gao, G.; He, H.Y.; Zhang, Y.; Wu, Y.S.; Zhang, Z.H. Catalyst-free, visible-light promoted one-pot synthesis of spirooxindole-pyran derivatives in aqueous ethyl lactate. ACS Sustain. Chem. Eng., 2017, 5(7), 6175-6182.
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[113]
Jaiswal, D.; Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A visible light-initiated, one-pot, multi-component synthesis of 2-amino-4-(5-hydroxy-3-methyl-1H-pyrazol-4-yl)-4H-chromene-3-carbonitrile derivatives under solvent- and catalyst-free conditions. Res. Chem. Intermed., 2018, 44(1), 231-246.
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[114]
Dossena, A.; Sampaolesi, S.; Palmieri, A.; Protti, S.; Fagnoni, M. Visible light promoted metal- and photocatalyst-free synthesis of allylarenes. J. Org. Chem., 2017, 82(19), 10687-10692.
[http://dx.doi.org/10.1021/acs.joc.7b01532] [PMID: 28880554]
[115]
Lian, C.; Yue, G.; Mao, J.; Liu, D.; Ding, Y.; Liu, Z.; Qiu, D.; Zhao, X.; Lu, K.; Fagnoni, M.; Protti, S. Visible-light-driven synthesis of arylstannanes from Arylazo Sulfones. Org. Lett., 2019, 21(13), 5187-5191.
[http://dx.doi.org/10.1021/acs.orglett.9b01788] [PMID: 31247810]
[116]
Patel, G.; Patel, A.R.; Banerjee, S. Visible light-emitting diode light-driven one-pot four component synthesis of poly-functionalized imidazoles under catalyst- and solvent-free conditions. New J. Chem., 2020, 44(31), 13295-13300.
[http://dx.doi.org/10.1039/D0NJ02527E]
[117]
Zhou, X.; Zhang, N.; Li, Y.; Mo, Z.; Ma, X.; Chen, Y.; Xu, Y. Metal-free synthesis of 3-sulfonyl-5-selanyl-4a,8a-dihydro-2H-chromen-6(5H)-ones via visible light driven intermolecular cascade cyclization of alkyne-tethered cyclohexadienones and selenosulfonates. Green Synth. Catal., 2021, 2(4), 397-400.
[http://dx.doi.org/10.1016/j.gresc.2021.07.004]
[118]
Patel, R.A.; Patel, G.; Dasb, S.; Sharma, B.; Banerjee, S. Visible light-emitting diode light-driven aerial oxidation of aldehydes under catalyst-/oxidant-/solvent-free conditions. New J. Chem., 2020, 31, 13295-13300.
[119]
Zhang, Y.; Xu, Y.J. Bi2 WO6: A highly chemoselective visible light photocatalyst toward aerobic oxidation of benzylic alcohols in water. RSC Advances, 2014, 4(6), 2904-2910.
[http://dx.doi.org/10.1039/C3RA46383D]
[120]
Sagadevan, A.; Lyu, P.C.; Hwang, K.C. Visible-light-activated copper (I) catalyzed oxidative Csp–Csp cross-coupling reaction: efficient synthesis of unsymmetrical conjugated diynes without ligands and base. Green Chem., 2016, 18(16), 4526-4530.
[http://dx.doi.org/10.1039/C6GC01463A]
[121]
Sahoo, B.; Hopkinson, M.N.; Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc., 2013, 135(15), 5505-5508.
[http://dx.doi.org/10.1021/ja400311h] [PMID: 23565980]
[122]
Ragupathi, A.; Charpe, V.P.; Sagadevan, A.; Hwang, K.C. Visible Light-Mediated Copper(I)-catalysed aerobic oxidation of ynamides/ynamines at room temperature: A sustainable approach to the synthesis of α-ketoimides/α-ketoamides. Adv. Synth. Catal., 2017, 359(7), 1138-1143.
