Abstract
In organic synthesis, mechanochemical approaches have received increased attention because of their broad applications in green methodologies. By utilization of mechanical forces on the various reactants, there is a certain increase of their surface area and also areas of contact, which usually make reaction pathways more available through a greater number of effective collisions. Mechanical energy can be produced and transferred through ball mills, one of the highest necessary devices for green organic solid-state reactions. In the last few decades, various challenging organic transformations have been published using ball milling in different fields of organic synthesis. Ball milling has received tremendous attention in numerous organic synthesis since it allows for reactions to occur at ambient temperature in the absence of any solvent under mild conditions which are compatible for a green process. The carbon-carbon and carbon–heteroatom bond formation reactions and also synthesis of heterocyclic compounds are of ample importance in both academia and pharmaceutical industry. This review will highlight the recent developments of amidation reactions, asymmetric synthesis, various heterocyclic compounds synthesis, crosscoupling reactions, C–H bond activation for C–C and carbon–heteroatom bond formation reactions under the ballmilling conditions.
Graphical Abstract
[http://dx.doi.org/10.1039/c0cs00195c] [PMID: 21387034];
b) James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; Krebs, A.; Mack, J.; Maini, L.; Orpen, A.G.; Parkin, I.P.; Shearouse, W.C.; Steed, J.W.; Waddell, D.C. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41(1), 413-447.
[http://dx.doi.org/10.1039/C1CS15171A] [PMID: 21892512];
c) Ould M’hamed, M. Ball milling for heterocyclic compounds synthesis in green chemistry: A Review. Synth. Commun., 2015, 45(22), 2511-2528.
[http://dx.doi.org/10.1080/00397911.2015.1058396];
d) Achar, T.K.; Bose, A.; Mal, P. Mechanochemical synthesis of small organic molecules. Beilstein J. Org. Chem., 2017, 13, 1907-1931.
[http://dx.doi.org/10.3762/bjoc.13.186] [PMID: 29062410];
e) Do, J.L. Friščić T. Mechanochemistry: A force of synthesis. ACS Cent. Sci., 2017, 3(1), 13-19.
[http://dx.doi.org/10.1021/acscentsci.6b00277] [PMID: 28149948];
f) El-Sayed, T.; Aboelnaga, A.; El-Atawy, M.; Hagar, M. Ball milling promoted N-heterocycles synthesis. Molecules, 2018, 23(6), 1348.
[http://dx.doi.org/10.3390/molecules23061348] [PMID: 29867039];
g) Leonardi, M.; Villacampa, M.; Menéndez, J.C. Multicomponent mechanochemical synthesis. Chem. Sci. (Camb.), 2018, 9(8), 2042-2064.
[http://dx.doi.org/10.1039/C7SC05370C] [PMID: 29732114];
h) Tan, D.; García, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev., 2019, 48(8), 2274-2292.
[http://dx.doi.org/10.1039/C7CS00813A] [PMID: 30806391];
i) Friščić T.; Mottillo, C.; Titi, H.M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed., 2020, 59(3), 1018-1029.
[http://dx.doi.org/10.1002/anie.201906755] [PMID: 31294885];
j) Porcheddu, A.; Colacino, E.; De Luca, L.; Delogu, F. Metal-mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal., 2020, 10, 8344-8394.;
l) Egorov, I.N.; Santra, S.; Kopchuk, D.S.; Kovalev, I.S.; Zyryanov, G.V.; Majee, A.; Ranu, B.C.; Rusinov, V.L.; Chupakhin, O.N. Ball milling: an efficient and green approach for asymmetric organic synthesis. Green Chem., 2020, 22, 302-315.;
n) Colacino, E.; Isoni, N.; Crawford, D.; García, F. Upscaling mechanochemistry: challenges and opportunities for sustainable industry. Trends Chem., 2021, 3, 335-33.;
p) Avila-Ortiz, C.G.; Juaristi, E. Novel methodologies for chemical activation in organic synthesis under solvent-free reaction conditions. Molecules, 2020, 25, 3579.;
q) Ying, P.; Yu, J.; Sub, W. Liquid-assisted grinding mechanochemistry in the synthesis of pharmaceuticals. Adv. Synth. Catal., 2021, 363, 1246-1271.;
r) Mlostoń, G.; Celeda, M.; Heimgartner, H.; Duda, D.; Obijalska, E.; Jasiński, M. Synthesis and selected transformations of 2-unsubstituted imidazole N-oxides using a ball-milling mechanochemical approach. Catalysts, 2022, 12, 589.;
s) Laskar, R.; Pal, T.; Bhattacharya, T.; Maiti, S.; Akita, M.; Maiti, D. Sustainable C–H functionalization under ball-milling, microwave-irradiation and aqueous media. Green Chem., 2022, 24, 2296-2320.;
t) Ranu, B.C; Stolle, A. Ball milling towards green synthesis: Applications, projects, challenges. RSC Green Chemistry No. 31 The Royal Society of Chemistry: Cambridge, UK, 2015.
[http://dx.doi.org/10.1016/j.cclet.2019.12.019]
[http://dx.doi.org/10.1016/j.cclet.2021.03.047];
b) Zeng, Z.; Chen, Y.; Zhu, X.; Yu, L. Polyaniline-supported nano metal-catalyzed coupling reactions: Opportunities and challenges. Chin. Chem. Lett., 2022, 34, 107728.
[http://dx.doi.org/10.1016/j.cclet.2022.08.008];
c) Xiao, X.; Guan, C.; Xu, J.; Fu, W.; Yu, L. Selenium-catalyzed selective reactions of carbonyl derivatives: state-of-the-art and future challenges. Green Chem., 2021, 23(13), 4647-4655.
[http://dx.doi.org/10.1039/D1GC00961C]
[http://dx.doi.org/10.1039/C7SC05371A] [PMID: 29780455]
[http://dx.doi.org/10.1002/anie.201511689] [PMID: 26879729]
[http://dx.doi.org/10.5935/0103-5053.20160117]
[http://dx.doi.org/10.1021/acscatal.7b00582]
[http://dx.doi.org/10.1016/j.tet.2018.06.003]
[http://dx.doi.org/10.1002/cplu.202000451] [PMID: 32794369]
[http://dx.doi.org/10.1002/anie.202106412] [PMID: 34357668]
[http://dx.doi.org/10.1021/acs.joc.1c02350] [PMID: 34596412]
[http://dx.doi.org/10.1002/ajoc.201600061]
[http://dx.doi.org/10.1002/ejoc.201501223]
[http://dx.doi.org/10.1016/j.tetlet.2017.01.016]
[http://dx.doi.org/10.1039/C5GC00536A]
[http://dx.doi.org/10.1002/ejoc.201501039]
[http://dx.doi.org/10.1246/cl.141127]
[http://dx.doi.org/10.1016/j.tetlet.2015.12.078]
[http://dx.doi.org/10.1002/ejoc.201501371]
[http://dx.doi.org/10.1039/C6OB00351F] [PMID: 27072599]
[http://dx.doi.org/10.3762/bjoc.13.189] [PMID: 29062413]
[http://dx.doi.org/10.1080/17518253.2018.1526332]
[http://dx.doi.org/10.1039/C7GC03539J]
[http://dx.doi.org/10.1002/asia.202200843] [PMID: 36063072]
[http://dx.doi.org/10.1021/acs.joc.6b01938] [PMID: 27690440]
[http://dx.doi.org/10.1021/acs.joc.6b02197] [PMID: 27779398]
[http://dx.doi.org/10.1515/hc-2020-0123]
[http://dx.doi.org/10.1021/jacs.1c00906] [PMID: 33784464]
[http://dx.doi.org/10.1021/acs.orglett.1c02096] [PMID: 34342468]
[http://dx.doi.org/10.1039/C5CC04423E] [PMID: 26154719]
[http://dx.doi.org/10.1021/acs.orglett.7b02973] [PMID: 29130689]
[http://dx.doi.org/10.1039/C8QO00420J]
[http://dx.doi.org/10.3762/bjoc.14.31] [PMID: 29520307]
[http://dx.doi.org/10.1002/adsc.201800161]
[http://dx.doi.org/10.1002/anie.201805778] [PMID: 29889348]
[http://dx.doi.org/10.1002/ajoc.201402170]
[http://dx.doi.org/10.1016/j.tetlet.2015.01.079]
[http://dx.doi.org/10.1039/C5GC00079C]
[http://dx.doi.org/10.1002/ejoc.201601357]
[http://dx.doi.org/10.1039/C6GC03306G]
[http://dx.doi.org/10.1002/chem.201901826] [PMID: 31106927]
[http://dx.doi.org/10.1080/17415993.2016.1163699]
[http://dx.doi.org/10.1002/cctc.201600455]
[http://dx.doi.org/10.1002/anie.201713109] [PMID: 29334423]
[http://dx.doi.org/10.3762/bjoc.15.130] [PMID: 31293680]
[http://dx.doi.org/10.1126/science.aay8224] [PMID: 31857482]
[http://dx.doi.org/10.1021/acs.joc.1c01233] [PMID: 34256566]
[http://dx.doi.org/10.1038/s41467-021-26962-w] [PMID: 34795265]