Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

A Review on Green Synthesis and Biological Activities of Medicinally Important Nitrogen and Oxygen Containing Heterocycles

Author(s): Susheel Gulati*, Rajvir Singh and Suman Sangwan

Volume 26, Issue 20, 2022

Published on: 11 January, 2023

Page: [1848 - 1894] Pages: 47

DOI: 10.2174/1385272827666221227114713

Price: $65

Abstract

Recently, the application of green chemistry for the formation of potential bioactive heterocyclic moieties has turned out to be the key area of research for organic chemists due to the growing concern over environmental issues. Therefore, the development of nonhazardous synthetic protocols gained the particular attention of synthetic chemists as a frontier task in the present scenario. Nowadays, microbial infections have been haunting human civilization since prehistoric times, resulting in many deaths worldwide. Cancer is a fatal and dreadful disease without any appropriate cure, thus threatening humanity in both the developing and developed worlds. Therefore, there is a critical requirement for the design and synthesis of new classes of compounds to circumvent these diseases. Heterocycles are unique precursors for the synthesis of various pharmaceuticals and agrochemicals, particularly those possessing N- or O- moieties. The methods to prepare heterocycles are of great importance in synthesizing organic compounds, especially the heterocycles found in natural products. The synthesis of nitrogen and oxygen-containing heterocycles viz. Coumarins, dihydropyrimidinones, imidazoles, isoxazoles, and benzimidazoles represent attractive and demanding work for chemists as these molecules have found extensive applications in several fields, such as materials science, analytical chemistry and most importantly in, medicinal chemistry. In this review paper, we focus on the synthetic strategy to prepare these types of heterocyclic compounds by green methods and discuss their various biological applications.

Graphical Abstract

[1]
Kennedy, R.O.; Thornes, R.D. Coumarins: Biology, applications and mode of action; John Wiley and Sons: Chichester, 1997.
[2]
Maeda, M. Laser Dyes; Academic Press: New York, 1984.
[3]
Kayser, O.; Kolodziej, H. Antibacterial activity of extracts and constituents of Pelargonium sidoides and Pelargonium reniforme. Planta Med., 1997, 63(6), 508-510.
[http://dx.doi.org/10.1055/s-2006-957752] [PMID: 9434601]
[4]
Wang, C.J.; Hsieh, Y.J.; Chu, C.Y.; Lin, Y.L.; Tseng, T.H. Inhibition of cell cycle progression in human leukemia HL-60 cells by esculetin. Cancer Lett., 2002, 183(2), 163-168.
[http://dx.doi.org/10.1016/S0304-3835(02)00031-9] [PMID: 12065091]
[5]
Kirkiacharian, S.; Thuy, D.T.; Sicsic, S.; Bakhchinian, R.; Kurkjian, R.; Tonnaire, T. Structure–activity relationships of some 3-substituted-4-hydroxycoumarins as HIV-1 protease inhibitors. Farmaco, 2002, 57(9), 703-708.
[http://dx.doi.org/10.1016/S0014-827X(02)01264-8] [PMID: 12385519]
[6]
Mitra, A.K.; De, A.; Karchaudhuri, N.; Misra, S.K.; Mukhopadhyay, A.K. ChemInform Abstract: Synthesis of coumarins in search of better nonpeptidic HIV protease inhibitors. ChemInform, 1999, 30(49) no.
[http://dx.doi.org/10.1002/chin.199949125]
[7]
Hurst, E.W.; Hull, R. Two new synthetic substances active against viruses of the psittacosis-lymphogranulomatrachoma group. J. Med. Pharm. Chem., 1961, 3(2), 215-229.
[http://dx.doi.org/10.1021/jm50015a002] [PMID: 14450164]
[8]
Klein, E.; DeBonis, S.; Thiede, B.; Skoufias, D.A.; Kozielski, F.; Lebeau, L. New chemical tools for investigating human mitotic kinesin Eg5. Bioorg. Med. Chem., 2007, 15(19), 6474-6488.
[http://dx.doi.org/10.1016/j.bmc.2007.06.016] [PMID: 17587586]
[9]
Ramesh, B.; Bhalgat, C.M. Novel dihydropyrimidines and its pyrazole derivatives: Synthesis and pharmacological screening. Eur. J. Med. Chem., 2011, 46(5), 1882-1891.
[http://dx.doi.org/10.1016/j.ejmech.2011.02.052] [PMID: 21414695]
[10]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[11]
Cai, J.L.; Li, S.; Zhou, C.H.; Wu, J. Advance in research of imidazoles as anti-tumor agents. Zhongguo Xin Yao Zazhi, 2009, 18, 598-608.
[12]
Pierard, G.E.; Vroome, V.; Borgers, M.; Cauwenbergh, G.; Pierard-Franchimont, C. New insights in the effects of topical ketoconazole. Curr. Top. Pharmacol., 2006, 10(1), 59-65.
[13]
Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem., 2009, 44(6), 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.010] [PMID: 18851889]
[14]
Khabnadideh, S.; Rezaei, Z.; Motazedian, M.H.; Eskandari, M. Synthesis of metronidazole derivatives as antigiardiasis agents. Daru, 2007, 15(1), 17-20.
[15]
Stover, C.K.; Warrener, P.; VanDevanter, D.R.; Sherman, D.R.; Arain, T.M.; Langhorne, M.H.; Anderson, S.W.; Towell, J.A.; Yuan, Y.; McMurray, D.N.; Kreiswirth, B.N.; Barry, C.E.; Baker, W.R. A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature, 2000, 405(6789), 962-966.
[http://dx.doi.org/10.1038/35016103] [PMID: 10879539]
[16]
Sánchez-Moreno, M.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Ramírez-Macías, I.; Olmo, F.; Sanz, A.M.; Campayo, L.; Cano, C.; Yunta, M.J.R. In vitro leishmanicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against Leishmania infantum and Leishmania braziliensis species. J. Antimicrob. Chemother., 2012, 67(2), 387-397.
[http://dx.doi.org/10.1093/jac/dkr480] [PMID: 22127582]
[17]
Łażewska, D.; Więcek, M.; Ligneau, X.; Kottke, T.; Weizel, L.; Seifert, R.; Schunack, W.; Stark, H.; Kieć-Kononowicz, K. Histamine H3 and H4 receptor affinity of branched 3-(1H-imidazol-4-yl)propyl N-alkylcarbamates. Bioorg. Med. Chem. Lett., 2009, 19(23), 6682-6685.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.005] [PMID: 19846299]
[18]
Cherkofsky, S.C.; Sharpe, T.R. Anti-inflammatory 4,5-diarly-2-(substitutedthio) imidazoles and their corresponding sulfoxides and sulfones. United States Patent US4190666, 1980.
[19]
Galley, G.; Stalder, H.; Goergler, A.; Hoener, M.C.; Norcross, R.D. Optimisation of imidazole compounds as selective TAAR1 agonists: Discovery of RO5073012. Bioorg. Med. Chem. Lett., 2012, 22(16), 5244-5248.
[http://dx.doi.org/10.1016/j.bmcl.2012.06.060] [PMID: 22795332]
[20]
Hancock, A.A.; Bennani, Y.L.; Bush, E.N.; Esbenshade, T.A.; Faghih, R.; Fox, G.B.; Jacobson, P.; Knourek-Segel, V.; Krueger, K.M.; Nuss, M.E.; Pan, J.B.; Shapiro, R.; Witte, D.G.; Yao, B.B. Antiobesity effects of A-331440, a novel non-imidazole histamine H3 receptor antagonist. Eur. J. Pharmacol., 2004, 487(1-3), 183-197.
[http://dx.doi.org/10.1016/j.ejphar.2004.01.015] [PMID: 15033391]
[21]
Conti, P.; Dallanoce, C.; De Amici, M.; De Micheli, C.; Klotz, K.N. synthesis of new Δ 2 -isoxazoline derivatives and their pharmacological characterization as β-adrenergic receptor antagonists. Bioorg. Med. Chem., 1998, 6(4), 401-408.
[http://dx.doi.org/10.1016/S0968-0896(97)10051-7] [PMID: 9597184]
[22]
Gordaliza, M.; Faircloth, G.T.; Castro, M.A.; Miguel del Corral, J.M.; López-Vázquez, M.L.; San Feliciano, A. Immunosuppressive cyclolignans. J. Med. Chem., 1996, 39(14), 2865-2868.
[http://dx.doi.org/10.1021/jm960023h] [PMID: 8709118]
[23]
Kwon, T.; Heiman, A.S.; Oriaku, E.T.; Yoon, K.; Lee, H.J. New steroidal antiinflammatory antedrugs: steroidal [16 alpha,17 alpha-d]-3′-carbethoxyisoxazolines. J. Med. Chem., 1995, 38(6), 1048-1051.
[http://dx.doi.org/10.1021/jm00006a026] [PMID: 7699698]
[24]
Kang, Y.K.; Shin, K.J.; Yoo, K.H.; Seo, K.J.; Hong, C.Y.; Lee, C.S.; Park, S.Y.; Kim, D.J.; Park, S.W. Synthesis and antibacterial activity of new carbapenems containing isoxazole moiety. Bioorg. Med. Chem. Lett., 2000, 10(2), 95-99.
[http://dx.doi.org/10.1016/S0960-894X(99)00646-0] [PMID: 10673088]
[25]
Kozikowski, A.P.; Tapadar, S.; Luchini, D.N.; Kim, K.H.; Billadeau, D.D. Use of the nitrile oxide cycloaddition (NOC) reaction for molecular probe generation: a new class of enzyme selective histone deacetylase inhibitors (HDACIs) showing picomolar activity at HDAC6. J. Med. Chem., 2008, 51(15), 4370-4373.
[http://dx.doi.org/10.1021/jm8002894] [PMID: 18642892]
[26]
Vicentini, C.B.; Romagnoli, C.; Manfredini, S.; Rossi, D.; Mares, D. Pyrazolo[3,4- c]isothiazole and isothiazolo[4,3- d]isoxazole derivatives as antifungal agents. Pharm. Biol., 2011, 49(5), 545-552.
[http://dx.doi.org/10.3109/13880209.2010.527350] [PMID: 21385093]
[27]
Ratnakar Reddy, K.; Sambasiva Rao, P.; Jitender Dev, G.; Poornachandra, Y.; Ganesh Kumar, C.; Shanthan Rao, P.; Narsaiah, B. Synthesis of novel 1,2,3-triazole/isoxazole functionalized 2H-Chromene derivatives and their cytotoxic activity. Bioorg. Med. Chem. Lett., 2014, 24(7), 1661-1663.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.069] [PMID: 24641975]
[28]
Padmaja, A.; Rajasekhar, C.; Muralikrishna, A.; Padmavathi, V. Synthesis and antioxidant activity of oxazolyl/thiazolylsulfonylmethyl pyrazoles and isoxazoles. Eur. J. Med. Chem., 2011, 46(10), 5034-5038.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.010] [PMID: 21864949]
[29]
Patrick, D.A.; Bakunov, S.A.; Bakunova, S.M.; Kumar, E.V.K.S.; Lombardy, R.J.; Jones, S.K.; Bridges, A.S.; Zhirnov, O.; Hall, J.E.; Wenzler, T.; Brun, R.; Tidwell, R.R. Synthesis and in vitro antiprotozoal activities of dicationic 3,5-diphenylisoxazoles. J. Med. Chem., 2007, 50(10), 2468-2485.
[http://dx.doi.org/10.1021/jm0612867] [PMID: 17439202]
[30]
Loh, B.; Vozzolo, L.; Mok, B.J.; Lee, C.C.; Fitzmaurice, R.J.; Caddick, S.; Fassati, A. Inhibition of HIV-1 replication by isoxazolidine and isoxazole sulfonamides. Chem. Biol. Drug Des., 2010, 75(5), 461-474.
[http://dx.doi.org/10.1111/j.1747-0285.2010.00956.x] [PMID: 20486932]
[31]
Mao, J.; Yuan, H.; Wang, Y.; Wan, B.; Pieroni, M.; Huang, Q.; van Breemen, R.B.; Kozikowski, A.P.; Franzblau, S.G. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. J. Med. Chem., 2009, 52(22), 6966-6978.
[http://dx.doi.org/10.1021/jm900340a] [PMID: 19863050]
[32]
Deng, B.L.; Cullen, M.D.; Zhou, Z.; Hartman, T.L.; Buckheit, R.W., Jr; Pannecouque, C.; Clercq, E.D.; Fanwick, P.E.; Cushman, M. Synthesis and anti-HIV activity of new alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTIs) incorporating benzoxazolone and benzisoxazole rings. Bioorg. Med. Chem., 2006, 14(7), 2366-2374.
[http://dx.doi.org/10.1016/j.bmc.2005.11.014] [PMID: 16321539]
[33]
Kan, H.; Adachi, I.; Kido, R.; Hirose, K. Isoxazoles. XVIII. Synthesis and pharmacological properties of 5-aminoalkyl-and 3-aminoalkylisoxazoles and related derivatives. J. Med. Chem., 1967, 10(3), 411-418.
[http://dx.doi.org/10.1021/jm00315a028] [PMID: 22185144]
[34]
Ishioka, T.; Kubo, A.; Koiso, Y.; Nagasawa, K.; Itai, A.; Hashimoto, Y. Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety. Bioorg. Med. Chem., 2002, 10(5), 1555-1566.
[http://dx.doi.org/10.1016/S0968-0896(01)00421-7] [PMID: 11886817]
[35]
Ishioka, T.; Tanatani, A.; Nagasawa, K.; Hashimoto, Y. Anti-Androgens with full antagonistic activity toward human prostate tumor LNCaP cells with mutated androgen receptor. Bioorg. Med. Chem. Lett., 2003, 13(16), 2655-2658.
[http://dx.doi.org/10.1016/S0960-894X(03)00575-4] [PMID: 12873487]
[36]
Zarrinmayeh, H.; Nunes, A.M.; Ornstein, P.L.; Zimmerman, D.M.; Arnold, M.B.; Schober, D.A.; Gackenheimer, S.L.; Bruns, R.F.; Hipskind, P.A.; Britton, T.C.; Cantrell, B.E.; Gehlert, D.R. Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists. J. Med. Chem., 1998, 41(15), 2709-2719.
[http://dx.doi.org/10.1021/jm9706630] [PMID: 9667962]
[37]
Hasegawa, M.; Nishigaki, N.; Washio, Y.; Kano, K.; Harris, P.A.; Sato, H.; Mori, I.; West, R.I.; Shibahara, M.; Toyoda, H.; Wang, L.; Nolte, R.T.; Veal, J.M.; Cheung, M. Discovery of novel benzimidazoles as potent inhibitors of TIE-2 and VEGFR-2 tyrosine kinase receptors. J. Med. Chem., 2007, 50(18), 4453-4470.
[http://dx.doi.org/10.1021/jm0611051] [PMID: 17676829]
[38]
Hranjec, M.; Kralj, M.; Piantanida, I.; Sedić, M.; Šuman, L.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and amidino-substituted derivatives of styryl-2-benzimidazoles and benzimidazo[1,2-a]quinolines. Synthesis, photochemical synthesis, DNA binding, and antitumor evaluation, part 3. J. Med. Chem., 2007, 50(23), 5696-5711.
[http://dx.doi.org/10.1021/jm070876h] [PMID: 17935309]
[39]
Falcó, J.L.; Piqué, M.; González, M.; Buira, I.; Méndez, E.; Terencio, J.; Pérez, C.; Príncep, M.; Palomer, A.; Guglietta, A. Synthesis, pharmacology and molecular modeling of N-substituted 2-phenyl-indoles and benzimidazoles as potent GABAA agonists. Eur. J. Med. Chem., 2006, 41(8), 985-990.
[http://dx.doi.org/10.1016/j.ejmech.2006.03.031] [PMID: 16764969]
[40]
Khan, M.S.; Agrawal, R.; Ubaidullah, M.; Hassan, M.I.; Tarannum, N. Design, synthesis and validation of anti-microbial coumarin derivatives: An efficient green approach. Heliyon, 2019, 5(10), e02615.
[41]
Heravi, M.M.; Khorasani, M.; Derikvand, F.; Oskooie, H.A.; Bamoharram, F.F. Highly efficient synthesis of coumarin derivatives in the presence of H14[NaP5W30O110] as a green and reusable catalyst. Catal. Commun., 2007, 8(12), 1886-1890.
[http://dx.doi.org/10.1016/j.catcom.2007.02.030]
[42]
Hussien, F.A.; Merza, J.; Karam, A. Eco-friendly synthesis of coumarin derivatives via pechmann condensation using heterogeneous catalysis. Chem. Mater. Res., 2016, 8, 16-20.
[43]
Ghosh, P.P.; Das, A.R. Nano crystalline ZnO: a competent and reusable catalyst for one pot synthesis of novel benzylamino coumarin derivatives in aqueous media. Tetrahedron Lett., 2012, 53(25), 3140-3143.
[http://dx.doi.org/10.1016/j.tetlet.2012.04.033]
[44]
Halder, B.; Maity, H.S.; Nag, A. One pot synthesis of biscoumarins and pyranocoumarins by coconut juice as a natural catalyst. Curr. Organocatal., 2019, 6(1), 20-27.
[http://dx.doi.org/10.2174/2213337206666190219142408]
[45]
Kovvuri, J.; Nagaraju, B.; Ganesh Kumar, C.; Sirisha, K.; Chandrasekhar, C.; Alarifi, A.; Kamal, A. Catalyst-free synthesis of pyrazole-aniline linked coumarin derivatives and their antimicrobial evaluation. J. Saudi Chem. Soc., 2018, 22(6), 665-677.
[http://dx.doi.org/10.1016/j.jscs.2017.12.002]
[46]
Chavan, H.V.; Bandgar, B.P. Aqueous Extract of Acacia concinna Pods: An efficient surfactant type catalyst for synthesis of 3-Carboxycoumarins and cinnamic acids via knoevenagel condensation. ACS Sustain. Chem.& Eng., 2013, 1(8), 929-936.
[http://dx.doi.org/10.1021/sc4000237]
[47]
Wadhwa, P.; Kharbanda, A.; Bagchi, S.; Sharma, A. Water-mediated one-pot three-component reaction to bifunctionalized thiadiazoloquinazolinone-coumarin hybrids: A green approach. ChemistrySelect, 2018, 3(10), 2837-2841.
[http://dx.doi.org/10.1002/slct.201702908]
[48]
Keri, R.S.; Hosamani, K.M.; Seetharama Reddy, H.R. A solvent-free synthesis of coumarins using phosphotungstic acid as catalyst. Catal. Lett., 2009, 131(1-2), 321-327.
[http://dx.doi.org/10.1007/s10562-009-9940-z]
[49]
Das, S.; Majee, A.; Hajra, A. A convenient synthesis of coumarins using reusable ionic liquid as catalyst. Green Chem. Lett. Rev., 2011, 4(4), 349-353.
[http://dx.doi.org/10.1080/17518253.2011.572296]
[50]
Fiorito, S.; Taddeo, V.A.; Genovese, S.; Epifano, F. A green chemical synthesis of coumarin-3-carboxylic and cinnamic acids using crop-derived products and waste waters as solvents. Tetrahedron Lett., 2016, 57(43), 4795-4798.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.023]
[51]
Bagul, S.D.; Rajput, J.D.; Bendre, R.S. Synthesis of 3-carboxycoumarins at room temperature in water extract of banana peels. Environ. Chem. Lett., 2017, 15(4), 725-731.
[http://dx.doi.org/10.1007/s10311-017-0645-z]
[52]
Kuram, B.S.; Crooks, P.A.; Rajitha, B. A review on green synthesis and biological activities of nitrogen and oxygen containing heterocycles. Int. J. Pharm. Biomed. Res., 2012, 3, 50-53.
[53]
Maleki, A.; Ravaghi, P.; Movahed, H.; Aghaie, M. Green and eco-friendly mica/Fe3O4 as an efficient nanocatalyst for the multicomponent synthesis of 2-amino-4 H-chromene derivatives. Green Chemistry Letters and Reviews, 2021, 14(1), 62-72.
[54]
Farahi, M.; Abdipour, M. Silica sodium carbonate as an effective and reusable catalyst for the three-component synthesis of pyrano coumarins. Org. Chem. Res., 2018, 4(2), 182-193.
[55]
Greenwood, N.N.; Earnshaw, A. Chemistry of the elements; Elsevier, 2012.
[56]
Mehrabi, H.; Abusaidi, H. Synthesis of biscoumarin and 3, 4-dihydropyrano [c] chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J. Indian Chem. Soc., 2010, 7(4), 890-894.
[57]
Jain, S.; Rajguru, D.; Keshwal, B.S.; Acharya, A.D. Solvent-free green and efficient one-pot synthesis of dihydropyrano [3, 2-c] chromene derivatives. ISRN Org. Chem., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/185120] [PMID: 24282643]
[58]
Ghorbani-Vaghei, R.; Toghraei-Semiromi, Z.; Karimi-Nami, R. One-pot synthesis of 4H-chromene and dihydropyrano[3,2-c]chromene derivatives in hydroalcoholic media. J. Braz. Chem. Soc., 2011, 22, 905-909.
[http://dx.doi.org/10.1590/S0103-50532011000500013]
[59]
Abdolmohammadi, S.; Balalaie, S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media. Tetrahedron Lett., 2007, 48(18), 3299-3303.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.135]
[60]
Xiang-Shan, W.; Zhao-Sen, Z.; Da-Qing, S.; XianYong, W.; Zhi-Min, Z. One-pot synthesis of 2-amino-4H-chromene derivatives by MNPs@Cu as an effective and reusable magnetic nanocatalyst. Youji Huaxue, 2005, 25, 1138.
[61]
Da-Qing, S.; Jing, W.; Qi-Ya, Z.; Xiang-Shan, W. A green method for the synthesis of novel benzo[b]pyran derivatives in an ionic liquid. Youji Huaxue, 2006, 26, 643.
[62]
Brahamachari, G. Room temperature one-pot green synthesis of coumarin-3-carboxylic acids in water: a practical method for the large-scale synthesis. ACS Sustainable Chemistry & Engineering, 2015, 3(9), 2350-8.
[63]
Dinparast, L.; Valizadeh, H. Rapid, efficient and eco-friendly synthesis of coumarin derivatives using MgO nanoparticles in [bmim] BF4. Iran. J. Org. Chem., 2014, 6, 1341-1345.
[64]
Rahmatpour, A.; Mohammadian, S. An environmentally friendly, chemoselective, and efficient protocol for the preparation of coumarin derivatives by Pechman condensation reaction using new and reusable heterogeneous Lewis acid catalyst polystyrene-supported GaCl3. C. R. Chim., 2013, 16(3), 271-278.
[http://dx.doi.org/10.1016/j.crci.2013.01.006]
[65]
Shi, C.; Shi, D.Q. Green synthesis of chromen-2-one derivatives catalysed by L-proline. J. Chem. Res., 2011, 35(10), 585-586.
[http://dx.doi.org/10.3184/174751911X13173059031452]
[66]
Mandhane, P.G.; Joshi, R.S.; Ghawalkar, A.R.; Jadhav, G.R.; Gill, C.H. Ammonium metavanadate: A mild and efficient catalyst for the synthesis of coumarins. Bull. Korean Chem. Soc., 2009, 30(12), 2969-2972.
[http://dx.doi.org/10.5012/bkcs.2009.30.12.2969]
[67]
Li, X.T.; Liu, Y.H.; Liu, X.; Zhang, Z.H. Meglumine catalyzed one-pot, three-component combinatorial synthesis of pyrazoles bearing a coumarin unit. RSC Advances, 2015, 5(33), 25625-25633.
[http://dx.doi.org/10.1039/C5RA01677K]
[68]
Mayank, M.; Singh, A.; Raj, P.; Kaur, R.; Singh, A.; Kaur, N.; Singh, N. Zwitterionic liquid (ZIL) coated CuO as an efficient catalyst for the green synthesis of bis-coumarin derivatives via one-pot multi-component reactions using mechanochemistry. New J. Chem., 2017, 41(10), 3872-3881.
[http://dx.doi.org/10.1039/C6NJ03763A]
[69]
Khodabakhshi, S.; Karami, B.; Eskandari, K. Molybdate sulfuric acid-catalyzed one-pot synthesis of substituted coumarins under solvent-free conditions. Research on Chemical Intermediates, 2015, 41(10), 7263-72.
[70]
Ardakani, H.A.; Mirza, B.; Mokhtarian, N. An efficient synthesis of benzylamino coumarin derivatives via three-component coupling of 4-hydroxycoumarin, aromatic aldehyde and cyclic secondary amine catalyzed by CuO nanoparticles. J. Appl. Chemical Research., 2015, 9, 103-110.
[71]
Kiyani, H.; Ghorbani, F. Efficient tandem synthesis of a variety of pyran-annulated heterocycles, 3,4-disubstituted isoxazol-5(4H)-ones, and αβ-unsaturated nitriles catalyzed by potassium hydrogen phthalate in water. Res. Chem. Intermed., 2015, 41(10), 7847-7882.
[http://dx.doi.org/10.1007/s11164-014-1863-7]
[72]
Zhou, Z.; Liu, H.; Li, Y.; Liu, J.; Li, Y.; Liu, J.; Yao, J.; Wang, C. Novel synthesis of substituted furo[3,2-c]chromen-4-ones via four-component reaction from substituted nitrostyrenes, aromatic aldehydes, coumarins, and ammonium acetate. ACS Comb. Sci., 2013, 15(7), 363-369.
[http://dx.doi.org/10.1021/co4000419] [PMID: 23772749]
[73]
Shao, Z.; Wang, L.; Xu, L.; Zhao, H.; Xiao, J. Facile synthesis of azaarene-2-substituted chromanone derivatives via tandem sp3 C–H functionalization/decarboxylation of azaarenes with 4-oxo-4H-chromene-3-carboxylic acid. RSC Advances, 2014, 4(95), 53188-53191.
[http://dx.doi.org/10.1039/C4RA09338K]
[74]
Naimi-Jamal, M.R.; Mashkouri, S.; Sharifi, A. An efficient, multicomponent approach for solvent-free synthesis of 2-amino-4H-chromene scaffold. Mol. Divers., 2010, 14(3), 473-477.
[http://dx.doi.org/10.1007/s11030-010-9246-5] [PMID: 20373141]
[75]
Piruzmand, Z.; Ghomi, J.S.; Ghasemzadeh, M.A. A facile solvent-free route for the one-pot multicomponent synthesis of benzylpyrazolyl coumarins catalyzed by FeCl3. SiO2 nanoparticles. Medicinal Chemistry, 2016, 9, 619.
[76]
Santra, S.; Rahman, M.; Roy, A.; Majee, A.; Hajra, A. Microwave-assisted three-component “catalyst and solvent-free” green protocol: A highly efficient and clean one-pot synthesis of tetrahydrobenzo[ b]pyrans. Org. Chem. Int., 2014, 2014, 1-8.
[http://dx.doi.org/10.1155/2014/851924]
[77]
Pramanik, T.A.; Maji, P.O. Microwave assisted green synthesis of pharmaceutically important dihydropyrimidinones in fruit juice medium. Int. J. Pharma Sci., 2015, 7, 376-379.
[78]
Kumar, R.; Andhare, N.H.; Shard, A.; Richa, R.; Sinha, A.K. Multicomponent diversity-oriented synthesis of symmetrical and unsymmetrical 1,4-dihydropyridines in recyclable glycine nitrate (GlyNO3) ionic liquid: a mechanistic insight using Q-TOF, ESI-MS/MS. RSC Advances, 2014, 4(37), 19111-19121.
[http://dx.doi.org/10.1039/C4RA02169J]
[79]
Lal, J.; Gupta, S.K.; Agarwal, D.D. Chitosan: An efficient biodegradable and recyclable green catalyst for one-pot synthesis of 3,4-dihydropyrimidinones of curcumin in aqueous media. Catal. Commun., 2012, 27, 38-43.
[http://dx.doi.org/10.1016/j.catcom.2012.06.017]
[80]
Ranu, B.C.; Hajra, A.; Dey, S.S. A practical and green approach towards synthesis of dihydropyrimidinones without any solvent or catalyst. Org. Process Res. Dev., 2002, 6(6), 817-818.
[http://dx.doi.org/10.1021/op0255478]
[81]
Rafiee, E.; Jafari, H. A practical and green approach towards synthesis of dihydropyrimidinones: Using heteropoly acids as efficient catalysts. Bioorg. Med. Chem. Lett., 2006, 16(9), 2463-2466.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.087] [PMID: 16464580]
[82]
Patil, S.; Jadhav, S.D.; Deshmukh, M.B. Natural acid catalyzed multi-component reactions as a green approach. Arch. Appl. Sci. Res., 2011, 3(1), 203-208.
[83]
Pramanik, T.; Padan, S.K. Microwave irradiated “green biginelli reaction” employing apple, pomegranate and grape juice as eco-friendly reaction medium. Pharmacology, 2016, 8(3), 1-4.
[84]
Ranu, B.C.; Hajra, A.; Jana, U. Indium(III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1,3-dicarbonyl compounds, aldehydes, and urea: an improved procedure for the Biginelli reaction. J. Org. Chem., 2000, 65(19), 6270-6272.
[http://dx.doi.org/10.1021/jo000711f] [PMID: 10987976]
[85]
Suresh, S.A.; Saini, A.; Kumar, D.; Sandhu, J.S. Multicomponent eco-friendly synthesis of 3,4-dihydropyrimidine-2-(1 H)-ones using an organocatalyst Lactic acid. Green Chem. Lett. Rev., 2009, 2(1), 29-33.
[http://dx.doi.org/10.1080/17518250902973833]
[86]
Kumar, D.; Sandhu, J.S. Microwave enhanced, solvent free green protocol for the production of 3, 4-dihydropyrimidine-2-(1H)-ones using AlCl3. 6H2O as a catalyst. Indian J. Chem., 2010, 49, 360-363.
[87]
Zeinali-Dastmalbaf, M.; Davoodnia, A.; Heravi, M.M.; Tavakoli-Hoseini, N.; Khojastehnezhad, A.; Zamani, H.A. Silica gel-supported polyphosphoric acid (ppa-sio 2) catalyzed one-pot multi-component synthesis of 3,4-dihydropyrimidin-2(1h)-ones and -thiones: an efficient method for the biginelli reaction. Bull. Korean Chem. Soc., 2011, 32(2), 656-658.
[http://dx.doi.org/10.5012/bkcs.2011.32.2.656]
[88]
Sekhar, T.; Thriveni, P.; Harikrishna, M.; Murali, K. One-pot synthesis of 3,4-dihydropyrimidine-2(1h)-thione derivatives using dbu as green and recyclable catalyst. Asian J. Chem., 2018, 30(6), 1243-1246.
[http://dx.doi.org/10.14233/ajchem.2018.21181]
[89]
Amoozadeh, A.; Rahmani, S.; Nemati, F. Poly(ethylene)glycol/AlCl3 as a new and efficient system for multicomponent Biginelli-type synthesis of pyrimidinone derivatives. hc, 2013, 19(1), 69-73.
[http://dx.doi.org/10.1515/hc-2012-0157]
[90]
Pasunooti, K.K.; Chai, H.; Jensen, C.N.; Gorityala, B.K.; Wang, S.; Liu, X.W. A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Lett., 2011, 52(1), 80-84.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.150]
[91]
Moradi, L.; Tadayon, M. Green synthesis of 3,4-dihydropyrimidinones using nano Fe 3 O 4 @meglumine sulfonic acid as a new efficient solid acid catalyst under microwave irradiation. J. Saudi Chem. Soc., 2018, 22(1), 66-75.
[http://dx.doi.org/10.1016/j.jscs.2017.07.004]
[92]
Patil, S.; Jadhav, S.D.; Mane, S.Y. Pineapple juice as a natural catalyst: an excellent catalyst for Biginelli reaction. Int. J. Org. Chem. (Irvine), 2011, 1(3), 125-131.
[http://dx.doi.org/10.4236/ijoc.2011.13019]
[93]
Safari, J.; Ravandi, S.G. J. Mol. Struct., 2014, 1-7. [incomplete].
[94]
Prakash, G.K.S.; Lau, H.; Panja, C.; Bychinskaya, I.; Ganesh, S.K.; Zaro, B.; Mathew, T.; Olah, G.A. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Advanced Powder Technology, 2018, 29(12), 3315-26.
[95]
Khaldi-Khellafi, N.; Makhloufi-Chebli, M.; Oukacha-Hikem, D.; Bouaziz, S.T.; Lamara, K.O.; Idir, T.; Benazzouz-Touami, A.; Dumas, F. Green synthesis, antioxidant and antibacterial activities of 4-aryl-3,4-dihydropyrimidinones/thiones derivatives of curcumin. Theoretical calculations and mechanism study. J. Mol. Struct., 2019, 1181, 261-269.
[http://dx.doi.org/10.1016/j.molstruc.2018.12.104]
[96]
Mathapati, S.R.; Sakhare, J.F.; Swamia, M.B.; Dawlem, J.K. Application of green solvent in synthesis of thiophenytoins using aryl thioureas. Der. Pharm. Chem., 2012, 4, 2248.
[97]
Elhamifar, D.; Mofatehnia, P.; Faal, M. Magnetic nanoparticles supported Schiff-base/copper complex: An efficient nanocatalyst for preparation of biologically active 3,4-dihydropyrimidinones. J. Colloid Interface Sci., 2017, 504, 268-275.
[http://dx.doi.org/10.1016/j.jcis.2017.05.044] [PMID: 28551521]
[98]
Sharma, R.K.; Rawat, D. Silica immobilized nickel complex: An efficient and reusable catalyst for microwave-assisted one-pot synthesis of dihydropyrimidinones. Inorg. Chem. Commun., 2012, 17, 58-63.
[http://dx.doi.org/10.1016/j.inoche.2011.12.014]
[99]
Lal, J.; Sharma, M.; Gupta, S.; Parashar, P.; Sahu, P.; Agarwal, D.D. Hydrotalcite: A novel and reusable solid catalyst for one-pot synthesis of 3,4-dihydropyrimidinones and mechanistic study under solvent free conditions. J. Mol. Catal. Chem., 2012, 352, 31-37.
[http://dx.doi.org/10.1016/j.molcata.2011.09.009]
[100]
Eshghi, H.; Javid, A.; Khojastehnezhad, A.; Moeinpour, F.; Bamoharram, F.F.; Bakavoli, M.; Mirzaei, M. Preyssler heteropolyacid supported on silica coated NiFe2O4 nanoparticles for the catalytic synthesis of bis(dihydropyrimidinone)benzene and 3,4-dihydropyrimidin-2(1H)-ones. Chin. J. Catal., 2015, 36(3), 299-307.
[http://dx.doi.org/10.1016/S1872-2067(14)60265-5]
[101]
Adibi, H.; Samimi, H.A.; Beygzadeh, M. Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal. Commun., 2007, 8(12), 2119-2124.
[http://dx.doi.org/10.1016/j.catcom.2007.04.022]
[102]
Verma, S.; Jain, S.L.; Sain, B. PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the highly efficient synthesis of 3,4-dihydropyrimidinones. Tetrahedron Lett., 2010, 51(52), 6897-6900.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.124]
[103]
Attri, P.; Bhatia, R.; Gaur, J.; Arora, B.; Gupta, A.; Kumar, N.; Choi, E.H. Triethylammonium acetate ionic liquid assisted one-pot synthesis of dihydropyrimidinones and evaluation of their antioxidant and antibacterial activities. Arab. J. Chem., 2017, 10(2), 206-214.
[http://dx.doi.org/10.1016/j.arabjc.2014.05.007]
[104]
Gupta, R.; Paul, S.; Gupta, R. Covalently anchored sulfonic acid onto silica as an efficient and recoverable interphase catalyst for the synthesis of 3,4-dihydropyrimidinones/thiones. J. Mol. Catal. Chem., 2007, 266(1-2), 50-54.
[http://dx.doi.org/10.1016/j.molcata.2006.10.039]
[105]
Harsh, S.; Kumar, S.; Sharma, R.; Kumar, Y.; Kumar, R. Chlorophyll triggered one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones via photo induced electron transfer reaction. Arab. J. Chem., 2020, 13(3), 4720-4730.
[http://dx.doi.org/10.1016/j.arabjc.2019.11.002]
[106]
Nasr-Esfahani, M.; Hoseini, S.J.; Mohammadi, F. Fe3O4 Nanoparticles as an Efficient and Magnetically Recoverable Catalyst for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones under Solvent-Free Conditions. Chin. J. Catal., 2011, 32(9-10), 1484-1489.
[http://dx.doi.org/10.1016/S1872-2067(10)60263-X]
[107]
Bajpai, S.; Singh, S. Monoclinic zirconia nanoparticle-catalyzed regioselective synthesis of some novel substituted spirooxindoles through one-pot multicomponent reaction in a ball mill: A step toward green and sustainable chemistry. Synthetic Communications, 2017, 47(16), 1514-25.