[http://dx.doi.org/10.1002/adsc.201600925]
[123]
Kainz, Q.M.; Matier, C.D.; Bartoszewicz, A.; Zultanski, S.L.; Peters, J.C.; Fu, G.C. Asymmetric copper-catalyzed C-N cross-couplings induced by visible light. Science, 2016, 351(6274), 681-684.
[http://dx.doi.org/10.1126/science.aad8313] [PMID: 26912852]
[124]
Sagadevan, A.; Ragupathi, A.; Hwang, K.C. Photoinduced copper-catalyzed regioselective synthesis of indoles: Three-component coupling of arylamines, terminal alkynes, and quinones. Angew. Chem. Int. Ed., 2015, 54(47), 13896-13901.
[http://dx.doi.org/10.1002/anie.201506579] [PMID: 26338043]
[125]
Sagadevan, A.; Hwang, K.C. Photo-induced sonogashira C-C coupling reaction catalyzed by simple Copper(I) chloride salt at room temperature. Adv. Synth. Catal., 2012, 354(18), 3421-3427.
[http://dx.doi.org/10.1002/adsc.201200683]
[126]
Kreis, L.M.; Krautwald, S.; Pfeiffer, N.; Martin, R.E.; Carreira, E.M. Photocatalytic synthesis of allylic trifluoromethyl substituted styrene derivatives in batch and flow. Org. Lett., 2013, 15(7), 1634-1637.
[http://dx.doi.org/10.1021/ol400410m] [PMID: 23517196]
[127]
Weiss, M.E.; Kreis, L.M.; Lauber, A.; Carreira, E.M. Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed., 2011, 50(47), 11125-11128.
[http://dx.doi.org/10.1002/anie.201105235] [PMID: 22083854]
[128]
Um, J.; Yun, H.; Shin, S. Cross-coupling of meyer–schuster intermediates under dual gold–photoredox catalysis. Org. Lett., 2016, 18(3), 484-487.
[http://dx.doi.org/10.1021/acs.orglett.5b03531] [PMID: 26761155]
[129]
Xuan, J.; Zeng, T.T.; Feng, Z.J.; Deng, Q.H.; Chen, J.R.; Lu, L.Q.; Xiao, W.J.; Alper, H. Redox-neutral α-allylation of amines by combining palladium catalysis and visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2015, 54(5), 1625-1628.
[http://dx.doi.org/10.1002/anie.201409999] [PMID: 25504920]
[130]
Rueping, M.; Koenigs, R.M.; Poscharny, K.; Fabry, D.C.; Leonori, D.; Vila, C. Dual catalysis: combination of photocatalytic aerobic oxidation and metal catalyzed alkynylation reactions--C-C bond formation using visible light. Chemistry, 2012, 18(17), 5170-5174.
[http://dx.doi.org/10.1002/chem.201200050] [PMID: 22431393]
[131]
Zhang, Z.; Tang, X.; Thomoson, C.S.; Dolbier, W.R., Jr Photoredox-catalyzed intramolecular aminodifluoromethylation of unactivated alkenes. Org. Lett., 2015, 17(14), 3528-3531.
[http://dx.doi.org/10.1021/acs.orglett.5b01616] [PMID: 26120767]
[132]
Choi, S.; Chatterjee, T.; Choi, W.J.; You, Y.; Cho, E.J. Synthesis of carbazoles by a merged visible light photoredox and palladium-catalyzed process. ACS Catal., 2015, 5(8), 4796-4802.
[http://dx.doi.org/10.1021/acscatal.5b00817]
[133]
Xuan, J.; Zeng, T.T.; Chen, J.R.; Lu, L.Q.; Xiao, W.J. Room temperature CP bond formation enabled by merging nickel catalysis and visible-light-induced photoredox catalysis. Chemistry, 2015, 21(13), 4962-4965.
[http://dx.doi.org/10.1002/chem.201500227] [PMID: 25688851]
[134]
Fabry, D.C.; Zoller, J.; Raja, S.; Rueping, M. Combining rhodium and photoredox catalysis for C-H functionalizations of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed., 2014, 53(38), 10228-10231.
[http://dx.doi.org/10.1002/anie.201400560] [PMID: 25159225]
[135]
Sun, L.; Ye, J.H.; Zhou, W.J.; Zeng, X.; Yu, D.G. Oxy-alkylation of allylamines with unactivated alkyl bromides and CO2 via visible-light-driven palladium catalysis. Org. Lett., 2018, 20(10), 3049-3052.
[http://dx.doi.org/10.1021/acs.orglett.8b01079] [PMID: 29717611]
[136]
Shiraishi, Y.; Sakamoto, H.; Fujiwara, K.; Ichikawa, S.; Hirai, T. Selective photocatalytic oxidation of aniline to nitrosobenzene by Pt nanoparticles supported on TiO2 under visible light irradiation. ACS Catal., 2014, 4(8), 2418-2425.
[http://dx.doi.org/10.1021/cs500447n]
[137]
Rueping, M.; Zoller, J.; Fabry, D.C.; Poscharny, K.; Koenigs, R.M.; Weirich, T.E.; Mayer, J. Light-mediated heterogeneous cross dehydrogenative coupling reactions: metal oxides as efficient, recyclable, photoredox catalysts in C-C bond-forming reactions. Chemistry, 2012, 18(12), 3478-3481.
[http://dx.doi.org/10.1002/chem.201103242] [PMID: 22314870]
[138]
Mitkina, T.; Stanglmair, C.; Setzer, W.; Gruber, M.; Kisch, H.; König, B. Visible light mediated homo- and heterocoupling of benzyl alcohols and benzyl amines on polycrystalline cadmium sulfide. Org. Biomol. Chem., 2012, 10(17), 3556-3561.
[http://dx.doi.org/10.1039/c2ob07053g] [PMID: 22447128]
[139]
Lang, X.; Ma, W.; Zhao, Y.; Chen, C.; Ji, H.; Zhao, J. Visible-light-induced selective photocatalytic aerobic oxidation of amines into imines on TiO2. Chemistry, 2012, 18(9), 2624-2631.
[http://dx.doi.org/10.1002/chem.201102779] [PMID: 22271403]
[140]
Furukawa, S.; Ohno, Y.; Shishido, T.; Teramura, K.; Tanaka, T. Selective amine oxidation using Nb2 O5 photocatalyst and O2. ACS Catal., 2011, 1(10), 1150-1153.
[http://dx.doi.org/10.1021/cs200318n]
[141]
Dai, J.; Yang, J.; Wang, X.; Zhang, L.; Li, Y. Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires. Appl. Surf. Sci., 2015, 349, 343-352.
[http://dx.doi.org/10.1016/j.apsusc.2015.04.232]
[142]
Naya, S.; Kimura, K.; Tada, H. One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded Rutile Titanium(IV) oxide plasmon photocatalyst. ACS Catal., 2013, 3(1), 10-13.
[http://dx.doi.org/10.1021/cs300682d]
[143]
Mazzanti, S.; Kurpil, B.; Pieber, B.; Antonietti, M.; Savateev, A. Dichloromethylation of enones by carbon nitride photocatalysis. Nat. Commun., 2020, 11(1), 1387.
[http://dx.doi.org/10.1038/s41467-020-15131-0] [PMID: 32170119]
[144]
Kurpil, B.; Otte, K.; Mishchenko, A.; Lamagni, P. Lipiński, W.; Lock, N.; Antonietti, M.; Savateev, A. Carbon nitride photocatalyzes regioselective aminium radical addition to the carbonyl bond and yields N-fused pyrroles. Nat. Commun., 2019, 10(1), 945.
[http://dx.doi.org/10.1038/s41467-019-08652-w] [PMID: 30808862]
[145]
Abdullah Khan, M.; Teixeira, I.F.; Li, M.M.J.; Koito, Y.; Tsang, S.C.E. Graphitic carbon nitride catalysed photoacetalization of aldehydes/ketones under ambient conditions. Chem. Commun. (Camb.), 2016, 52(13), 2772-2775.
[http://dx.doi.org/10.1039/C5CC08344C] [PMID: 26762483]
[146]
Kurpil, B.; Markushyna, Y.; Savateev, A. Visible-Light-Driven Reductive (Cyclo)dimerization of chalcones over heterogeneous carbon nitride photocatalyst. ACS Catal., 2019, 9(2), 1531-1538.
[http://dx.doi.org/10.1021/acscatal.8b04182]
[147]
Zhan, H.; Liu, W.; Fu, M.; Cen, J.; Lin, J.; Cao, H. Carbon nitride-catalyzed oxidative cleavage of carbon–carbon bond of α-hydroxy ketones with visible light and thermal radiation. Appl. Catal. A Gen., 2013, 468, 184-189.
[http://dx.doi.org/10.1016/j.apcata.2013.08.008]
[148]
Su, F.; Mathew, S.C.; Möhlmann, L.; Antonietti, M.; Wang, X.; Blechert, S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed., 2011, 50(3), 657-660.
[http://dx.doi.org/10.1002/anie.201004365] [PMID: 21226146]
[149]
Cai, Y.; Tang, Y.; Fan, L.; Lefebvre, Q.; Hou, H.; Rueping, M. Heterogeneous visible-light photoredox catalysis with graphitic carbon nitride for α-aminoalkyl radical additions, allylations, and heteroarylations. ACS Catal., 2018, 8(10), 9471-9476.
[http://dx.doi.org/10.1021/acscatal.8b02937]
[150]
Möhlmann, L.; Baar, M.; Rieß, J.; Antonietti, M.; Wang, X.; Blechert, S. Carbon nitride-catalyzed photoredox C-C bond formation with N-Aryltetrahydroisoquinolines. Adv. Synth. Catal., 2012, 354(10), 1909-1913.
[http://dx.doi.org/10.1002/adsc.201100894]
[151]
Tanaka, K.; Asada, Y.; Hoshino, Y.; Honda, K. Visible-light-induced [4 + 2] cycloaddition of pentafulvenes by organic photoredox catalysis. Org. Biomol. Chem., 2020, 18(40), 8074-8078.
[http://dx.doi.org/10.1039/D0OB01151G] [PMID: 32789391]
[152]
Jiang, J.; Zhang, W.M.; Dai, J.J.; Xu, J.; Xu, H.J. Visible-light-promoted C–H arylation by mergering palladium catalysis with organic photoredox catalysis. J. Org. Chem., 2017, 82(7), 3622-3630.
[http://dx.doi.org/10.1021/acs.joc.7b00140] [PMID: 28303717]
[153]
Ohkubo, K.; Nanjo, T.; Fukuzumi, S. Efficient photocatalytic oxygenation of aromatic alkene to 1,2-dioxetane with oxygen via electron transfer. Org. Lett., 2005, 7(19), 4265-4268.
[http://dx.doi.org/10.1021/ol051696+] [PMID: 16146403]
[154]
Ohkubo, K.; Kobayashi, T.; Fukuzumi, S. Direct oxygenation of benzene to phenol using quinolinium ions as homogeneous photocatalysts. Angew. Chem. Int. Ed., 2011, 50(37), 8652-8655.
[http://dx.doi.org/10.1002/anie.201102931] [PMID: 21805547]
[155]
Zhao, G.; Kaur, S.; Wang, T. Visible-light-mediated thiol–ene reactions through organic photoredox catalysis. Org. Lett., 2017, 19(12), 3291-3294.
[http://dx.doi.org/10.1021/acs.orglett.7b01441] [PMID: 28571318]
[156]
Su, Y.; Zhang, L.; Jiao, N. Utilization of natural sunlight and air in the aerobic oxidation of benzyl halides. Org. Lett., 2011, 13(9), 2168-2171.
[http://dx.doi.org/10.1021/ol2002013] [PMID: 21446682]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy