Abstract
The literature survey reveals the applications of visible light as a sustainable energy source in the various constructive organic transformations by using homogeneous and heterogeneous photocatalysts, catalysts under suitable solvents, or under solvent-free conditions to attain green and sustainable chemistry. Recently, the crises of energy sources demand a sustainable and renewable energy source worldwide. In these circumstances, visible lightdriven organic transformations attracted much attention as a good alternative energy source.
Due to the visible-light-driven organic synthesis offers several advantages such as natural abundance in the solar spectrum, friendly to the equipment, fewer side reactions, costfriendly, selective product formation, higher isolated yields of products, environmental friendliness and sustainability. On the other hand, the developments in chemistry are adopting the green culture, in this state of affairs, visible light will be a great substitute for non-renewable energy sources for chemical transformations and synthesis. It will reduce the consumption of fossil fuels which will lead the world toward achieving the goals of sustainable development.
A number of different organic molecules are synthesized using different homogeneous and heterogeneous photocatalysts under visible light via different methods such as one-pot multi-component protocol, multi-step method, coupling and condensation method, etc.
In this review paper, we have highlighted the basics and history of photochemical organic transformations using suitable photo-catalysts and dye-sensitized photochemical reactions. We have presented details of organic transformations under visible light using MOF, nano-material, COF, metal, graphitic carbon, organocatalyst as photocatalysts. We have also highlighted organic transformations using visible light in the absence of any metal or other catalysts. Thus, this review covers wide range of organic reactions under visible light and will benefit the synthetic organic chemist community.
Graphical Abstract
[http://dx.doi.org/10.1002/anie.198911931]
[http://dx.doi.org/10.1039/JS8651800245]
[http://dx.doi.org/10.1002/smll.201101594] [PMID: 22383334]
[http://dx.doi.org/10.1002/anie.200604274] [PMID: 17659519]
[http://dx.doi.org/10.1021/acs.chemrev.5b00397] [PMID: 26511904];
b) Gong, J.; Li, C.; Wasielewski, M.R. Advances in solar energy conversion. Chem. Soc. Rev., 2019, 48(7), 1862-1864.
[http://dx.doi.org/10.1039/C9CS90020A] [PMID: 30895987];
c) Gies, E. The real cost of energy. Nature, 2017, 551(7682), S145-S147.
[http://dx.doi.org/10.1038/d41586-017-07510-3]
[http://dx.doi.org/10.1002/adma.200902812] [PMID: 20217791];
b) Lai, X.; Halpert, J.E.; Wang, D. Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems. Energy Environ. Sci., 2012, 5(2), 5604-5618.
[http://dx.doi.org/10.1039/C1EE02426D];
c) Titirici, M.M.; Antonietti, M. Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev., 2010, 39(1), 103-116.
[http://dx.doi.org/10.1039/B819318P] [PMID: 20023841];
d) Nocked, M.; Soffer, A.; Aurbach, D. The electrochemistry of activated carbonaceous materials: past, present and future. J. Solid State Electrochem., 2011, 15, 1563-1578.
[http://dx.doi.org/10.1007/s10008-011-1411-y]
[http://dx.doi.org/10.1093/nsr/nwx039]
[http://dx.doi.org/10.1039/D0TA05485B]
[http://dx.doi.org/10.1021/acsmedchemlett.0c00436] [PMID: 33214820]
[http://dx.doi.org/10.1021/acs.orglett.6b01321] [PMID: 27226119]
[http://dx.doi.org/10.1016/j.dyepig.2019.107710]
[http://dx.doi.org/10.1039/c1cc11765c] [PMID: 21559547]
[http://dx.doi.org/10.1038/nature10647] [PMID: 22158245]
[http://dx.doi.org/10.1126/science.36.926.385] [PMID: 17836492];
b) Yoon, T.P.; Ischay, M.A.; Du, J. Visible light photocatalysis as a greener approach to photochemical synthesis. Nat. Chem., 2010, 2(7), 527-532.
[http://dx.doi.org/10.1038/nchem.687] [PMID: 20571569]
[http://dx.doi.org/10.1021/acs.accounts.6b00229] [PMID: 27482835];
b) Majek, M.; Jacobi von Wangelin, A. Mechanistic perspectives on organic photoredox catalysis for aromatic substitutions. Acc. Chem. Res., 2016, 49(10), 2316-2327.
[http://dx.doi.org/10.1021/acs.accounts.6b00293] [PMID: 27669097]
[http://dx.doi.org/10.1002/anie.201202624] [PMID: 22890985];
b) Alonso, C.; Martínez de Marigorta, E.; Rubiales, G.; Palacios, F. Carbon trifluoromethylation reactions of hydrocarbon derivatives and heteroarenes. Chem. Rev., 2015, 115(4), 1847-1935.
[http://dx.doi.org/10.1021/cr500368h] [PMID: 25635524]
[http://dx.doi.org/10.1021/acs.accounts.5b00068] [PMID: 25951291];
b) Shi, L.; Xia, W. Photoredox functionalization of C–H bonds adjacent to a nitrogen atom. Chem. Soc. Rev., 2012, 41(23), 7687-7697.
[http://dx.doi.org/10.1039/c2cs35203f] [PMID: 22869017]
[http://dx.doi.org/10.1021/ar00017a005]
[http://dx.doi.org/10.1021/acs.chemrev.6b00018] [PMID: 27109441]
[http://dx.doi.org/10.1021/ja3030164] [PMID: 22548244]
[http://dx.doi.org/10.1002/chem.201304823] [PMID: 24596102]
[http://dx.doi.org/10.1039/c2sc00907b] [PMID: 22518271]
[http://dx.doi.org/10.1016/B978-0-12-817742-6.00001-3]
[http://dx.doi.org/10.1016/j.jece.2020.104075]
[http://dx.doi.org/10.1002/anie.200904056] [PMID: 19946918];
b) Narayanam, J.M.R.; Stephenson, C.R.J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev., 2011, 40(1), 102-113.
[http://dx.doi.org/10.1039/B913880N] [PMID: 20532341];
c) Teplý, F. Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Collect. Czech. Chem. Commun., 2011, 76(7), 859-917.
[http://dx.doi.org/10.1135/cccc2011078];
d) Xuan, J.; Xiao, W.J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed., 2012, 51(28), 6828-6838.
[http://dx.doi.org/10.1002/anie.201200223] [PMID: 22711502];
e) Prier, C.K.; Rankic, D.A.; MacMillan, D.W.C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev., 2013, 113(7), 5322-5363.
[http://dx.doi.org/10.1021/cr300503r] [PMID: 23509883];
f) Reckenthäler, M.; Griesbeck, A.G. Photoredox catalysis for organic syntheses. Adv. Synth. Catal., 2013, 355(14-15), 2727-2744.
[http://dx.doi.org/10.1002/adsc.201300751];
g) Xi, Y.; Yi, H.; Lei, A. Synthetic applications of photoredox catalysis with visible light. Org. Biomol. Chem., 2013, 11(15), 2387-2403.
[http://dx.doi.org/10.1039/c3ob40137e] [PMID: 23426621];
h) Ravelli, D.; Protti, S.; Fagnoni, M.; Albini, A. Visible light photocatalysis. A green choice? Curr. Org. Chem., 2013, 17(21), 2366-2373.
[http://dx.doi.org/10.2174/13852728113179990051];
i) Xuan, J.; Lu, L.Q.; Chen, J.R.; Xiao, W.J. Visible-light-driven photoredox catalysis in the construction of carbocyclic and heterocyclic ring systems. Eur. J. Org. Chem., 2013, 2013, (30), 6755-6770.
[http://dx.doi.org/10.1002/ejoc.201300596];
j) Schultz, D.M.; Yoon, T.P Solar synthesis prospects in visible light photocatalysis. Science, 2014, 343(6174), 1239176.
[http://dx.doi.org/10.1126/science.1239176] [PMID: 24578578]
[http://dx.doi.org/10.1039/C4OB00843J] [PMID: 24984977];
b) Nicewicz, D.A.; Nguyen, T.M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal., 2014, 4(1), 355-360.
[http://dx.doi.org/10.1021/cs400956a];
c) Ravelli, D.; Fagnoni, M.; Albini, A. Photoorganocatalysis. What for? Chem. Soc. Rev., 2013, 42(1), 97-113.
[http://dx.doi.org/10.1039/C2CS35250H] [PMID: 22990664];
d) Hari, D.P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. (Camb.), 2014, 50(51), 6688-6699.
[http://dx.doi.org/10.1039/C4CC00751D] [PMID: 24699920]
[http://dx.doi.org/10.1002/anie.201101182] [PMID: 22109976];
b) Lang, X.; Chen, X.; Zhao, J. Heterogeneous visible light photocatalysis for selective organic transformations. Chem. Soc. Rev., 2014, 43(1), 473-486.
[http://dx.doi.org/10.1039/C3CS60188A] [PMID: 24162830];
c) Cherevatskaya, M.; König, B. Heterogeneous photocatalysts in organic synthesis. Russ. Chem. Rev., 2014, 83(3), 183-195.
[http://dx.doi.org/10.1070/RC2014v083n03ABEH004427]
[http://dx.doi.org/10.1002/asia.201402310] [PMID: 25048419];
b) Wang, C.; Astruc, D. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem. Soc. Rev., 2014, 43(20), 7188-7216.
[http://dx.doi.org/10.1039/C4CS00145A] [PMID: 25017125]
[http://dx.doi.org/10.1039/c3ta12645e];
b) Sun, D.; Ye, L.; Li, Z. Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Appl. Catal. B, 2015, 164, 428-432.
[http://dx.doi.org/10.1016/j.apcatb.2014.09.054];
c) Xie, Z.; Wang, C.; deKrafft, K.E.; Lin, W. Highly stable and porous cross-linked polymers for efficient photocatalysis. J. Am. Chem. Soc., 2011, 133(7), 2056-2059.
[http://dx.doi.org/10.1021/ja109166b] [PMID: 21275413];
d) Guo, S.; Zhang, H.; Huang, L.; Guo, Z.; Xiong, G.; Zhao, J. Porous material-immobilized iodo-Bodipy as an efficient photocatalyst for photoredox catalytic organic reaction to prepare pyrrolo[2,1-a]isoquinoline. Chem. Commun. (Camb.), 2013, 49(77), 8689-8691.
[http://dx.doi.org/10.1039/c3cc44486d] [PMID: 23949367]
[http://dx.doi.org/10.1039/C5CY01289A]
[http://dx.doi.org/10.1126/science.1200165] [PMID: 21566184]
[http://dx.doi.org/10.1016/j.biortech.2013.02.007] [PMID: 23499181]
[http://dx.doi.org/10.1016/S0360-3199(00)00058-6]
[http://dx.doi.org/10.1063/1.5140497]
[http://dx.doi.org/10.3390/catal10111334]
[http://dx.doi.org/10.1016/j.rser.2017.06.102]
[http://dx.doi.org/10.1073/pnas.0906974107] [PMID: 20212122];
b) Acar, C.; Dincer, I.; Zamfirescu, C. A review on selected heterogeneous photocatalysts for hydrogen production. Int. J. Energy Res., 2014, 38(15), 1903-1920.
[http://dx.doi.org/10.1002/er.3211]
[http://dx.doi.org/10.1126/science.1103197] [PMID: 15310892];
b) Dincer, I.; Acar, C. Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrogen Energy, 2015, 40(34), 11094-11111.
[http://dx.doi.org/10.1016/j.ijhydene.2014.12.035]
[http://dx.doi.org/10.3390/app9122489]
[http://dx.doi.org/10.1016/j.pmatsci.2017.09.002]
[http://dx.doi.org/10.1002/smll.201600382] [PMID: 27805773]
[http://dx.doi.org/10.1002/adma.201400288] [PMID: 24888530]
[http://dx.doi.org/10.1016/j.cej.2016.06.090]
[http://dx.doi.org/10.1039/C7EN00063D]
[http://dx.doi.org/10.1021/acs.chemrev.0c00030] [PMID: 32469528]
[http://dx.doi.org/10.1007/s11426-018-9399-2]
[http://dx.doi.org/10.1039/D0MA00327A]
[http://dx.doi.org/10.1002/chem.201701460] [PMID: 28503763]
[http://dx.doi.org/10.1038/353737a0]
[http://dx.doi.org/10.1007/s11244-005-3834-0]
[http://dx.doi.org/10.1021/acsomega.6b00058] [PMID: 31457117]
[http://dx.doi.org/10.1021/ie2025213]
[http://dx.doi.org/10.1002/cctc.201801304]
[http://dx.doi.org/10.1016/j.apcatb.2017.10.002]
[http://dx.doi.org/10.1039/C4TA02720E]
[http://dx.doi.org/10.1016/j.jcat.2019.08.038]
[http://dx.doi.org/10.1021/acscatal.7b03029]
[http://dx.doi.org/10.1002/asia.201901718] [PMID: 32003942]
[http://dx.doi.org/10.1039/C7CY01510K]
[http://dx.doi.org/10.1002/ejoc.201301105]
[http://dx.doi.org/10.1002/adsc.201900603]
[http://dx.doi.org/10.1021/acs.orglett.0c02168] [PMID: 32790434]
[http://dx.doi.org/10.1002/anie.200803630] [PMID: 18985641]
[http://dx.doi.org/10.1007/s10853-020-04674-8]
[http://dx.doi.org/10.1016/j.inoche.2019.04.021]
[http://dx.doi.org/10.1016/j.jcis.2018.09.099] [PMID: 30293047]
[http://dx.doi.org/10.1126/sciadv.1701162] [PMID: 28835929]
[http://dx.doi.org/10.1021/acsami.8b18206] [PMID: 30629427]
[http://dx.doi.org/10.1039/C5CC06163F] [PMID: 26391908]
[http://dx.doi.org/10.1002/cctc.201200957]
[http://dx.doi.org/10.1021/acs.inorgchem.8b02132] [PMID: 30299930]
[http://dx.doi.org/10.1021/ic200295h] [PMID: 21568275]
[http://dx.doi.org/10.1021/jacs.5b12931] [PMID: 26956083]
[http://dx.doi.org/10.1016/j.apsusc.2016.07.020]
[http://dx.doi.org/10.1039/C8CY00822A]
[http://dx.doi.org/10.1039/C6CC00708B] [PMID: 27075825]
[http://dx.doi.org/10.1016/j.jcat.2017.11.015]
[http://dx.doi.org/10.1002/ppsc.201700234]
[http://dx.doi.org/10.1002/aoc.4199]
[http://dx.doi.org/10.1021/nn403954p] [PMID: 24063681]
[http://dx.doi.org/10.1039/C2GC36542A]
[http://dx.doi.org/10.1021/acs.iecr.9b03371]
[http://dx.doi.org/10.1021/cs5000284]
[http://dx.doi.org/10.1021/acsomega.9b03096] [PMID: 31909327]
[http://dx.doi.org/10.1021/ja102866p] [PMID: 21043489]
[http://dx.doi.org/10.1016/j.apcatb.2014.04.035]
[http://dx.doi.org/10.1002/chem.201200368] [PMID: 22674851]
[http://dx.doi.org/10.1021/cs300407e]
[http://dx.doi.org/10.1021/ja2120647] [PMID: 22440019];
b) Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Supported Au-Cu bimetallic alloy nanoparticles: an aerobic oxidation catalyst with regenerable activity by visible-light irradiation. Angew. Chem. Int. Ed., 2013, 52(20), 5295-5299.
[http://dx.doi.org/10.1002/anie.201301669] [PMID: 23585018];
c) Sakamoto, H.; Ohara, T.; Yasumoto, N.; Shiraishi, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hot-electron-induced highly efficient O 2 activation by pt nanoparticles supported on Ta 2 O 5 driven by visible light. J. Am. Chem. Soc., 2015, 137(29), 9324-9332.
[http://dx.doi.org/10.1021/jacs.5b04062] [PMID: 26158296]
[http://dx.doi.org/10.1021/acscatal.0c00290]
[http://dx.doi.org/10.1021/acssuschemeng.0c05121]
[http://dx.doi.org/10.1039/C9GC00022D]
[http://dx.doi.org/10.1021/jacs.9b01891] [PMID: 30945862]
[http://dx.doi.org/10.1021/acsami.0c00013] [PMID: 32272831]
[http://dx.doi.org/10.1021/ja206846p] [PMID: 22026454]
[http://dx.doi.org/10.1002/cssc.201601702] [PMID: 28033455]
[http://dx.doi.org/10.1039/C7NJ01688C]
[http://dx.doi.org/10.1002/chem.201805712] [PMID: 30536854]
[http://dx.doi.org/10.1002/adsc.202000116]
[http://dx.doi.org/10.1039/C9GC00222G]
[http://dx.doi.org/10.1039/D0GC00910E]
[http://dx.doi.org/10.1039/C9RA08593A] [PMID: 35541371]
[http://dx.doi.org/10.1021/acs.joc.8b01536] [PMID: 30015483]
[http://dx.doi.org/10.1039/C8CC07759B] [PMID: 30382250]
[http://dx.doi.org/10.1039/C6RA05385H]
[http://dx.doi.org/10.1021/acssuschemeng.7b01102]
[http://dx.doi.org/10.1007/s11164-017-3100-7]
[http://dx.doi.org/10.1021/acs.joc.7b01532] [PMID: 28880554]
[http://dx.doi.org/10.1021/acs.orglett.9b01788] [PMID: 31247810]
[http://dx.doi.org/10.1039/D0NJ02527E]
[http://dx.doi.org/10.1016/j.gresc.2021.07.004]
[http://dx.doi.org/10.1039/C3RA46383D]
[http://dx.doi.org/10.1039/C6GC01463A]
[http://dx.doi.org/10.1021/ja400311h] [PMID: 23565980]
[http://dx.doi.org/10.1002/adsc.201600925]
[http://dx.doi.org/10.1126/science.aad8313] [PMID: 26912852]
[http://dx.doi.org/10.1002/anie.201506579] [PMID: 26338043]
[http://dx.doi.org/10.1002/adsc.201200683]
[http://dx.doi.org/10.1021/ol400410m] [PMID: 23517196]
[http://dx.doi.org/10.1002/anie.201105235] [PMID: 22083854]
[http://dx.doi.org/10.1021/acs.orglett.5b03531] [PMID: 26761155]
[http://dx.doi.org/10.1002/anie.201409999] [PMID: 25504920]
[http://dx.doi.org/10.1002/chem.201200050] [PMID: 22431393]
[http://dx.doi.org/10.1021/acs.orglett.5b01616] [PMID: 26120767]
[http://dx.doi.org/10.1021/acscatal.5b00817]
[http://dx.doi.org/10.1002/chem.201500227] [PMID: 25688851]
[http://dx.doi.org/10.1002/anie.201400560] [PMID: 25159225]
[http://dx.doi.org/10.1021/acs.orglett.8b01079] [PMID: 29717611]
[http://dx.doi.org/10.1021/cs500447n]
[http://dx.doi.org/10.1002/chem.201103242] [PMID: 22314870]
[http://dx.doi.org/10.1039/c2ob07053g] [PMID: 22447128]
[http://dx.doi.org/10.1002/chem.201102779] [PMID: 22271403]
[http://dx.doi.org/10.1021/cs200318n]
[http://dx.doi.org/10.1016/j.apsusc.2015.04.232]
[http://dx.doi.org/10.1021/cs300682d]
[http://dx.doi.org/10.1038/s41467-020-15131-0] [PMID: 32170119]
[http://dx.doi.org/10.1038/s41467-019-08652-w] [PMID: 30808862]
[http://dx.doi.org/10.1039/C5CC08344C] [PMID: 26762483]
[http://dx.doi.org/10.1021/acscatal.8b04182]
[http://dx.doi.org/10.1016/j.apcata.2013.08.008]
[http://dx.doi.org/10.1002/anie.201004365] [PMID: 21226146]
[http://dx.doi.org/10.1021/acscatal.8b02937]
[http://dx.doi.org/10.1002/adsc.201100894]
[http://dx.doi.org/10.1039/D0OB01151G] [PMID: 32789391]
[http://dx.doi.org/10.1021/acs.joc.7b00140] [PMID: 28303717]
[http://dx.doi.org/10.1021/ol051696+] [PMID: 16146403]
[http://dx.doi.org/10.1002/anie.201102931] [PMID: 21805547]
[http://dx.doi.org/10.1021/acs.orglett.7b01441] [PMID: 28571318]
[http://dx.doi.org/10.1021/ol2002013] [PMID: 21446682]