[108]
Akbari, A. Tri(1-butyl-3-methylimidazolium) gadolinium hexachloride, ([bmim]3[GdCl6]), a magnetic ionic liquid as a green salt and reusable catalyst for the synthesis of tetrasubstituted imidazoles. Tetrahedron Lett., 2016, 57(3), 431-434.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.053]
[109]
Saffari Jourshari, M.; Mamaghani, M.; Shirini, F.; Tabatabaeian, K.; Rassa, M.; Langari, H. An expedient one-pot synthesis of highly substituted imidazoles using supported ionic liquid-like phase (SILLP) as a green and efficient catalyst and evaluation of their anti-microbial activity. Chin. Chem. Lett., 2013, 24(11), 993-996.
[http://dx.doi.org/10.1016/j.cclet.2013.06.005]
[110]
Khosropour, A.R. Ultrasound-promoted greener synthesis of 2,4,5-trisubstituted imidazoles catalyzed by Zr(acac)4 under ambient conditions. Ultrason. Sonochem., 2008, 15(5), 659-664.
[http://dx.doi.org/10.1016/j.ultsonch.2007.12.005] [PMID: 18299244]
[111]
Mohammadi Ziarani, G.; Badiei, A.; Lashgari, N.; Farahani, Z. Efficient one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles using SBA-Pr-SO3H as a green nano catalyst. J. Saudi Chem. Soc., 2016, 20(4), 419-427.
[http://dx.doi.org/10.1016/j.jscs.2013.01.005]
[112]
Keivanloo, A.; Bakherad, M.; Imanifar, E.; Mirzaee, M. Boehmite nanoparticles, an efficient green catalyst for the multi-component synthesis of highly substituted imidazoles. Applied Catalysis A: General., 2013, 467, 291-300.
[113]
Heravi, M.M.; Derikvand, F.; Bamoharram, F.F. Highly efficient, four-component one-pot synthesis of tetrasubstituted imidazoles using Keggin-type heteropolyacids as green and reusable catalysts. J. Mol. Catal. Chem., 2007, 263(1-2), 112-114.
[http://dx.doi.org/10.1016/j.molcata.2006.08.048]
[114]
Kumar, R.; Dhayabaran, V.; Sudhapriya, N.; Manikandan, A.; Gideon, D.A.; Annapoorani, S. p-TSA. H2O mediated one-pot, multi-component synthesis of isatin derived imidazoles as dual-purpose drugs against inflammation and cancer. Bioorganic Chemistry, 2020, 102, 104046.
[115]
Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S.B. A review of recent advances in the green synthesis of azole-and pyran-based fused heterocycles using MCRs and sustainable catalysts. Curr. Org. Chem., 2021, 25(1), 4-39.
[http://dx.doi.org/10.2174/18755348MTEwiNzgw2]
[116]
Heravi, M.R.P.; Vessally, E.; Behbehani, G.R.R. An efficient green MCR protocol for the synthesis of 2,4,5-trisubstituted imidazoles by Selectfluor™ under ultrasound irradiation. C. R. Chim., 2014, 17(2), 146-150.
[http://dx.doi.org/10.1016/j.crci.2012.12.007]
[117]
Naidoo, S.; Jeena, V. Molecular iodine/DMSO mediated oxidation of internal alkynes and primary alcohols using a one-pot, two step approach towards 2,4,5-trisubstituted imidazoles: Substrate scope and mechanistic studies. Tetrahedron, 2020, 76(12), 131028.
[http://dx.doi.org/10.1016/j.tet.2020.131028]
[118]
Thimmaraju, N.; Shamshuddin, S.Z.M. Synthesis of 2, 4, 5-trisubstituted imidazoles, quinoxalines and 1, 5-benzodiazepines over an eco-friendly and highly efficient ZrO 2–Al 2 O 3 catalyst. RSC advances., 2016, 6(65), 60231-43.
[119]
MaGee, D.I.; Bahramnejad, M.; Dabiri, M. Highly efficient and eco-friendly synthesis of 2-alkyl and 2-aryl-4,5-diphenyl-1H-imidazoles under mild conditions. Tetrahedron Lett., 2013, 54(21), 2591-2594.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.008]
[120]
Guo, X.; Shao, J.; Liu, H.; Chen, B.; Chen, W.; Yu, Y. Highly efficient and eco-friendly protocol to functionalized imidazoles via ring-opening of α-nitro epoxides. RSC advances., 2015, 564, 51559-62.
[121]
Kumar, D.; Kumar, N.M.; Patel, G.; Gupta, S.; Varma, R.S. A facile and eco-friendly synthesis of diarylthiazoles and diarylimidazoles in water. Tetrahedron Lett., 2011, 52(16), 1983-1986.
[http://dx.doi.org/10.1016/j.tetlet.2011.02.069]
[122]
Kidwai, M.; Mothsra, P.; Bansal, V.; Somvanshi, R.K.; Ethayathulla, A.S.; Dey, S.; Singh, T.P. One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst. J. Mol. Catal. Chem., 2007, 265(1-2), 177-182.
[http://dx.doi.org/10.1016/j.molcata.2006.10.009]
[123]
Banothu, J.; Gali, R.; Velpula, R.; Bavantula, R. Brønsted acidic ionic liquid catalyzed an efficient and eco-friendly protocol for the synthesis of 2,4,5-trisubstituted-1H-imidazoles under solvent-free conditions. Arab. J. Chem., 2017, 10, S2754-S2761.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.022]
[124]
Karimi, A.R.; Alimohammadi, Z.; Azizian, J.; Mohammadi, A.A.; Mohammadizadeh, M.R. Solvent-free synthesis of tetrasubstituted imidazoles on silica gel/NaHSO4 support. Catal. Commun., 2006, 7(9), 728-732.
[http://dx.doi.org/10.1016/j.catcom.2006.04.004]
[125]
Chary, M.V.; Keerthysri, N.C.; Vupallapati, S.V.N.; Lingaiah, N.; Kantevari, S. Tetrabutylammonium bromide (TBAB) in isopropanol: An efficient, novel, neutral and recyclable catalytic system for the synthesis of 2,4,5-trisubstituted imidazoles. Catal. Commun., 2008, 9(10), 2013-2017.
[http://dx.doi.org/10.1016/j.catcom.2008.03.037]
[126]
Maleki, A.; Paydar, R. Graphene oxide–chitosan bionanocomposite: a highly efficient nanocatalyst for the one-pot three-component synthesis of trisubstituted imidazoles under solvent-free conditions. RSC Advances, 2015, 5(42), 33177-33184.
[http://dx.doi.org/10.1039/C5RA03355A]
[127]
Sadeghi, B.; Mirjalili, B.B.F.; Hashemi, M.M. BF3•SiO2: an efficient reagent system for the one-pot synthesis of 1,2,4,5-tetrasubstituted imidazoles. Tetrahedron Lett., 2008, 49(16), 2575-2577.
[http://dx.doi.org/10.1016/j.tetlet.2008.02.100]
[128]
Zarnegar, Z.; Safari, J. Fe3O4@chitosan nanoparticles: A valuable heterogeneous nanocatalyst for the synthesis of 2,4,5-trisubstituted imidazoles. RSC Advances, 2014, 4(40), 20932-20939.
[129]
Varzi, Z.; Esmaeili, M.S.; Taheri-Ledari, R.; Maleki, A. Facile synthesis of imidazoles by an efficient and eco-friendly heterogeneous catalytic system constructed of Fe3O4 and Cu2O nanoparticles, and guarana as a natural basis. Inorg. Chem. Commun., 2021, 125, 108465.
[http://dx.doi.org/10.1016/j.inoche.2021.108465]
[130]
Safari, M.R.; Mohammad Rezaei, F.; Dehghan, A.; Noroozi, R.; Taheri, M.; Ghafouri-Fard, S. Genomic variants within the long non-coding RNA H19 confer risk of breast cancer in Iranian population. Gene, 2019, 701, 121-124.
[http://dx.doi.org/10.1016/j.gene.2019.03.036] [PMID: 30910558]
[131]
Das, B.; Kashanna, J.; Kumar, R.A.; Jangili, P. Synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles in water using p-dodecylbenzenesulfonic acid as catalyst. Monatsh. Chem., 2013, 144(2), 223-226.
[http://dx.doi.org/10.1007/s00706-012-0770-0]
[132]
Niloofar, T.H.; Abolghasem, D. Carbon-based solid acid catalyzed one-pot Mannich reaction: a facile synthesis of β-amino carbonyl compounds. Bulletin of the Korean Chemical Society, 2011, 32(2), 635-8.
[133]
Davoodnia, A.; Heravi, M.M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Green, one-pot, solvent-free synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles using a Brønsted acidic ionic liquid as novel and reusable catalyst. Synth. Commun., 2010, 40(17), 2588-2597.
[http://dx.doi.org/10.1080/00397910903289271]
[134]
Meena, D.R.; Maiti, B.; Chanda, K. Cu(I) catalyzed microwave assisted telescopic synthesis of 3,5-disubstituted isoxazoles in green media. Tetrahedron Lett., 2016, 57(49), 5514-5517.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.109]
[135]
Maddila, S.N.; Maddila, S.; Zyl, W.E.V.; Jonnalagadda, S.B. Mn doped ZrO 2 as a green, efficient and reusable heterogeneous catalyst for the multicomponent synthesis of pyrano [2, 3-d]-pyrimidine derivatives. RSC Advances, 2015, 5(47), 37360-6.
[136]
Heravi, M.M.; Derikvand, F.; Haeri, A.; Oskooie, H.A.; Bamoharram, F.F. Heteropolyacids as green and reusable catalysts for the synthesis of isoxazole derivatives. Synth. Commun., 2007, 38(1), 135-140.
[http://dx.doi.org/10.1080/00397910701651326]
[137]
Dou, G.; Xu, P.; Li, Q.; Xi, Y.; Huang, Z.; Shi, D. Clean and efficient synthesis of isoxazole derivatives in aqueous media. Molecules, 2013, 18(11), 13645-13653.
[http://dx.doi.org/10.3390/molecules181113645] [PMID: 24196411]
[138]
Dekamin, M.G.; Peyman, S.Z. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. International journal of biological macromolecules, 2016, 87, 172-9.
[139]
Kiyani, H.; Ghorbani, F. Expeditious green synthesis of 3,4-disubstituted isoxazole-5(4H)-ones catalyzed by nano-MgO. Res. Chem. Intermed., 2016, 42(9), 6831-6844.
[http://dx.doi.org/10.1007/s11164-016-2498-7]
[140]
Han, L.; Zhang, B.; Zhu, M.; Yan, J. An environmentally benign synthesis of isoxazolines and isoxazoles mediated by potassium chloride in water. Tetrahedron Lett., 2014, 55(14), 2308-2311.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.118]
[141]
Patil, M.S.; Mudaliar, C.; Chaturbhuj, G.U. Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones. Tetrahedron Lett., 2017, 58(33), 3256-3261.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.019]
[142]
Bharate, S.B.; Padala, A.K.; Dar, B.A.; Yadav, R.R.; Singh, B.; Vishwakarma, R.A. Montmorillonite clay Cu (II) catalyzed domino one-pot multicomponent synthesis of 3, 5-disubstituted isoxazoles. Tetrahedron Letters, 2013, 54(27), 3558-61.
[143]
Beyzaei, H.; Kamali Deljoo, M.; Aryan, R.; Ghasemi, B.; Zahedi, M.M.; Moghaddam-Manesh, M. Green multicomponent synthesis, antimicrobial and antioxidant evaluation of novel 5-amino-isoxazole-4-carbonitriles. Chem. Cent. J., 2018, 12(1), 114.
[http://dx.doi.org/10.1186/s13065-018-0488-0] [PMID: 30443685]
[144]
Ahmadzadeh, M.; Zarnegar, Z.; Safari, J. Sonochemical synthesis of methyl-4-(hetero)arylmethylene isoxazole-5(4 H)-ones using Sn II -montmorillonite. Green Chem. Lett. Rev., 2018, 11(2), 78-85.
[http://dx.doi.org/10.1080/17518253.2018.1434564]
[145]
Liu, Q.; Zhang, Y.N. One-pot synthesis of 3-Methyl-4-arylmethylene-isoxazol-5(4H)-ones catalyzed by sodium benzoate in aqueous media: A green chemistry strategy. Bull. Korean Chem. Soc., 2011, 32(10), 3559-3560.
[http://dx.doi.org/10.5012/bkcs.2011.32.10.3559]
[146]
Kalhor, M; Samiel, S; Mirshokraie, SA Fe3O4@ zeolite-SO3H as a magnetically bifunctional and retrievable nanocatalyst for green synthesis of perimidines. Research on Chemical Intermediates, 2020, 46(1), 821-36.
[147]
Kiyani, H.; Ghorbani, F. Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res. Chem. Intermed., 2015, 41(5), 2653-2664.
[http://dx.doi.org/10.1007/s11164-013-1411-x]
[148]
Rajanarendar, E.; Murthy, K.R.; Reddy, M.N. A mild and efficient four component one-pot synthesis of 2, 4, 5-triphenyl-(1H-1-imidazolyl) isoxazoles catalyzed by ceric ammonium nitrate. 2011. - NISCAIR-CSIR, India.
[149]
Vickers, N.J.; Ghorbani, F. Animal Communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[150]
Shanshak, M.; Budagumpi, S.; Małeckim, J.G.; Kerim, R.S. Green synthesis of 3, 4-disubstituted isoxazol-5 (4H)-ones using ZnO@ Fe3O4 core–shell nanocatalyst in water. Appl. Organomet. Chem., 2020, 34(4), e5544.
[151]
Perez, J.M.; Ramon, D.J. Synthesis of 3, 5-disubstituted isoxazoles and isoxazolines in deep eutectic solvents. ACS Sustainable Chemistry & Engineering, 2015, 3(9), 2343-9.
[152]
Zhang, Y.; Wei, B.W.; Lin, H.; Zhang, L.; Liu, J.X.; Luo, H.Q.; Fan, X.L. “On water” direct catalytic vinylogous Henry (nitroaldol) reactions of isatins for the efficient synthesis of isoxazole substituted 3-hydroxyindolin-2-ones. Green Chem., 2015, 17(6), 3266-3270.
[http://dx.doi.org/10.1039/C5GC00503E]
[153]
Tayade, A.P.; Pawar, R.P.; Khobare, R.V.; Mane, C.B.; Tayde, N.P. One pot and three component synthesis of 4-aryl-3-Methylisoxazole-5 (4H)-one derivative in the presence of sodium hypophosphite. 2019, 4, 358-360.
[154]
Irannejad-Gheshlaghchaei, N.; Zare, A.; Banaei, A.; Kaveh, H.; Varavi, N. N, N, N', N'-Tetramethyl-N, N'-bis (sulfo) ethane-1, 2-diaminium mesylate as a highly effective and dual-functional catalyst for the synthesis of 1-thioamidoalkyl-2-naphthols. Chem. Methodol., 2020, 4(4), 400-7.
[155]
Basak, P.; Dey, S.; Ghosh, P. Sulfonated graphene‐oxide as metal‐free efficient carbocatalyst for the synthesis of 3-Methyl-4-(hetero)arylmethylene isoxazole-5(4 H)-ones and substituted pyrazole. ChemistrySelect, 2020, 5(2), 626-636.
[http://dx.doi.org/10.1002/slct.201904164]
[156]
Saadati-Moshtaghin, H.R.; Maleki, B.; Tayebee, R.; Kahrobaei, S.; Abbasinohoji, F. 6-methylguanamine-supported CoFe2O4: An efficient catalyst for one-pot three-component synthesis of isoxazol-5 (4H)-one derivatives. Polycycl. Aromat. Comp., 2022, 42(3), 885-96.
[157]
Wang, X.D.; Zhu, L.H.; Liu, P.; Wang, X.Y.; Yuan, H.Y.; Zhao, Y.L. Copper-catalyzed cascade cyclization reactions of diazo compounds with tert-butyl nitrite and alkynes: one-pot synthesis of isoxazoles. J. Org. Chem., 2019, 84(24), 16214-16221.
[http://dx.doi.org/10.1021/acs.joc.9b02760] [PMID: 31779304]
[158]
Dwivedi, K.D.; Marri, S.R.; Nandigama, S.K.; Chowhan, R.L. An efficient solvent-free synthesis of 3-methyl-4-nitro-5-styrylisoxazoles using solid nano-titania. J. Chem. Sci., 2018, 130(9), 129.
[http://dx.doi.org/10.1007/s12039-018-1534-0]
[159]
Kiyani, H.; Ghorbani, F. 2013. Available from: http://heteroletters.org
[160]
Ponduri, R.; Kumar, P.; Vadali, L.R.A.O.; Modugu, N.R. Water-PEG-400 mediated an efficient one-pot eco-friendly synthesis of functionalized isoxazole substituted chromeno[2, 3-b]pyridine-3-carboxylate derivatives. ChemistrySelect, 2018, 3(27), 7766-7770.
[http://dx.doi.org/10.1002/slct.201801089]
[161]
Saikh, F.; Das, J.; Ghosh, S. Synthesis of 3-methyl-4-arylmethylene isoxazole-5 (4H)-ones by visible light in aqueous ethanol. Tetrahedron Letters., 2013, 54(35), 4679-82.
[162]
Zheng, R.; Feng, F.; Zhang, Z.; Fu, J.; Su, Q.; Zhang, Y.; Gu, Q. Microwave-assisted efficient synthesis of 3-substituted bis-isoxazole ether bearing 2-chloro-3-pyridyl via 1, 3-dipolar cycloaddition. Molecular Diversity, 2020, 24(2), 423-35.
[163]
Yaghoub, S.; Mohammad, E. Four-component reaction between ethyl benzoylacetate, hydroxylamine, aldehydes and malononitrile: Synthesis of Isoxazol-5 (2H)-Ones. Iran. J. Chem. Chem. Eng., 2016, 35(2)
[164]
Gulati, S.; Singh, R.; Sangwan, S.; Rana, S. Synthesis of novel benzimidazoles at room temperature, under solvent-free condition and their biological studies. J. Indian Chem. Soc., 2020, 18(1), 167-179.
[165]
Gulati, S.; Singh, R.; Sindhu, J.; Sangwan, S. Eco-friendly preparations of heterocycles using fruit juices as catalysts: A review. Org. Prep. Proced. Int., 2020, 52(5), 381-395.
[http://dx.doi.org/10.1080/00304948.2020.1773158]
[166]
Heravi, M.M.; Tajbakhsh, M.; Ahmadi, A.N.; Mohajerani, B. Efficient and eco-friendly catalysts for the synthesis of benzimidazoles. Monatshefte für Chemie/Chem. Month, 2006, 137(2), 175-179.
[http://dx.doi.org/10.1007/s00706-005-0407-7]
[167]
Chen, G.F.; Shen, H.D.; Jia, H.M.; Zhang, L.Y.; Kang, H.Y.; Qi, Q.Q.; Chen, B.H.; Cao, J.L.; Li, J.T. Eco-friendly synthesis of 2-substituted benzimidazoles using air as the oxidant. Aust. J. Chem., 2013, 66(2), 262-266.
[http://dx.doi.org/10.1071/CH12458]
[168]
Pramanik, A.; Roy, R.; Khan, S.; Ghatak, A.; Bhar, S. Eco-friendly synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using alumina-sulfuric acid as a heterogeneous reusable catalyst. Tetrahedron Lett., 2014, 55(10), 1771-1777.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.125]
[169]
Padalkar, V.S.; Gupta, V.D.; Phatangare, K.R.; Patil, V.S.; Umape, P.G.; Sekar, N. Indion 190 resin: efficient, environmentally friendly, and reusable catalyst for synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Green Chem. Lett. Rev., 2012, 5(2), 139-145.
[http://dx.doi.org/10.1080/17518253.2011.585666]
[170]
Heravi, M.M.; Sadjadi, S.; Oskooie, H.A.; Shoar, R.H.; Bamoharram, F.F. Applications of Cu (0) encapsulated nanocatalysts as superior catalytic systems in Cu-catalyzed organic transformations. RSC advances., 2020, 10(42), 24893-940.
[171]
Lu, J.; Yang, B.; Bai, Y. Microwave irradiation synthesis of 2-substituted benzimidazoles using PPA as a catalyst under solvent-free conditions. Synth. Commun., 2002, 32(24), 3703-3709.
[http://dx.doi.org/10.1081/SCC-120015381]
[172]
Dhakshinamoorthy, A.; Kanagaraj, K.; Pitchumani, K. Zn2+-K10-clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Lett., 2011, 52(1), 69-73.
[http://dx.doi.org/10.1016/j.tetlet.2010.10.146]
[173]
Karami, B.; Ghashghaee, V.; Khodabakhshi, S. Novel silica tungstic acid (STA): Preparation, characterization and its first catalytic application in synthesis of new benzimidazoles. Catal. Commun., 2012, 20, 71-75.
[http://dx.doi.org/10.1016/j.catcom.2012.01.012]
[174]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Shakouri Nikcheh, M. Water-accelerated selective synthesis of 1,2-disubstituted benzimidazoles at room temperature catalyzed by brnsted acidic ionic liquid. Synth. Commun., 2008, 38(23), 4272-4281.
[http://dx.doi.org/10.1080/00397910802326539]
[175]
Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene glycol: A recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem. Sci., 2010, 122(4), 607-612.
[http://dx.doi.org/10.1007/s12039-010-0095-7]
[176]
Kathirvelan, D.; Yuvaraj, P.; Babu, K.; Nagarajan, A.S.; Reddy, B.S. A green synthesis of benzimidazoles; - NISCAIR-CSIR, India., 2013.
[177]
Sajjadifar, S.; Ahmad Mirshokraie, S.; Javaherneshan, N.; Louie, O. SBSA as a New and efficient catalyst for the one-pot green synthesis of benzimidazole derivatives at room temperature. American. J. Organic Chemistry, 2012, 2(2), 1-6.
[http://dx.doi.org/10.5923/j.ajoc.20120202.01]
[178]
Chen, B.; Yang, Z.; Zhu, Y.; Xia, Y. Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A, 2014, 2(40), 16811-31.
[179]
Rajabi, F.; De, S.; Luque, R. An efficient and green synthesis of benzimidazole derivatives using SBA-15 supported cobalt nanocatalysts. Catal. Lett., 2015, 145(8), 1566-1570.
[http://dx.doi.org/10.1007/s10562-015-1546-z]
[180]
Sharma, H.; Kaur, N.; Singh, N.; Jang, D.O. Synergetic catalytic effect of ionic liquids and ZnO nanoparticles on the selective synthesis of 1, 2-disubstituted benzimidazoles using a ball-milling technique. Green Chem., 2015, 17(8), 4263-70.
[181]
Borade, R.M.; Shinde, P.R.; Kale, S.B.; Pawar, R.P. 2018.
[http://dx.doi.org/10.1063/1.5032529]
[182]
Bachhav, H.M.; Bhagat, S.B.; Telvekar, V.N. Efficient protocol for the synthesis of quinoxaline, benzoxazole and benzimidazole derivatives using glycerol as green solvent. Tetrahedron Lett., 2011, 52(43), 5697-5701.
[http://dx.doi.org/10.1016/j.tetlet.2011.08.105]
[183]
Bai, G.; Lan, X.; Liu, X.; Liu, C.; Shi, L.; Chen, Q.; Chen, G. An ammonium molybdate deposited amorphous silica coated iron oxide magnetic core–shell nanocomposite for the efficient synthesis of 2-benzimidazoles using hydrogen peroxide. Green Chem., 2014, 16(6), 3160-3168.
[http://dx.doi.org/10.1039/C3GC42551G]
[184]
Yang, D.; Zhu, X.; Wei, W.; Sun, N.; Yuan, L.; Jiang, M.; You, J.; Wang, H. Magnetically recoverable and reusable CuFe 2 O 4 nanoparticle-catalyzed synthesis of benzoxazoles, benzothiazoles and benzimidazoles using dioxygen as oxidant. RSC Advances, 2014, 4(34), 17832-17839.
[http://dx.doi.org/10.1039/C4RA00559G]
[185]
Sharma, S.D.; Konwar, D. Practical, ecofriendly, and chemoselective method for the synthesis of 2-aryl-1-arylmethyl-1 h -benzimidazoles using amberlite ir-120 as a reusable heterogeneous catalyst in aqueous media. Synth. Commun., 2009, 39(6), 980-991.
[http://dx.doi.org/10.1080/00397910802448440]
[186]
Gadekar, L.S.; Arbad, B.R.; Lande, M.K. Eco-friendly synthesis of benzimidazole derivatives using solid acid scolecite catalyst. Chin. Chem. Lett., 2010, 21(9), 1053-1056.
[http://dx.doi.org/10.1016/j.cclet.2010.03.038]
[187]
Ahmad, F.; Parveen, M. Microwave-assisted expeditious approach towards benzimidazole acrylonitrile derivatives exploring a new silica supported SBPTS catalyst. New J. Chemistry, 2018, 42(17), 14602-11.
[188]
Sadeghi Tafreshi, A.; Zamani, Z.; Sabbaghian, M.; Khavari-Nejad, R.A.; Arjmand, M. A comparative in vitro study of the effect of eosin b on asexual blood stages and gametocyte of plasmodiun falciparum. Iran. J. Med. Microbiol., 2021, 15(2), 173-188.
[http://dx.doi.org/10.30699/ijmm.15.2.173]
[189]
Karimi-Jaberi, Z.; Amiri, M. An efficient and inexpensive synthesis of 2-substituted benzimidazoles in water using boric acid at room temperature. E-J. Chem., 2012, 9(1), 167-170.
[http://dx.doi.org/10.1155/2012/793978]
[190]
Vernekar, V.U.; Hosamani, K.M.; Shaikh, I.N.; Achar, K.C.S. PTA (H3PO4· 12WO3· xH2O): An eco-friendly catalyst for the synthesis of new Schiff-bases containing benzimidazole moiety. Arabian Journal of Chemistry, 2016, 9, S663-7.
[191]
Herrera Cano, N.; Uranga, J.G.; Nardi, M.; Procopio, A.; Wunderlin, D.A.; Santiago, A.N. Selective and eco-friendly procedures for the synthesis of benzimidazole derivatives. The role of the Er(OTf)3 catalyst in the reaction selectivity. Beilstein J. Org. Chem., 2016, 12, 2410-2419.
[http://dx.doi.org/10.3762/bjoc.12.235] [PMID: 28144309]
[192]
Samanta, S.; Guha, C.; Malik, A.K. A facile synthesis of 2-(2-phenyl-4H-chromen-4-ylidene)-2H-indene-1, 3-diones and related compounds involving an interesting aerial oxidation. Tetrahedron letters, 2015, 56(34), 4954-8.
[193]
Bonacci, S; Iriti, G; Mancuso, S; Novelli, P; Paonessa, R; Tallarico, S; Nardi, M. Montmorillonite K10: An efficient organo-heterogeneous catalyst for synthesis of benzimidazole derivatives. Catalysts, 2020, 10(8), 845.
[194]
Wu, T.W.; Zeng, L.H.; Wu, J.; Fung, K.P. Myocardial protection of MCI-186 in rabbit ischemia–reperfusion. Life Sci., 2002, 71(19), 2249-2255.
[http://dx.doi.org/10.1016/S0024-3205(02)01965-3] [PMID: 12215372]
[195]
Fylaktakidou, K.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolaides, D. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[196]
Curini, M.; Cravotto, G.; Epifano, F.; Giannone, G. Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Curr. Med. Chem., 2006, 13(2), 199-222.
[http://dx.doi.org/10.2174/092986706775197890] [PMID: 16472213]
[197]
Maddi, V.; Raghu, K.S.; Rao, M.N.A. Synthesis and anti-inflammatory activity of 3-(benzylideneamino)coumarins in rodents. J. Pharm. Sci., 1992, 81(9), 964-966.
[http://dx.doi.org/10.1002/jps.2600810926] [PMID: 1432650]
[198]
Nicolaides, D.N.; Fylaktakidou, K.C.; Litinas, K.E.; Hadjipavlou-Litina, D. Synthesis and biological evaluation of several coumarin-4-carboxamidoxime and 3-(coumarin-4-yl)-1,2,4-oxadiazole derivatives. Eur. J. Med. Chem., 1998, 33(9), 715-724.
[http://dx.doi.org/10.1016/S0223-5234(98)80030-5]
[199]
Mazzeia, M.; Donderoa, R.; Sottofattoria, E.; Mellonib, E.; Minafrab, R. Inhibition of neutrophil O(2)(-) production by unsymmetrical methylene derivatives of benzopyrans: their use as potential antiinflammatory agents. Eur. J. Med. Chem., 2001, 36, 851-861.
[http://dx.doi.org/10.1016/S0223-5234(01)01279-X] [PMID: 11755228]
[200]
Cheng, J.; Chen, M.; Wallace, D.; Tith, S.; Arrhenius, T.; Kashiwagi, H.; Ono, Y.; Ishikawa, A.; Sato, H.; Kozono, T.; Sato, H.; Nadzan, A.M. Discovery and structure?activity relationship of coumarin derivatives as TNF-$alpha; inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(10), 2411-2415.
[http://dx.doi.org/10.1016/S0960-894X(04)00355-5] [PMID: 15109623]
[201]
Kontogiorgis, C.A.; Hadjipavlou-Litina, D.J. Synthesis and biological evaluation of novel coumarin derivatives with a 7-azomethine linkage. Bioorg. Med. Chem. Lett., 2004, 14(3), 611-614.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.060] [PMID: 14741253]
[202]
Ghate, M.; Kusanur, R.; Kulkarni, M. Synthesis and in vivo analgesic and anti-inflammatory activity of some bi heterocyclic coumarin derivatives. Eur. J. Med. Chem., 2005, 40(9), 882-887.
[http://dx.doi.org/10.1016/j.ejmech.2005.03.025] [PMID: 16140424]
[203]
Khan, I.A.; Kulkarni, M.V.; Gopal, M.; Shahabuddin, M.S.; Sun, C.M. Synthesis and biological evaluation of novel angularly fused polycyclic coumarins. Bioorg. Med. Chem. Lett., 2005, 15(15), 3584-3587.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.063] [PMID: 15967664]
[204]
Jackson, S.A.; Sahni, S.; Lee, L.; Luo, Y.; Nieduzak, T.R.; Liang, G.; Chiang, Y.; Collar, N.; Fink, D.; He, W.; Laoui, A.; Merrill, J.; Boffey, R.; Crackett, P.; Rees, B.; Wong, M.; Guilloteau, J.P.; Mathieu, M.; Rebello, S.S. Design, synthesis and characterization of a novel class of coumarin-based inhibitors of inducible nitric oxide synthase. Bioorg. Med. Chem., 2005, 13(8), 2723-2739.
[http://dx.doi.org/10.1016/j.bmc.2005.02.036] [PMID: 15781384]
[205]
Kontogiorgis, C.A.; Savvoglou, K.; Hadjipavlou-Litina, D.J. Antiinflammatory and antioxidant evaluation of novel coumarin derivatives. J. Enzyme Inhib. Med. Chem., 2006, 21(1), 21-29.
[http://dx.doi.org/10.1080/14756360500323022] [PMID: 16570501]
[206]
Gacche, R.N.; Gond, D.S.; Dhole, N.A.; Dawane, B.S. Coumarin Schiff-bases: as antioxidant and possibly anti-inflammatory agents. J. Enzyme Inhib. Med. Chem., 2006, 21(2), 157-161.
[http://dx.doi.org/10.1080/14756360500532671] [PMID: 16789429]
[207]
Lin, C.M.; Huang, S.T.; Lee, F.W.; Kuo, H.S.; Lin, M.H. 6-Acyl-4-aryl/alkyl-5,7-dihydroxycoumarins as anti-inflammatory agents. Bioorg. Med. Chem., 2006, 14(13), 4402-4409.
[http://dx.doi.org/10.1016/j.bmc.2006.02.042] [PMID: 16540334]
[208]
Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, R.N. Synthesis of novel triheterocyclic thiazoles as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2007, 42(10), 1272-1276.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.023] [PMID: 17337096]
[209]
Gummudavelly, S.; Ranganath, Y.; Bhasker, S.; Rajkumar, N. Synthesis and biological screening of some novel coumarin derivatives. Asian J. Res. Chem, 2009, 2(1), 46-48.
[210]
Melagraki, G.; Afantitis, A.; Igglessi-Markopoulou, O.; Detsi, A.; Koufaki, M.; Kontogiorgis, C.; Hadjipavlou-Litina, D.J. Synthesis and evaluation of the antioxidant and anti-inflammatory activity of novel coumarin-3-aminoamides and their alpha-lipoic acid adducts. Eur. J. Med. Chem., 2009, 44(7), 3020-3026.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.027] [PMID: 19232783]
[211]
Bansal, Y.; Ratra, S.; Bansal, G.; Singh, I.; Aboul-Enein, H.Y. Design and synthesis of coumarin substituted oxathiadiazolone derivatives having anti-inflammatory activity possibly through p38 MAP kinase inhibition. J. Indian Chem. Soc., 2009, 6(3), 504-509.
[212]
Reddy, T.S.; Kumar, C.P.; Mainkar, P.S.; Bansal, V.; Shukla, R.; Chandrasekhar, S.; Hügel, H.M. Synthesis and biological evaluation of 5, 10-dihydro-11H-dibenzo [b,e][1,4] diazepin-11-one structural derivatives as anti-cancer and apoptosis inducing agents. Eur. J. Med. Chem., 2016, 108, 674-86.
[213]
Roussaki, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Hamilakis, S.; Detsi, A. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg. Med. Chem. Lett., 2010, 20(13), 3889-3892.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.022] [PMID: 20627725]
[214]
Fatima, S.; Sharma, A.; Saxena, R.; Tripathi, R.; Shukla, S.K.; Pandey, S.K.; Tripathi, R.; Tripathi, R.P. One pot efficient diversity oriented synthesis of polyfunctional styryl thiazolopyrimidines and their bio-evaluation as antimalarial and anti-HIV agents. Eur. J. Med. Chem., 2012, 55, 195-204.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.018] [PMID: 22871486]
[215]
Brodsky, J.L.; Chiang, A.N.; Valderramos, J.C.; Balachandran, R.; Chovatiya, R.J.; Mead, B.P.; Schneider, C.; Bell, S.L.; Klein, M.G.; Huryn, D.M.; Chen, X.S.; Day, B.W.; Fidock, D.A.; Wipf, A. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum. Bioorg. Med. Chem., 2009, 17, 1527-1533.
[http://dx.doi.org/10.1016/j.bmc.2009.01.024] [PMID: 19195901]
[216]
Islam, M.M.; Fujii, S.; Sato, S.; Okauchi, T.; Takenaka, S.; Javed, K.; Imad, R.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Thermodynamics and kinetic studies in the binding interaction of cyclic naphthalene diimide derivatives with double stranded DNAs. Bioorg. Med. Chem., 2015, 23(15), 4769-4776.
[http://dx.doi.org/10.1016/j.bmc.2015.05.046] [PMID: 26081762]
[217]
Tewari, N.; Tiwari, V.K.; Mishra, R.C.; Tripathi, R.P.; Srivastava, A.K.; Ahmad, R.; Srivastava, R.; Srivastava, B.S. Synthesis and bioevaluation of glycosyl ureas as α-glucosidase inhibitors and their effect on mycobacterium. Bioorg. Med. Chem., 2003, 11(13), 2911-2922.
[http://dx.doi.org/10.1016/S0968-0896(03)00214-1] [PMID: 12788361]
[218]
Rana, K.; Kaur, B.; Chaudhary, G.; Kumar, S.; Goyal, S. Synthesis and in-vitro anti-microbial evaluation of novel hydrazones of substituted tetrahydropyrimidines. Int. J. Pharm. Sci. Res., 2011, 3, 226-229.
[219]
Lal, J.; Gupta, S.K.; Thavaselvam, D.; Agarwal, D.D. Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3,4-dihydropyrimidinones of curcumin. Bioorg. Med. Chem. Lett., 2012, 22(8), 2872-2876.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.056] [PMID: 22440624]
[220]
Hanan, E.J.; Baumgardner, M.; Bryan, M.C.; Chen, Y.; Eigenbrot, C.; Fan, P.; Gu, X.H.; La, H.; Malek, S.; Purkey, H.E.; Schaefer, G.; Schmidt, S.; Sideris, S.; Yen, I.; Yu, C.; Heffron, T.P. 4-Aminoindazolyl-dihydrofuro[3,4-d]pyrimidines as non-covalent inhibitors of mutant epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem. Lett., 2016, 26(2), 534-539.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.078] [PMID: 26639762]
[221]
Tawfik, H.A.; Bassyouni, F.; Gamal-Eldeen, A.M.; Abo-Zeid, M.A.; El-Hamouly, W.S. Tumor anti-initiating activity of some novel 3, 4-dihydropyrimidinones. Pharmacol. Rep., 2009, 61(6), 1153-1162.
[http://dx.doi.org/10.1016/S1734-1140(09)70178-1] [PMID: 20081251]
[222]
Singh, O.M.; Singh, S.J.; Devi, M.B.; Devi, L.N.; Singh, N.I.; Lee, S.G. Synthesis and in vitro evaluation of the antifungal activities of dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2008, 18(24), 6462-6467.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.063] [PMID: 18977139]
[223]
Ashok, M.; Holla, B.S.; Kumari, N.S. Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur. J. Med. Chem., 2007, 42(3), 380-385.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.003] [PMID: 17070617]
[224]
Prashantha Kumar, B.R.; Sankar, G.; Nasir Baig, R.B.; Chandrashekaran, S. Novel Biginelli dihydropyrimidines with potential anticancer activity: A parallel synthesis and CoMSIA study. Eur. J. Med. Chem., 2009, 44(10), 4192-4198.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.014] [PMID: 19525040]
[225]
Sari, O.; Roy, V.; Métifiot, M.; Marchand, C.; Pommier, Y.; Bourg, S.; Bonnet, P.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of dihydropyrimidine α,γ-diketobutanoic acid derivatives targeting HIV integrase. Eur. J. Med. Chem., 2015, 104, 127-138.
[http://dx.doi.org/10.1016/j.ejmech.2015.09.015] [PMID: 26451771]
[226]
Trivedi, A.R.; Bhuva, V.R.; Dholariya, B.H.; Dodiya, D.K.; Kataria, V.B.; Shah, V.H. Novel dihydropyrimidines as a potential new class of antitubercular agents. Bioorg. Med. Chem. Lett., 2010, 20(20), 6100-6102.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.046] [PMID: 20813528]
[227]
Aly, H.M.; Kamal, M.M. Efficient one-pot preparation of novel fused chromeno[2,3-d]pyrimidine and pyrano[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 47(1), 18-23.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.040] [PMID: 22000923]
[228]
Rajanarendar, E.; Reddy, M.N.; Murthy, K.R.; Reddy, K.G.; Raju, S.; Srinivas, M.; Praveen, B.; Rao, M.S. Synthesis, antimicrobial, and mosquito larvicidal activity of 1-aryl-4-methyl-3,6-bis-(5-methylisoxazol-3-yl)-2-thioxo-2,3,6,10b-tetrahydro-1H-pyrimido[5,4-c]quinolin-5-ones. Bioorg. Med. Chem. Lett., 2010, 20(20), 6052-6055.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.060] [PMID: 20813527]
[229]
Tripathi, B.; Bhatia, R.O.; Walia, S.; Kumar, B.I. Chemical composition and evaluation of tagetes erecta (var. Pusa narangi genda) essential oil for its antioxidant and antimicrobial activity. Biopesticides Int., 2012, 8(2), 138-146.
[230]
Singh, B.K.; Mishra, M.; Saxena, N.; Yadav, G.P.; Maulik, P.R.; Sahoo, M.K.; Gaur, R.L.; Murthy, P.K.; Tripathi, R.P. Synthesis of 2-sulfanyl-6-methyl-1,4-dihydropyrimidines as a new class of antifilarial agents. Eur. J. Med. Chem., 2008, 43(12), 2717-2723.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.038] [PMID: 18339456]
[231]
Sondhi, S.M.; Goyal, R.N.; Lahoti, A.M.; Singh, N.; Shukla, R.; Raghubir, R. Synthesis and biological evaluation of 2-thiopyrimidine derivatives. Bioorg. Med. Chem., 2005, 13(9), 3185-3195.
[http://dx.doi.org/10.1016/j.bmc.2005.02.047] [PMID: 15809154]
[232]
Khange, S.G.; Raju, S.A.; Mohite, P.B.; Pandhare, R.B. Synthesis and pharmacological evaluation of some new pyrimidine derivatives containing 1, 2, 4-triazole. Advanced Pharmaceutical Bulletin, 2012, 2(2), 213.
[PMID: 24312796]
[233]
Yadlapalli, R.K.; Chourasia, O.P.; Perali, R.S. A facile one-pot synthesis of 2-thioxo-dihydropyrimidines and polyfunctionalized pyran derivatives as mimics of novel calcium channel modulators. Tetrahedron Lett., 2012, 53(49), 6725-6728.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.020]
[234]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-4248.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[235]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-8.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[236]
Zampieri, D.; Mamolo, M.G.; Vio, L.; Banfi, E.; Scialino, G.; Fermeglia, M.; Ferrone, M.; Pricl, S. Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method. Bioorg. Med. Chem., 2007, 15(23), 7444-7458.
[http://dx.doi.org/10.1016/j.bmc.2007.07.023] [PMID: 17888669]
[237]
Olender, D.; Żwawiak, J.; Lukianchuk, V.; Lesyk, R.; Kropacz, A.; Fojutowski, A.; Zaprutko, L. Synthesis of some N-substituted nitroimidazole derivatives as potential antioxidant and antifungal agents. Eur. J. Med. Chem., 2009, 44(2), 645-652.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.016] [PMID: 18590938]
[238]
Puratchikody, A.; Doble, M. Antinociceptive and antiinflammatory activities and QSAR studies on 2-substituted-4,5-diphenyl-1H-imidazoles. Bioorg. Med. Chem., 2007, 15(2), 1083-1090.
[http://dx.doi.org/10.1016/j.bmc.2006.10.025] [PMID: 17079151]
[239]
Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In-vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(5), 2048-2054.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.029] [PMID: 20133024]
[240]
Gupta, P.; Hameed, S.; Jain, R. Ring-substituted imidazoles as a new class of anti-tuberculosis agents. Eur. J. Med. Chem., 2004, 39(9), 805-814.
[http://dx.doi.org/10.1016/j.ejmech.2004.05.005] [PMID: 15337293]
[241]
Pandey, J.; Tiwari, V.K.; Verma, S.S.; Chaturvedi, V.; Bhatnagar, S.; Sinha, S.; Gaikwad, A.N.; Tripathi, R.P. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem., 2009, 44(8), 3350-3355.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.013] [PMID: 19272678]
[242]
Ozkay, Y.; Iskar, I.; Incesu, Z.; Akalin, G.E. Synthesis of 2-substituted-N-[4-(1-methyl-4, 5-diphenyl-1H-imidazole-2-yl) phenyl] acetamide derivatives and evaluation of their anticancer activity. European journal of medicinal chemistry, 2010, 45(8), 3320-8.
[243]
Refaat, H.M. Synthesis and anticancer activity of some novel 2-substituted benzimidazole derivatives. Eur. J. Med. Chem., 2010, 45(7), 2949-2956.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.022] [PMID: 20399544]
[244]
Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978]
[245]
Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; Ibba, C.; Sanna, G.; Loddo, R.; La Colla, P. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg. Med. Chem., 2010, 18(8), 2937-2953.
[http://dx.doi.org/10.1016/j.bmc.2010.02.037] [PMID: 20359898]
[246]
Bhandari, K.; Srinivas, N.; Marrapu, V.K.; Verma, A.; Srivastava, S.; Gupta, S. Synthesis of substituted aryloxy alkyl and aryloxy aryl alkyl imidazoles as antileishmanial agents. Bioorg. Med. Chem. Lett., 2010, 20(1), 291-293.
[http://dx.doi.org/10.1016/j.bmcl.2009.10.117] [PMID: 19913413]
[247]
Zala, S.P.; Badmanaban, R.; Sen, D.J.; Patel, C.N. Synthesis and biological evaluation of 2,4,5-triphenyl-1H-imidazole-1-yl Derivatives. J. Appl. Pharm. Sci., 2012, 2, 202-208.
[http://dx.doi.org/10.7324/JAPS.2012.2732]
[248]
Prasanthy, G.; Ramana, V.; Reddy, K.; Nirmala, K.; Kumar, R. Synthesis and biological evaluation of 1-substitution imidazole derivatives. Int. J. Pharm., 2011, 1(2), 92-99.
[249]
de Carvalho, G.S.G.; Machado, P.A.; de Paula, D.T.S.; Coimbra, E.S.; da Silva, A.D. Synthesis, cytotoxicity, and antileishmanial activity of N,N′-disubstituted ethylenediamine and imidazolidine derivatives. Scientific-WorldJournal, 2010, 10, 1723-1730.
[http://dx.doi.org/10.1100/tsw.2010.176] [PMID: 20842318]
[250]
Gudipudi, G.; Sagurthi, S.R.; Perugu, S.; Achaiah, G.; David Krupadanam, G.L. Rational design and synthesis of novel 2-(substituted-2H-chromen-3-yl)-5-aryl-1H-imidazole derivatives as an anti-angiogenesis and anti-cancer agent. RSC Advances, 2014, 4(99), 56489-56501.
[http://dx.doi.org/10.1039/C4RA09945A]
[251]
Dao, P.; Smith, N.; Tomkiewicz-Raulet, C.; Yen-Pon, E.; Camacho-Artacho, M.; Lietha, D.; Herbeuval, J.P.; Coumoul, X.; Garbay, C.; Chen, H. Design, synthesis, and evaluation of novel imidazo[1,2-a][1,3,5]triazines and their derivatives as focal adhesion kinase inhibitors with antitumor activity. J. Med. Chem., 2015, 58(1), 237-251.
[http://dx.doi.org/10.1021/jm500784e] [PMID: 25180654]
[252]
Sarkarzadeh, H.; Miri, R.; Firuzi, O.; Amini, M.; Razzaghi-Asl, N.; Edraki, N.; Shafiee, A. Synthesis and antiproliferative activity evaluation of imidazole-based indeno[1,2-b]quinoline-9,11-dione derivatives. Arch. Pharm. Res., 2013, 36(4), 436-447.
[http://dx.doi.org/10.1007/s12272-013-0032-7] [PMID: 23440577]
[253]
Alkahtani, H.M.; Abbas, A.Y.; Wang, S. Synthesis and biological evaluation of benzo[d]imidazole derivatives as potential anti-cancer agents. Bioorg. Med. Chem. Lett., 2012, 22(3), 1317-1321.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.088] [PMID: 22225635]
[254]
Sun, J.; Lin, C.; Qin, X.; Dong, X.; Tu, Z.; Tang, F.; Chen, C.; Zhang, J. Synthesis and biological evaluation of 3,5-disubstituted-4-alkynylisoxozales as a novel class of HSP90 inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(16), 3129-3134.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.009] [PMID: 26112442]
[255]
Chen, D.; Shen, A.; Li, J.; Shi, F.; Chen, W.; Ren, J.; Liu, H.; Xu, Y.; Wang, X.; Yang, X.; Sun, Y.; Yang, M.; He, J.; Wang, Y.; Zhang, L.; Huang, M.; Geng, M.; Xiong, B.; Shen, J. Discovery of potent N-(isoxazol-5-yl)amides as HSP90 inhibitors. Eur. J. Med. Chem., 2014, 87, 765-781.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.065] [PMID: 25313505]
[256]
Ananda, H.; Kumar, K.S.S.; Hegde, M.; Rangappa, K.S. Induction of apoptosis and downregulation of ERα in DMBA-induced mammary gland tumors in Sprague–Dawley rats by synthetic 3,5-disubstituted isoxazole derivatives. Mol. Cell. Biochem., 2016, 420(1-2), 141-150.
[http://dx.doi.org/10.1007/s11010-016-2777-z] [PMID: 27473146]
[257]
Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Poornachandra, Y.; Ganesh Kumar, C.; Narsaiah, B. Synthesis of novel 5-(3-alkylquinolin-2-yl)-3-aryl isoxazole derivatives and their cytotoxic activity. Bioorg. Med. Chem. Lett., 2014, 24(5), 1349-1351.
[http://dx.doi.org/10.1016/j.bmcl.2014.01.038] [PMID: 24507927]
[258]
Pedada, S.R.; Yarla, N.S.; Tambade, P.J.; Dhananjaya, B.L.; Bishayee, A.; Arunasree, K.M.; Philip, G.H.; Dharmapuri, G.; Aliev, G.; Putta, S.; Rangaiah, G. Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents. Eur. J. Med. Chem., 2016, 112, 289-297.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.025] [PMID: 26907155]
[259]
Ashwini, N.; Garg, M.; Mohan, C.D.; Fuchs, J.E.; Rangappa, S.; Anusha, S.; Swaroop, T.R.; Rakesh, K.S.; Kanojia, D.; Madan, V.; Bender, A.; Koeffler, H.P. Basappa; Rangappa, K.S. Synthesis of 1,2-benzisoxazole tethered 1,2,3-triazoles that exhibit anticancer activity in acute myeloid leukemia cell lines by inhibiting histone deacetylases, and inducing p21 and tubulin acetylation. Bioorg. Med. Chem., 2015, 23(18), 6157-6165.
[http://dx.doi.org/10.1016/j.bmc.2015.07.069] [PMID: 26299825]
[260]
Pan, S.; Hu, J.; Zheng, T.; Liu, X.; Ju, Y.; Xu, C. Oleanolic acid derivatives induce apoptosis in human leukemia K562 cell involved in inhibition of both Akt1 translocation and pAkt1 expression. Cytotechnology, 2015, 67(5), 821-829.
[http://dx.doi.org/10.1007/s10616-014-9722-3] [PMID: 24728886]
[261]
Shaw, J.; Chen, B.; Bourgault, J.P.; Jiang, H.; Kumar, N.; Mishra, J.; Valeriote, F.A.; Media, J.; Bobbitt, K.; Pietraszkiewicz, H.; Edelstein, M.; Andreana, P.R. Synthesis and biological evaluation of novel N-phenyl-5-carboxamidyl isoxazoles as potential chemotherapeutic agents for colon cancer. Am. J. Biomed. Sci., 2012, 4(1), 14-25.
[http://dx.doi.org/10.5099/aj120100014] [PMID: 25285182]
[262]
Zhang, D.; Jia, J.; Meng, L.; Xu, W.; Tang, L.; Wang, J. Synthesis and preliminary antibacterial evaluation of 2-butyl succinate-based hydroxamate derivatives containing isoxazole rings. Arch. Pharm. Res., 2010, 33(6), 831-842.
[http://dx.doi.org/10.1007/s12272-010-0605-7] [PMID: 20607487]
[263]
Hamada, N.M.M.; Sharshira, E.M. Synthesis and antimicrobial evaluation of some heterocyclic chalcone derivatives. Molecules, 2011, 16(3), 2304-2312.
[http://dx.doi.org/10.3390/molecules16032304] [PMID: 21389908]
[264]
Ali, K.A.; Hosni, H.M.; Ragab, E.A.; El-Moez, S.I.A. Synthesis and antimicrobial evaluation of some new cyclooctanones and cyclooctane-based heterocycles. Arch. Pharm. (Weinheim), 2012, 345(3), 231-239.
[http://dx.doi.org/10.1002/ardp.201100186] [PMID: 22045512]
[265]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Govardhan Reddy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, in vitro antimicrobial and anticancer activity of novel methylenebis-isoxazolo[4,5-b]azepines derivatives. Eur. J. Med. Chem., 2012, 50, 344-349.
[http://dx.doi.org/10.1016/j.ejmech.2012.02.013] [PMID: 22385674]
[266]
Saravanan, G.; Alagarsamy, V.; Dineshkumar, P. Synthesis, analgesic, anti-inflammatory and in vitro antimicrobial activities of some novel isoxazole coupled quinazolin-4(3H)-one derivatives. Arch. Pharm. Res., 2021, 44(8), 1-11.
[http://dx.doi.org/10.1007/s12272-013-0262-8] [PMID: 24155019]
[267]
Lavanya, G.; Mallikarjuna Reddy, L.; Padmavathi, V.; Padmaja, A. Synthesis and antimicrobial activity of (1,4-phenylene)bis(arylsulfonylpyrazoles and isoxazoles). Eur. J. Med. Chem., 2014, 73, 187-194.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.041] [PMID: 24398288]
[268]
Swapnaja, K.J.M.; Yennam, S.; Chavali, M.; Poornachandra, Y.; Kumar, C.G.; Muthusamy, K.; Jayaraman, V.B.; Arumugam, P.; Balasubramanian, S.; Sriram, K.K. Design, synthesis and biological evaluation of diaziridinyl quinone isoxazole hybrids. Eur. J. Med. Chem., 2016, 117, 85-98.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.042] [PMID: 27089214]
[269]
Naidu, K.M.; Srinivasarao, S.; Agnieszka, N.; Ewa, A.K.; Kumar, M.M.K.; Chandra Sekhar, K.V.G. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg. Med. Chem. Lett., 2016, 26(9), 2245-2250.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.059] [PMID: 27020525]
[270]
Mączyński, M.; Artym, J.; Kocięba, M.; Kochanowska, I.; Ryng, S.; Zimecki, M. Anti-inflammatory properties of an isoxazole derivative – MZO-2. Pharmacol. Rep., 2016, 68(5), 894-902.
[http://dx.doi.org/10.1016/j.pharep.2016.04.017] [PMID: 27351945]
[271]
Rakesh, K.S.; Jagadish, S.; Balaji, K.S.; Zameer, F.; Swaroop, T.R.; Mohan, C.D.; Jayarama, S.; Rangappa, K.S. 3, 5-Disubstituted isoxazole derivatives: Potential inhibitors of inflammation and cancer. Inflammation, 2016, 39(1), 269-280.
[http://dx.doi.org/10.1007/s10753-015-0247-5] [PMID: 26363638]
[272]
Banoglu, E.; Çelikoğlu, E.; Völker, S.; Olgaç, A.; Gerstmeier, J.; Garscha, U.; Çalışkan, B.; Schubert, U.S.; Carotti, A.; Macchiarulo, A.; Werz, O. 4,5-Diarylisoxazol-3-carboxylic acids: A new class of leukotriene biosynthesis inhibitors potentially targeting 5-lipoxygenase-activating protein (FLAP). Eur. J. Med. Chem., 2016, 113, 1-10.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.027] [PMID: 26922224]
[273]
Perrone, M.G.; Vitale, P.; Panella, A.; Ferorelli, S.; Contino, M.; Lavecchia, A.; Scilimati, A. Isoxazole-based-scaffold inhibitors targeting cyclooxygenases (COXs). ChemMedChem, 2016, 11(11), 1172-1187.
[http://dx.doi.org/10.1002/cmdc.201500439] [PMID: 27136372]
[274]
Ansari, K.F.; Lal, C. Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. Eur. J. Med. Chem., 2009, 44(10), 4028-4033.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.037] [PMID: 19482384]
[275]
Ghoneim, KM; Essawi, MY; Mohamed, MS; Kamal, AM Synthesis of 2-[(4-amino or 2, 4-diaminophenyl) sulfonyl] derivatives of benzimidazole, benzothiazole and 6-methyluracil as potential antimicrobial agents. ChemInform, 2010, 30(9)
[276]
Gupta, S.P.; Rani, S. Microbial α-amylases: a biotechnological perspective. Process biochemistry, 2003, 38(11), 1599-616.
[277]
Mane, D.V.; Shinde, D.B.; Thore, S.N.; Shingare, M.S. Synthesis and biological activity of some new 2‐Alkyl‐1‐(1′-dihydropyridylmethyl) benzimidazoles. ChemInform, 1995, 26(52)
[278]
Kumar, B.V.; Vaidya, S.D.; Kumar, R.V.; Bhirud, S.B.; Mane, R.B. Biological activity evaluation of novel n-heterocyclic carbene precursors. Eur. J. Med. Chem., 2006, 41, 599.
[http://dx.doi.org/10.1016/j.ejmech.2006.01.006] [PMID: 16527375]
[279]
Bishnoi, A.; Pandey, V.K.; Saxena, R.; Joshi, M.N.; Bajpai, S.K. Synthesis and characterization of benzimidazolyl-phenothiazine derivatives and a study of their antiviral and antifungal activities. ChemInform, 2003, 34(1)
[http://dx.doi.org/10.1002/chin.200301163]
[280]
Gowda, J.; Khadar, A.M.; Kalluraya, B.; Kumari, N.S. Microwave assisted synthesis of 1, 3, 4-oxadiazoles carrying benzimidazole moiety and their antimicrobial properties. Seman. Scholor, 2010, 2010, 94366698.
[281]
Shetgiri, NP; Kokitkar, SV Benzimidazoles: A biologically active compounds. Arabian Journal of Chemistry, 2017, 10, S157-73.
[282]
Pandey, V.K.; Shukla, A. Synthesis and biological activity of isoquinolinyl benzimidazoles; NISCAIR-CSIR: India, 1999.
[283]
Kristina, S.; Marijeta, M.; Katja, E.; Ivan, S.; Magdalena, G.; Kresimir, P.; Grace, K.Z. Bioorg. Med. Chem., 2007, 15, 4419.
[http://dx.doi.org/10.1016/j.bmc.2007.04.032] [PMID: 17482821]
[284]
Hranjec, M.; Starčević, K.; Pavelić, S.K.; Lučin, P.; Pavelić, K.; Karminski Zamola, G. Synthesis, spectroscopic characterization and antiproliferative evaluation in vitro of novel Schiff bases related to benzimidazoles. Eur. J. Med. Chem., 2011, 46(6), 2274-2279.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.008] [PMID: 21439689]
[285]
Thimmegowda, N.R.; Nanjunda Swamy, S.; Ananda Kumar, C.S.; Sunil Kumar, Y.C.; Chandrappa, S.; Yip, G.W.; Rangappa, K.S. Synthesis, characterization and evaluation of benzimidazole derivative and its precursors as inhibitors of MDA-MB-231 human breast cancer cell proliferation. Bioorg. Med. Chem. Lett., 2008, 18(1), 432-435.
[http://dx.doi.org/10.1016/j.bmcl.2007.08.078] [PMID: 17981032]
[286]
Gomez, H.T.; Nunez, E.H.; Rivera, I.L.; Alvarez, J.G.; Rivera, R.X.; Puc, R.M.; Ramos, R.A.; Gutttirez, M.C.R.; Baceb, M.J.C.; Vazquez, G.N. Design, synthesis and in vitro antiprotozoal activity of benzimidazole-pentamidine hybrids. Bioorg. Med. Chem. Lett., 2008, 18, 3147.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.009] [PMID: 18486471]
[287]
Valdez, J.; Cedillo, R.; Hernández-Campos, A.; Yépez, L.; Hernández-Luis, F.; Navarrete-Vázquez, G.; Tapia, A.; Cortés, R.; Hernández, M.; Castillo, R. Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett., 2002, 12(16), 2221-2224.
[http://dx.doi.org/10.1016/S0960-894X(02)00346-3] [PMID: 12127542]
[288]
Kazimierczuk, Z.; Upcroft, J.A.; Upcroft, P.; Górska, A.; Starościak, B.; Laudy, A. Synthesis, antiprotozoal and antibacterial activity of nitro- and halogeno-substituted benzimidazole derivatives. Acta Biochim. Pol., 2002, 49(1), 185-195.
[http://dx.doi.org/10.18388/abp.2002_3835] [PMID: 12136939]
[289]
Khan, S.A.; Nandan, S.A. Iodobenzene diacetate mediated synthesis of N,N′-Diacylhydrazines: A convenient synthesis of 1,3,4-Oxadiazoles. Indian J. Heterocycl. Chem., 1997, 7, 55.
[290]
Evans, D.; Kicks, T.A.; Williamson, W.R.; Dawson, N.V.; Meacocok, S.C.; Kitchen, E.A. Synthesis of new substituted 6-(morpholin-4-yl)-1H-benzimidazole derivatives. J. Med. Chem., 1996, 31, 635.
[http://dx.doi.org/10.1016/0223-5234(96)89560-2]
[291]
Gaba, M.; Singh, D.; Singh, S.; Sharma, V.; Gaba, P. Synthesis and pharmacological evaluation of novel 5-substituted-1-(phenylsulfonyl)-2-methylbenzimidazole derivatives as anti-inflammatory and analgesic agents. Eur. J. Med. Chem., 2010, 45(6), 2245-2249.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.067] [PMID: 20172630]
[292]
Chen, C.J.; Song, B.A.; Yang, S.; Xu, G.F.; Bhadury, P.S.; Jin, L.H.; Hu, D.Y.; Li, Q.Z.; Liu, F.; Xue, W.; Lu, P.; Chen, Z. Synthesis and antifungal activities of 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-thiadiazole and 5-(3,4,5-trimethoxyphenyl)-2-sulfonyl-1,3,4-oxadiazole derivatives. Bioorg. Med. Chem., 2007, 15(12), 3981-3989.
[http://dx.doi.org/10.1016/j.bmc.2007.04.014] [PMID: 17452108]
[293]
Mavrova, A.T.; Vuchev, D.; Anichina, K.; Vassilev, N. Synthesis, antitrichinnellosis and antiprotozoal activity of some novel thieno[2,3-d]pyrimidin-4(3H)-ones containing benzimidazole ring. Eur. J. Med. Chem., 2010, 45(12), 5856-5861.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.050] [PMID: 20950896]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy