Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Mini-Review Article

Chemistry of Quinolines and their Agrochemical Potential

Author(s): Divya Utreja*, Riddhi Salotra, Gurbir Kaur, Shivali Sharma and Sonia Kaushal

Volume 26, Issue 20, 2022

Published on: 06 January, 2023

Page: [1895 - 1913] Pages: 19

DOI: 10.2174/1385272827666221219101902

Price: $65

Abstract

Human population is increasing at an alarming rate which indirectly imposes pressure on agriculture and food supply. However, crop production is reduced by pathogenic infections which have engrossed the attention of chemists and agriculturists to develop newer agrochemicals with improved characteristics. Quinoline, one of the nitrogen-containing heterocyclic compound act as a privileged scaffold in the designing of highly efficient drugs due to their chemical and biological diversity. It has gained significant attention for several years due to its broad spectrum of biological activities such as anti-malarial, anti-microbial, anti-cancer, anti-inflammatory, anti-plasmodial, and anti-protozoal etc. The depiction of varied biological activities of quinoline impelled us to outlook the progress of synthesis and agrochemical potential of numerous quinoline derivatives with well-known and typical examples from 2015 to 2021. The review focuses on the advancement in the synthesis of quinoline derivatives and their agrochemical potential. This review revealed that abundant work has been done in order to synthesize quinoline derivatives and were evaluated for their agrochemical potential using different methods. The information given in this article may be helpful to the researchers to analyze the already reported studies and explore new compounds for the development of efficient agrochemicals.

« Previous
Graphical Abstract

[1]
Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ., 2022, 806(Pt 3), 150718.
[http://dx.doi.org/10.1016/j.scitotenv.2021.150718] [PMID: 34606855]
[2]
Kumar, A.; Hunjan, M.S.; Kaur, H.; Rawal, R.; Kumar, A.; Singh, P.P. A review on bacterial stalk rot disease of maize caused by Dickeya zeae. J. Appl. Nat. Sci., 2017, 9(2), 1214-1225.
[http://dx.doi.org/10.31018/jans.v9i2.1348]
[3]
Mishra, V. Population growth and intensification of land use in India. Int. J. Popul. Geogr., 2002, 8(5), 365-383.
[http://dx.doi.org/10.1002/ijpg.266]
[4]
Smith, K.M.; Machalaba, C.C.; Seifman, R.; Feferholtz, Y.; Karesh, W.B. Infectious disease and economics: The case for considering multi-sectoral impacts. One Health, 2019, 7, 100080.
[http://dx.doi.org/10.1016/j.onehlt.2018.100080] [PMID: 30671528]
[5]
Ismail, S.; Jiang, B.; Nasimi, Z.; Inam-ul-Haq, M.; Yamamoto, N.; Danso Ofori, A.; Khan, N.; Arshad, M.; Abbas, K.; Zheng, A. Investigation of streptomyces scabies causing potato scab by various detection techniques, its pathogenicity and determination of host-disease resistance in potato germplasm. Pathogens, 2020, 9(9), 760.
[http://dx.doi.org/10.3390/pathogens9090760] [PMID: 32957549]
[6]
Brauer, V.S.; Rezende, C.P.; Pessoni, A.M.; De Paula, R.G.; Rangappa, K.S.; Nayaka, S.C.; Gupta, V.K.; Almeida, F. Antifungal agents in agriculture: Friends and foes of public health. Biomolecules, 2019, 9(10), 521.
[http://dx.doi.org/10.3390/biom9100521] [PMID: 31547546]
[7]
Al-Huqail, A.; Behiry, S.; Salem, M.; Ali, H.; Siddiqui, M.; Salem, A. Antifungal, antibacterial, and antioxidant activities of Acacia saligna (Labill.) H.L. Wendl. flower extract: HPLC analysis of phenolic and flavonoid compounds. Molecules, 2019, 24(4), 700.
[http://dx.doi.org/10.3390/molecules24040700] [PMID: 30781352]
[8]
Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: an overview. Microb. Drug Resist., 2019, 25(6), 890-908.
[http://dx.doi.org/10.1089/mdr.2018.0319] [PMID: 30811275]
[9]
Sharma, D.; Patel, R.P.; Zaidi, S.T.R.; Sarker, M.M.R.; Lean, Q.Y.; Ming, L.C. Interplay of the quality of ciprofloxacin and antibiotic resistance in developing countries. Front. Pharmacol., 2017, 8, 546.
[http://dx.doi.org/10.3389/fphar.2017.00546] [PMID: 28871228]
[10]
Li, Y.; Sun, F.; Zhang, W. Bedaquiline and delamanid in the treatment of multidrug‐resistant tuberculosis: Promising but challenging. Drug Dev. Res., 2019, 80(1), 98-105.
[http://dx.doi.org/10.1002/ddr.21498] [PMID: 30548290]
[11]
Rangasamy, K.; Athiappan, M.; Devarajan, N.; Samykannu, G.; Parray, J.A.; Aruljothi, K.N.; Shameem, N.; Alqarawi, A.A.; Hashem, A.; Abd Allah, E.F. Pesticide degrading natural multidrug resistance bacterial flora. Microb. Pathog., 2018, 114, 304-310.
[http://dx.doi.org/10.1016/j.micpath.2017.12.013] [PMID: 29223450]
[12]
Comont, D.; Lowe, C.; Hull, R.; Crook, L.; Hicks, H.L.; Onkokesung, N.; Beffa, R.; Childs, D.Z.; Edwards, R.; Freckleton, R.P.; Neve, P. Evolution of generalist resistance to herbicide mixtures reveals a trade-off in resistance management. Nat. Commun., 2020, 11(1), 3086.
[http://dx.doi.org/10.1038/s41467-020-16896-0] [PMID: 32555156]
[13]
Aribi, F.; Panossian, A.; Vors, J.P.; Pazenok, S.; Leroux, F.R. 2,4-Bis(fluoroalkyl)quinoline-3-carboxylates as tools for the development of potential agrochemical ingredients. Eur. J. Org. Chem., 2018, 2018(27-28), 3792-3802.
[http://dx.doi.org/10.1002/ejoc.201800375]
[14]
Murugan, K.; Panneerselvam, C.; Subramaniam, J.; Paulpandi, M.; Rajaganesh, R.; Vasanthakumaran, M.; Madhavan, J.; Shafi, S.S.; Roni, M.; Portilla-Pulido, J.S.; Mendez, S.C.; Duque, J.E.; Wang, L.; Aziz, A.T.; Chandramohan, B.; Dinesh, D.; Piramanayagam, S.; Hwang, J.S. Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases. Sci. Rep., 2022, 12(1), 4765.
[http://dx.doi.org/10.1038/s41598-022-08397-5] [PMID: 35306526]
[15]
Potapov, V.A.; Ishigeev, R.S.; Belovezhets, L.A.; Amosova, S.V. A Novel Family of [1,4]Thiazino[2,3,4-ij]quinolin-4-ium Derivatives: regioselective synthesis based on unsaturated heteroatom and heterocyclic compounds and antibacterial activity. Molecules, 2021, 26(18), 5579.
[http://dx.doi.org/10.3390/molecules26185579] [PMID: 34577049]
[16]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[17]
Garella, D.; Borretto, E.; Di Stilo, A.; Martina, K.; Cravotto, G.; Cintas, P. Microwave-assisted synthesis of N-heterocycles in medicinal chemistry. MedChemComm, 2013, 4(10), 1323-1343.
[http://dx.doi.org/10.1039/c3md00152k]
[18]
Salotra, R.; Utreja, D. A comprehensive appraisal of chalcones and their heterocyclic analogs as antimicrobial agents. Curr. Org. Chem., 2020, 24(23), 2755-2781.
[http://dx.doi.org/10.2174/1385272824999200922090524]
[19]
Xu, K.; Yuan, X.L.; Li, C.; Li, A.X. Recent discovery of heterocyclic alkaloids from marine-derived aspergillus species. Mar. Drugs, 2020, 18(1), 54.
[http://dx.doi.org/10.3390/md18010054] [PMID: 31947564]
[20]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[21]
Barratt, J.L.N.; Harkness, J.; Marriott, D.; Ellis, J.T.; Stark, D. Importance of nonenteric protozoan infections in immunocompromised people. Clin. Microbiol. Rev., 2010, 23(4), 795-836.
[http://dx.doi.org/10.1128/CMR.00001-10] [PMID: 20930074]
[22]
Gachelin, G.; Garner, P.; Ferroni, E.; Tröhler, U.; Chalmers, I. Evaluating Cinchona bark and quinine for treating and preventing malaria. J. R. Soc. Med., 2017, 110(1), 31-40.
[http://dx.doi.org/10.1177/0141076816681421] [PMID: 28106483]
[23]
Ilina, K.; Henary, M. Cyanine dyes containing quinoline moieties: history, synthesis, optical properties, and applications. Chemistry, 2021, 27(13), 4230-4248.
[http://dx.doi.org/10.1002/chem.202003697] [PMID: 33137212]
[24]
Golden, E.B.; Cho, H.Y.; Hofman, F.M.; Louie, S.G.; Schönthal, A.H.; Chen, T.C. Quinoline-based antimalarial drugs: a novel class of autophagy inhibitors. Neurosurg. Focus, 2015, 38(3), E12.
[http://dx.doi.org/10.3171/2014.12.FOCUS14748] [PMID: 25727221]
[25]
Desai, N.C.; Patel, B.Y.; Dave, B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res., 2017, 26(1), 109-119.
[http://dx.doi.org/10.1007/s00044-016-1732-6]
[26]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis,characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916-935.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[27]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of Pyrazolo[4,3-c] quinoline derivatives as potential anti-inflammatory agents through inhibiting of NO production. Molecules, 2017, 22, 1001-1016.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[28]
N-Da, D.; Breytenbach, J.; Smith, P.; Lategan, C. Synthesis and in vitro antiplasmodial activityof quinoline-ferrocene esters. Arzneimittelforschung, 2011, 61(6), 358-365.
[http://dx.doi.org/10.1055/s-0031-1296211] [PMID: 21827047]
[29]
Hochegger, P.; Faist, J.; Seebacher, W.; Saf, R.; Mäser, P.; Kaiser, M.; Weis, R. Antiprotozoal activities of tetrazole-quinolines with aminopiperidine linker. Med. Chem., 2019, 15(4), 409-416.
[http://dx.doi.org/10.2174/1573406414666181015115101] [PMID: 30324885]
[30]
Vibha, V.; Utreja, D.; Kaur, J.; Kaur, M. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst. Agri. Res. J., 2018, 55(2), 313-317.
[31]
Zaman, K.; Rahim, F.; Taha, M.; Sajid, M.; Hayat, S.; Nawaz, M.; Salahuddin, M.; Iqbal, N.; Khan, N.U.; Shah, S.A.A.; Farooq, R.K.; Bahadar, A.; Wadood, A.; Khan, K.M. Synthesis, in vitro antiurease, in vivo antinematodal activity of quinolone analogs and their in-silico study. Bioorgan. Chem., 2021.
[32]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[33]
Jones, R.A.; Panda, S.S.; Hall, C.D. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur. J. Med. Chem., 2015, 97, 335-355.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.002] [PMID: 25683799]
[34]
Manske, R.H.F.; Kulka, M. The skraup synthesis of quinolines. Org. React., 2011, 59-58.
[http://dx.doi.org/10.1002/0471264180.or007.02]
[35]
Yadav, M.B.; Kulkarni, S.; Joshi, R.A.; Kulkarni, A.A. Continuous flow doebner-miller reaction and isolation using continuous stirred tankoptical properties, and applications. Chemistry, 2020, 27(13), 4230-4248.
[PMID: 33137212]
[36]
Brouet, J.C.; Gu, S.; Peet, N.P.; Williams, J.D. Survey of solvents for the conrad–limpach synthesis of 4-hydroxyquinolones. Synth. Commun., 2009, 39(9), 1563-1569.
[http://dx.doi.org/10.1080/00397910802542044] [PMID: 20046955]
[37]
Li, J.J. Combes quinolone synthesis. Org. React., 2003, 71-72.
[http://dx.doi.org/10.1007/978-3-662-04835-1_64]
[38]
Li, J.J. Gould–Jacobs reaction. Name Reactions, 2009, 263-265, 263-265.
[http://dx.doi.org/10.1007/978-3-642-01053-8_113]
[39]
Li, L.H.; Niu, Z.J.; Liang, Y.M. Organocatalyzed synthesis of functionalized quinolines. Chem. Asian J., 2020, 15(2), 231-241.
[http://dx.doi.org/10.1002/asia.201901380] [PMID: 31799792]
[40]
Solé, D.; Fernández, I. Advances in Transition-Metal Mediated Heterocyclic Synthesis; Academic Press, 2018.
[41]
Lewinska, G.; Sanetra, J.; Marszalek, K.W. Application of quinoline derivatives in third-generation photovoltaics. J. Mater. Sci. Mater. Electron., 2021, 32(14), 18451-18465.
[http://dx.doi.org/10.1007/s10854-021-06225-6]
[42]
Sloop, J.C. Quinoline formation via a modified Combes reaction: examination of kinetics, substituent effects, and mechanistic pathways. J. Phys. Org. Chem., 2009, 22(2), 110-117.
[http://dx.doi.org/10.1002/poc.1433]
[43]
Patil, S.A.; Medina, P.A., IV; Flores, D.G.; Vohs, J.K.; Dever, S.; Pineda, L.W.; Montero, M.L.; Fahlman, B.D. ChemInform Abstract: Formic acid: A low-cost, mild, ecofriendly, and highly efficient catalyst for the rapid synthesis of β-enantiomers. Synth. Commun., 2013, 43(17), 2349-2364.
[http://dx.doi.org/10.1080/00397911.2012.708467]
[44]
Zhang, Y.; Silverman, R.B. Direct amination of γ-halo-β-ketoesters with anilines. J. Org. Chem., 2012, 77(7), 3462-3467.
[http://dx.doi.org/10.1021/jo300239e] [PMID: 22390154]
[45]
Mishra, S.; Salahuddin.; Kumar, R.; Majumder, A.; Kumar, A.; Singh, C.; Tiglani, D. Updated on synthesis and biological activities of quinoline derivatives: a review. Int. J. Pharm. Res., 2021, 13(1), 3941-3954.
[46]
Denmark, S.E.; Venkatraman, S. On the mechanism of the Skraup-Doebner-Von Miller quinoline synthesis. J. Org. Chem., 2006, 71(4), 1668-1676.
[http://dx.doi.org/10.1021/jo052410h] [PMID: 16468822]
[47]
Wu, Y.C.; Liu, L.; Li, H.J.; Wang, D.; Chen, Y.J. Skraup-Doebner-Von Miller quinoline synthesis revisited: reversal of the regiochemistry for γ-aryl-βγ-unsaturated α-ketoesters. J. Org. Chem., 2006, 71(17), 6592-6595.
[http://dx.doi.org/10.1021/jo060290n] [PMID: 16901148]
[48]
Bisacchi, G.S. Origins of the quinolone class of antibacterials: An Expanded “Discovery Story”. J. Med. Chem., 2015, 58(12), 4874-4882.
[http://dx.doi.org/10.1021/jm501881c] [PMID: 25738967]
[49]
Ramann, G.; Cowen, B. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986-1009.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[50]
Shen, C.; Wang, A.; Xu, J.; An, Z.; Loh, K.Y.; Zheng, P.; Liu, X. Recent advances in the catalytic synthesis of 4-Quinolines. Cell Press, 2019, 5, 1059-1107.
[51]
Forrest, T.P.; Dauphinee, G.A.; Miles, W.F. On the mechanism of the Doebner–Miller reaction. Can. J. Chem., 1969, 47(11), 2121-2122.
[http://dx.doi.org/10.1139/v69-345]
[52]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56(46), 6436-6439.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.145]
[53]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[54]
Khan, M.; Miller, K.; Rainsford, K.; Zhou, Y. Synthesis and antimicrobial activity of novel substituted ethyl 2-(quinolin-4-yl)-propanoates. Molecules, 2013, 18(3), 3227-3240.
[http://dx.doi.org/10.3390/molecules18033227] [PMID: 23486102]
[55]
Orozco, D.; Kouznetsov, V.V.; Bermúdez, A.; Vargas Méndez, L.Y.; Mendoza Salgado, A.R.; Meléndez Gómez, C.M. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Advances, 2020, 10(9), 4876-4898.
[http://dx.doi.org/10.1039/C9RA09905K] [PMID: 35498276]
[56]
Le, S.; Yasuoka, C.; Asahara, H.; Nishiwaki, N. Dual behavior of iodine species in condensation of anilines and vinyl ethers affording 2-Methylquinolines. Molecules, 2016, 21(7), 827.
[http://dx.doi.org/10.3390/molecules21070827] [PMID: 27347919]
[57]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – a review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[58]
Tsoung, J.; Bogdan, A.R.; Kantor, S.; Wang, Y.; Charaschanya, M.; Djuric, S.W. Synthesis of fused pyrimidinone and quinolone derivatives in an automated high-temperature and high-pressure reactor. J. Org. Chem., 2017, 82(2), 1073-1084.
[http://dx.doi.org/10.1021/acs.joc.6b02520] [PMID: 28001397]
[59]
Bai, H.; Liu, F.; Wang, X.; Wang, P.; Huang, C. Three-component one-pot approach to highly efficient and sustainable synthesis of the functionalized quinolones via linear/branched domino protocols, key synthetic methods for the floxacin of quinolone drugs. ACS Omega, 2018, 3(9), 11233-11251.
[http://dx.doi.org/10.1021/acsomega.8b01378] [PMID: 31459232]
[60]
Holla, B.S.; Mahalinga, M.; Karthikeyan, M.S.; Akberali, P.M.; Shetty, N.S. Synthesis of some novel pyrazolo[3,4-d]pyrimidine derivatives as potential antimicrobial agents. Bioorg. Med. Chem., 2006, 14(6), 2040-2047.
[http://dx.doi.org/10.1016/j.bmc.2005.10.053] [PMID: 16310361]
[61]
Utreja, D.; Sharma, S.; Goyal, A.; Kaur, K.; Kaushal, S. Synthesis and Biological Activity of Quaternary Quinolinium Salts: A Review. Curr. Org. Chem., 2020, 23(21), 2271-2294.
[http://dx.doi.org/10.2174/1385272823666191023122704]
[62]
Goyal, A.; Utreja, D.; Garg, A.; Kumar, V. Synthesis of substituted quaternary quinolinium salts and their evaluation as antifungal agents. Agric. Res. J., 2018, 55(2), 377-379.
[http://dx.doi.org/10.5958/2395-146X.2018.00070.4]
[63]
Vashi, R.T.; Shelat, C.D.; Desai, P.S. Synthesis, characterization and antimicrobial activity studies of quinazolin-4-one-8 hydroxy quinoline merged molecules and their transition metal chelates. J. Environ. Res. Dev., 2008, 2, 652-658.
[64]
Ahirwar, M.K.; Shrivastava, S.P. Synthesis and biological activity of some 2-(2′-(substituted phenyl-4-thiazolidinone-3-yl)-1‘3’-isoxazol-4-yl)aminoqui-noline derivatives. E-J. Chem., 2011, 8(2), 931-937.
[http://dx.doi.org/10.1155/2011/962350]
[65]
Zhang, B.; Zhang, H.; Jin, B.; Tang, L.; Yang, J.; Li, B.; Zhuang, G.; Bai, Z. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere. J. Environ. Sci. (China), 2008, 20(11), 1356-1362.
[http://dx.doi.org/10.1016/S1001-0742(08)62233-0] [PMID: 19202876]
[66]
Vashi, R.T.; Shelat, C.D.; Patel, H. Synthesis, Spectroscopic Studies and Antifungal Activity of 2-[(4(3-Chlorophenyl) piperazine-1-yl)methyl]-3-[8-hydroxy quinolin-5-yl]-3(H)-quinazolin-4-one Ligand and its Chelates. E-J. Chem., 2010, 7(s1), S163-S168.
[http://dx.doi.org/10.1155/2010/701409]
[67]
Gomes da Silva Dantas, F.; Araújo de Almeida-Apolonio, A.; Pires de Araújo, R.; Regiane Vizolli Favarin, L.; Fukuda de Castilho, P.; de Oliveira Galvão, F.; Inez Estivalet Svidzinski, T.; Antônio Casagrande, G.; Mari Pires de Oliveira, K. A promising copper(II) complex as antifungal and antibiofilm drug against yeast infection. Molecules, 2018, 23(8), 1856.
[http://dx.doi.org/10.3390/molecules23081856] [PMID: 30049937]
[68]
Mohamed, F.K. Synthesis, reactions and antimicrobial activity on some novel phthalazinone derivatives. Egypt. J. Chem., 2010, 53(5), 645-660.
[http://dx.doi.org/10.21608/ejchem.2010.1255]
[69]
Hazra, A.; Mondal, S.; Maity, A.; Naskar, S.; Saha, P.; Paira, R.; Sahu, K.B.; Paira, P.; Ghosh, S.; Sinha, C.; Samanta, A.; Banerjee, S.; Mondal, N.B. Amberlite-IRA-402 (OH) ion exchange resin mediated synthesis of indolizines, pyrrolo [1,2-a] quinolones and isoquinolines: Antibacterial and antifungal evaluation of the products. Eur. J. Med. Chem., 2011, 46(6), 2132-40.
[70]
Cui, H.L. Recent progress in the synthesis of pyrrolo[2,1- a]isoquinolines. Org. Biomol. Chem., 2022, 20(14), 2779-2801.
[http://dx.doi.org/10.1039/D2OB00209D] [PMID: 35302153]
[71]
Juribašić, M.; Molčanov, K.; Kojić-Prodić, B.; Bellotto, L.; Kralj, M.; Zani, F.; Tušek-Božić, L. Palladium(II) complexes of quinolinylaminophosphonates: Synthesis, structural characterization, antitumor and antimicrobial activity. J. Inorg. Biochem., 2011, 105(6), 867-879.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.03.011] [PMID: 21501579]
[72]
Sarveswari, S.; Viaykumar, V. A rapid microwave assisted synthesis of 1-(6-chloro-2-methyl-4-phenylquinolin-3-yl)-3-(aryl)prop-2-en-1-ones and their anti bacterial and anti fungal evaluation. Arab. J. Chem., 2016, 9(1), S35-S40.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.032]
[73]
Utreja, D.; Kaur, J.; Kaur, K.; Jain, P. Recent advances in 1,3,5-Triazine derivatives as antibacterial agents. Mini Rev. Org. Chem., 2020, 17(8), 991-1041.
[http://dx.doi.org/10.2174/1570193X17666200129094032]
[74]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17(3), 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[75]
Das, N.; Madhavan, J.; Selvi, A.; Das, D. An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern. 3 Biotech, 2019, 9(6), 231.
[http://dx.doi.org/10.1007/s13205-019-1766-9] [PMID: 31139546]
[76]
Siddappa, K.; Reddy, P.C. Synthesis, spectral and antimicrobial studies of some transition metal(ii)complexes with schiff base 3-[(2-hydroxy-6-methoxyquinolin-3-ylmethylene)-amino]-2-methyl-3h-quinazoline-4-one. Int. J. Appl Bio.Pharma.Tech., 2012, 3.
[77]
Kaur, G.; Utreja, D.; Ekta; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[78]
Lara, S.B.; Ruiz, C.G.; Sosa, L.R.B.; Mora, I.G.; Alamo, M.F.; Behrens, N.B. Cytotoxic copper(II), cobalt(II), zinc(II), and nickel(II) coordination compounds of clotrimazole. J. Inorg. Biochem., 2012, 114, 82-93.
[79]
Shah, A.; Shukla, H.M.; Shah, P.J.; Raj, D.S. Synthesis, characterization and antimicrobial studies of co-ordination polymers. J. Chil. Chem. Soc., 2012, 57(4), 1472-1476.
[http://dx.doi.org/10.4067/S0717-97072012000400028]
[80]
Peterson, E.; Kaur, P. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol., 2018, 9, 2928.
[http://dx.doi.org/10.3389/fmicb.2018.02928] [PMID: 30555448]
[81]
Gogoi, S.; Shekarrao, K.; Duarah, A.; Bora, T.C.; Gogoi, S.; Boruah, R.C. A microwave promoted solvent-free approach to steroidal quinolines and their in vitro evaluation for antimicrobial activities. Steroids, 2012, 77(13), 1438-1445.
[http://dx.doi.org/10.1016/j.steroids.2012.08.008] [PMID: 22960652]
[82]
Bertazzoni Minelli, E.; Benini, A.; Samaila, E.; Bondi, M.; Magnan, B. Antimicrobial activity of gentamicin and vancomycin combination in joint fluids after antibiotic-loaded cement spacer implantation in two-stage revision surgery. J. Chemother., 2015, 27(1), 17-24.
[http://dx.doi.org/10.1179/1973947813Y.0000000157] [PMID: 24621165]
[83]
Behbehani, H.; Ibrahim, H.M.; Makhseed, S.; Elnagdi, M.H.; Mahmoud, H. 2-Aminothiophenes as building blocks in heterocyclic synthesis: Synthesis and antimicrobial evaluation of a new class of pyrido[1,2-a]thieno[3,2-e]pyrimidine, quinoline and pyridin-2-one derivatives. Eur. J. Med. Chem., 2012, 52, 51-65.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.004] [PMID: 22464424]
[84]
Lobanovska, M.; Pilla, G. Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J. Biol. Med., 2017, 90(1), 135-145.
[PMID: 28356901]
[85]
Desai, N.C.; Dodiya, A.; Shihory, N. Synthesis and antimicrobial activity of novel quinazolinone–thiazolidine–quinoline compounds. J. Saudi Chem. Soc., 2013, 17(3), 259-267.
[http://dx.doi.org/10.1016/j.jscs.2011.04.001]
[86]
Xu, Z.; Li, H.; Qin, X.; Wang, T.; Hao, J.; Zhao, J.; Wang, J.; Wang, R.; Wang, D.; Wei, S.; Cai, H.; Zhao, Y. Antibacterial evaluation of plants extracts against ampicillin-resistant Escherichia coli (E. coli) by microcalorimetry and principal component analysis. AMB Express, 2019, 9(1), 101.
[http://dx.doi.org/10.1186/s13568-019-0829-y] [PMID: 31297618]
[87]
Lamberth, C.; Kessabi, F.M.; Beaudegnies, R.; Quaranta, L.; Trah, S.; Berthon, G.; Cederbaum, F.; Knauf-Beiter, G.; Grasso, V.; Bieri, S.; Corran, A.; Thacker, U. Synthesis and fungicidal activity of quinolin-6-yloxyacetamides, a novel class of tubulin polymerization inhibitors. Bioorg. Med. Chem., 2014, 22(15), 3922-3930.
[http://dx.doi.org/10.1016/j.bmc.2014.06.015] [PMID: 25002231]
[88]
Yernale, N.G.; Bennikallu Hire Mathada, M. Synthesis, characterization, antimicrobial, DNA cleavage, and in vitro cytotoxic studies of some metal complexes of schiff base ligand derived from thiazole and quinoline moiety. Bioinorg. Chem. Appl., 2014, 2014, 314963.
[http://dx.doi.org/10.1155/2014/314963] [PMID: 24729778]
[89]
Ilango, K.; Valentina, P.; Subhakar, K.; Kathiravan, M.K. Design, synthesis and biological screening of 2, 4-disubstituted quinolines. Austin J. Anal. Pharm. Chem., 2015, 2(4), 1048.
[90]
Murphy Kessabi, F.; Beaudegnies, R.; Quaranta, L.; Lamberth, C.; Kessabi, F.M.; Beaudegnies, R.; Quaranta, L.; Lamberth, C. Synthesis of conformationally locked analogs of quinolin-6-yloxyacetamide fungicides. Tetrahedron Lett., 2016, 57(49), 5511-5513.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.104]
[91]
Liu, M.; Liu, Y.; Zhou, S.; Zhang, X.; Yu, S.; Li, Z. Synthesis and antifungal activities of novel strobilurin derivatives containing quinolin-2(1H)-one moiety. Chem. Res. Chin. Univ., 2016, 32(4), 600-606.
[http://dx.doi.org/10.1007/s40242-016-6041-6]
[92]
Pejović, A.; Damljanović, I.; Stevanović, D.; Minić, A.; Jovanović, J.; Mihailović, V.; Katanić, J.; Bogdanović, G.A. Synthesis, characterization and antimicrobial activity of novel ferrocene containing quinolines: 2-ferrocenyl-4-methoxyquinolines, 1-benzyl-2-ferrocenyl-2,3-dihydroquinolin-4(1H)-ones and 1-benzyl-2-ferrocenylquinolin-4(1H)-ones. J. Organomet. Chem., 2017, 846, 6-17.
[http://dx.doi.org/10.1016/j.jorganchem.2017.05.051]
[93]
Yang, G.Z.; Zhu, J.K.; Yin, X.D.; Yan, Y.F.; Wang, Y.L.; Shang, X.F.; Liu, Y.Q.; Zhao, Z.M.; Peng, J.W.; Liu, H. Design, synthesis, and antifungal evaluation of novel quinoline derivatives inspired from natural quinine alkaloids. J. Agric. Food Chem., 2019, 67(41), 11340-11353.
[http://dx.doi.org/10.1021/acs.jafc.9b04224] [PMID: 31532201]
[94]
Subrahmanyam, R.S.; Anna, V.R. Green synthetic protocol for (E)-1-Aryl-3-(2-morpholinoquinolin- 3-yl)prop-2-en-1-ones and their antimicrobial activity. Asian J. Chem., 2019, 31(9), 1895-1898.
[http://dx.doi.org/10.14233/ajchem.2019.21968]
[95]
Pei, D.; Zhang, F.; Liu, J.; Zhang, D.L.; Yang, R.; Zhong, L.K.; Tan, C.X.; Xu, T.M. Synthesis and fungicidal activities of 2,3‐Dimethyl‐4‐(1‐acyloxy)alkoxy‐6‐ tert ‐butyl‐8‐fluoroquinolines. J. Heterocycl. Chem., 2019, 56(4), 1383-1387.
[http://dx.doi.org/10.1002/jhet.3515]
[96]
Cheng, L.; Cai, P.P.; Zhang, R.R.; Han, L.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis and insecticidal activity of new quinoline derivatives containing perfluoropropanyl moiety. J. Heterocycl. Chem., 2019, 56(4), 1312-1317.
[http://dx.doi.org/10.1002/jhet.3502]
[97]
Ali, S.; Wisal, A.; Tahir, M.N.; Abdullah Ali, A.; Hameed, S.; Ahmed, M.N. One-pot synthesis, crystal structure and antimicrobial activity of 6-benzyl-11-(ptolyl)-6H-indolo[2,3-b]quinolone. J. Mol. Str., 2020, 1210(5), 128035.
[http://dx.doi.org/10.1016/j.molstruc.2020.128035]
[98]
Zhu, J.K.; Gao, J.M.; Yang, C.J.; Shang, X.F.; Zhao, Z.M.; Lawoe, R.K.; Zhou, R.; Sun, Y.; Yin, X.D.; Liu, Y.Q. Design, synthesis, and antifungal evaluation of neocryptolepine derivatives against phytopathogenic fungi. J. Agric. Food Chem., 2020, 68(8), 2306-2315.
[http://dx.doi.org/10.1021/acs.jafc.9b06793] [PMID: 31995378]
[99]
Liu, X.H.; Yu, W.; Min, L.J.; Wedge, D.E.; Tan, C.X.; Weng, J.Q.; Wu, H.K. Synthesis and pesticidal activities of new quinoxalines. J. Agric. Food Chem., 2020, 68(28), 7324-7332.
[http://dx.doi.org/10.1021/acs.jafc.0c01042]
[100]
Nikolic, P.; Mudgil, P.; Whitehall, J. The in vitro antibacterial effect of permethrin and formaldehyde on Staphylococcus aureus. MicrobiologyOpen, 2020, 9(8), e1054.
[http://dx.doi.org/10.1002/mbo3.1054] [PMID: 32383305]
[101]
Yang, G.Z.; Zhang, J.; Peng, J.W.; Zhang, Z.J.; Zhao, W.B.; Wang, R.X.; Ma, K.Y.; Li, J.C.; Y-Qian., L.; Zhao, Z.M.; Shang, X.F. Discovery of luotonin A analogues as potent fungicides and insecticides: Design, synthesis and biologicalevaluation inspired by natural alkaloid. Eur. J. Med. Chem., 2020, 194, 112253.
[http://dx.doi.org/10.1016/j.ejmech.2020.112253] [PMID: 32222678]
[102]
Pinna, M.V.; Pusino, A. Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere, 2012, 86(6), 655-658.
[http://dx.doi.org/10.1016/j.chemosphere.2011.11.016] [PMID: 22137358]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy