Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

Nutritional and Medicinal Value of Red Rice

Author(s): Lata Kothapalli*, Sakshi Kale, Monika Dharade, Asha Thomas and Anagha Godse

Volume 9, Issue 6, 2023

Published on: 27 January, 2023

Article ID: e231222212166 Pages: 10

DOI: 10.2174/2215083809666221223161045

Price: $65

Abstract

Background: Various varieties of rice (Oryza sativa) have been exploited for a variety of purposes since ancient times, with the integration into foods, cosmetics, and pharmaceutical products. A huge diversity is seen in the cultivated rice variety based on regions, area, and climatic conditions responsible for variation in chemical composition leading to enriched supplements beneficial for health conditions. Among the varieties available, red rice extract is now increasingly recognized for its antioxidant, anti-inflammatory activity, anti-diabetic, anti-hyperlipidemic activity, and bone formation.

Objective: There is a need to validate the nutritional and supplement values through appropriate analytical and pharmacological studies and create awareness for the end users regarding the value of red rice.

Results: In the present article attempt is done to reviewthe variety of red rice based on geographical origin, and the impact on nutritional and medicinal value. Further elaborating the extraction techniques which can help optimize the extraction efficiency of polyphenols known for their antioxidant properties. Polyphenolic phytoconstituents belonging to phenolic acids, and flavonoids include, flavonols, flavones, flavanols, flavanones, and isoflavones, to name a few. Anthocyanins, and proanthocyanidins make the pigment part of the outer layer and bran of the rice and contain the monomers of catechin, epicatechin, gallocatechin, and epigallocatechin units. The quantification of the phytoconstituents using chromatographical methods can help in evaluation of the red rice for its quality and design formulation with desired efficacy.

Conclusion: With the vast varieties of red rice available, quantification of important bio-actives can help in maintaining quality of final product. Various targeted pharmacological actions reported include anti-inflammatory, antihyperlipidemic, antidiabetic, anticancer and antioxidant produced by the rice, mainly by virtue of the polyphenolic content, contribute in achieving a value to rice as nourishment and a safe therapeutic product which can be consumed as a nutraceutical or pharmaceutical ingredient.

Graphical Abstract

[1]
Fresco L. Rice is life. J Food Compos Anal 2005; 18(4): 249-53.
[http://dx.doi.org/10.1016/j.jfca.2004.09.006]
[2]
Rathna Priya TS, Eliazer Nelson AR, Ravichandran K, Antony U. Nutritional and functional properties of colored rice varieties of South India: a review. J Ethn Foods 2019; 6(1): 1-1.
[3]
Chaudhari PR, Tamrakar N, Singh L, Tandon A, Sharma D. Rice nutritional and medicinal properties. A J Pharmacogn Phytochem 2018; 7(2): 150-6.
[4]
Verma DK, Srivastav PP. Proximate composition, mineral content, and fatty acids analyses of aromatic and non-aromatic Indian rice. Rice Sci 2017; 24(1): 21-31.
[http://dx.doi.org/10.1016/j.rsci.2016.05.005]
[5]
Butsat S, Siriamornpun S. Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chem 2010; 119(2): 606-13.
[http://dx.doi.org/10.1016/j.foodchem.2009.07.001]
[6]
Tian S, Nakamura K, Kayahara H. Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. J Agric Food Chem 2004; 52(15): 4808-13.
[http://dx.doi.org/10.1021/jf049446f] [PMID: 15264919]
[7]
Ghasemzadeh A, Karbalaii MT, Jaafar HZE, Rahmat A. Phytochemical constituents, antioxidant activity, and antiproliferative properties of black, red, and brown rice bran. Chem Cent J 2018; 12(1): 17.
[http://dx.doi.org/10.1186/s13065-018-0382-9] [PMID: 29455357]
[8]
Moko EM, Purnomo H, Kusnadi J, Ijong FG. Phytochemical content and antioxidant properties of colored and noncolored varieties of rice bran from Minahasa, North Sulawesi, Indonesia. Int Food Res J 2014; 21(3): 1017.
[9]
Sen S, Chakraborty R, Kalita P. Rice-not just a staple food: A comprehensive review on its phytochemicals and therapeutic potential. Trends Food Sci Technol 2020; 97: 265-85.
[http://dx.doi.org/10.1016/j.tifs.2020.01.022]
[10]
Shen Y, Jin L, Xiao P, Lu Y, Bao J. Total phenolics, flavonoids, antioxidant capacity in rice grain and their relations to grain color, size and weight. J Cereal Sci 2009; 49(1): 106-11.
[http://dx.doi.org/10.1016/j.jcs.2008.07.010]
[11]
Callcott ET, Santhakumar AB, Luo J, Blanchard CL. Therapeutic potential of rice-derived polyphenols on obesity-related oxidative stress and inflammation. J Appl Biomed 2018; 16(4): 255-62.
[http://dx.doi.org/10.1016/j.jab.2018.03.001]
[12]
Ahuja U, Ahuja SC, Thakrar R, Singh RK. Rice–a nutraceutical. Asian Agrihist 2008; 12(2): 93-108.
[13]
Krishnan V, Singh A, Sharma S, et al. Nutrient Dense Pigmented Rice: A Diet for Healthier People TB-ICN:236/2019. New Delhi: Division of Biochemistry; ICAR-Indian Agricultural Research Institute 2020.
[14]
Bisht IS, Pandey A, Yadav MC, Rana JC. Population structure of upland red rice (Oryza sativa L.) landraces from North-western Indian Himalayas. Indian Journal of Biotechnology 2015; 14(1): 42-8.
[15]
Gunaratne A, Wu K, Li D, Bentota A, Corke H, Cai YZ. Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. Food Chem 2013; 138(2-3): 1153-61.
[http://dx.doi.org/10.1016/j.foodchem.2012.11.129] [PMID: 23411226]
[16]
Oki T, Masuda M, Kobayashi M, et al. Polymeric procyanidins as radical-scavenging components in red-hulled rice. J Agric Food Chem 2002; 50(26): 7524-9.
[http://dx.doi.org/10.1021/jf025841z] [PMID: 12475265]
[17]
Samyor D, Das AB, Deka SC. Pigmented rice a potential source of bioactive compounds: a review. Int J Food Sci Technol 2017; 52(5): 1073-81.
[http://dx.doi.org/10.1111/ijfs.13378]
[18]
Ahuja U, Ahuja SC, Chaudhary N, Thakrar R. Red rice–past, present, and future. Asian Agrihist 2007; 11(4): 291-304.
[19]
Ma H, Chong K, Deng XW. Rice research: Past, present, and future. J Integr Plant Biol 2007; 49(6): 729-30.
[http://dx.doi.org/10.1111/j.1744-7909.2007.00515.x]
[20]
Kumar D. Genetic divergence in red rice. Karnataka J Agric Sci 2010; 21(3)
[21]
Sanghera GS, Kashyap SC, Parray GA. Genetic variation for grain yield and related traits in temperate red rice (Oryza sativa L.) ecotypes. Not Sci Biol 2013; 5(3): 400-6.
[http://dx.doi.org/10.15835/nsb539088]
[22]
Ashraf H, Murtaza I, Nazir N, Wani AB, Naqash S, Husaini AM. Nutritional profiling of pigmented and scented rice genotypes of Kashmir Himalayas. J Pharmacogn Phytochem 2017; 6(6): 910-6.
[23]
Raghuvanshi RS, Dutta A, Tewari G, Suri S. Qualitative characteristics of red rice and white rice procured from local market of Uttarakhand: a comparative study. J Rice Res 2017; 10(1): 49-53.
[24]
Adekola MB. Comparative analysis of the proximate composition, vitamins contents, and metals profile of nigerian rice (Oryza glaberrima) and imported rice (Oryza sativa). Vitamins Contents, and Metals Profile of Nigerian Rice.
[25]
Sridevi J. Nutraceutical potentials of black rice and its hypoglycaemic activity in streptozotocin-induced diabetic rats.
[26]
Das GK, Oudhia P. Rice as a medicinal plant in Chhattisgarh (India): A survey. Agric Sci Dig 2001; 21(3): 204-5.
[27]
Chan KW, Khong NMH, Iqbal S, Ismail M. Isolation and antioxidative properties of phenolics-saponins rich fraction from defatted rice bran. J Cereal Sci 2013; 57(3): 480-5.
[http://dx.doi.org/10.1016/j.jcs.2013.02.002]
[28]
Wanyo P, Meeso N, Siriamornpun S. Effects of different treatments on the antioxidant properties and phenolic compounds of rice bran and rice husk. Food Chem 2014; 157: 457-63.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.061] [PMID: 24679804]
[29]
Rumruaytum P, Borompichaichartkul C, Kongpensook V. Effect of drying involving fluidisation in superheated steam on physicochemical and antioxidant properties of Thai native rice cultivars. J Food Eng 2014; 123: 143-7.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.08.025]
[30]
Liu L, Guo J, Zhang R, et al. Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chem 2015; 185: 318-25.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.151] [PMID: 25952874]
[31]
Paiva FF, Vanier NL, Berrios JDJ, et al. Physicochemical and nutritional properties of pigmented rice subjected to different degrees of milling. J Food Compos Anal 2014; 35(1): 10-7.
[http://dx.doi.org/10.1016/j.jfca.2014.05.003]
[32]
Ciulu M, Cádiz-Gurrea M, Segura-Carretero A. Extraction and analysis of phenolic compounds in rice: a review. Molecules 2018; 23(11): 2890.
[http://dx.doi.org/10.3390/molecules23112890] [PMID: 30404149]
[33]
Alves GH, Ferreira CD, Vivian PG, et al. The revisited levels of free and bound phenolics in rice: Effects of the extraction procedure. Food Chem 2016; 208: 116-23.
[http://dx.doi.org/10.1016/j.foodchem.2016.03.107] [PMID: 27132831]
[34]
Mason TJ, Paniwnyk L, Lorimer JP. The uses of ultrasound in food technology. Ultrason Sonochem 1996; 3(3): S253-60.
[http://dx.doi.org/10.1016/S1350-4177(96)00034-X]
[35]
Setyaningsih W, Saputro IE, Palma M, Barroso CG. Optimisation and validation of the microwave-assisted extraction of phenolic compounds from rice grains. Food Chem 2015; 169: 141-9.
[http://dx.doi.org/10.1016/j.foodchem.2014.07.128] [PMID: 25236209]
[36]
Saikia S, Dutta H, Saikia D, Mahanta CL. Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Res Int 2012; 46(1): 334-40.
[http://dx.doi.org/10.1016/j.foodres.2011.12.021]
[37]
Kusano M, Yang Z, Okazaki Y, Nakabayashi R, Fukushima A, Saito K. Using metabolomic approaches to explore chemical diversity in rice. Mol Plant 2015; 8(1): 58-67.
[http://dx.doi.org/10.1016/j.molp.2014.11.010] [PMID: 25578272]
[38]
Acosta-Estrada BA, Gutiérrez-Uribe JA, Serna-Saldívar SO. Bound phenolics in foods, a review. Food Chem 2014; 152: 46-55.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.093] [PMID: 24444905]
[39]
Goufo P, Pereira J, Moutinho-Pereira J, et al. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environ Exp Bot 2014; 99: 28-37.
[http://dx.doi.org/10.1016/j.envexpbot.2013.10.021]
[40]
de Mira NVM, Massaretto IL, Pascual CSCI, Lanfer Marquez UM. Comparative study of phenolic compounds in different Brazilian rice (Oryza sativa L.) genotypes. J Food Compos Anal 2009; 22(5): 405-9.
[http://dx.doi.org/10.1016/j.jfca.2008.06.012]
[41]
Kim JK, Lee SY, Chu SM, et al. Variation and correlation analysis of flavonoids and carotenoids in Korean pigmented rice (Oryza sativa L.) cultivars. J Agric Food Chem 2010; 58(24): 12804-9.
[http://dx.doi.org/10.1021/jf103277g] [PMID: 21090621]
[42]
Ferraz CR, Carvalho TT, Manchope MF, et al. VerriJr WA. Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules 2020; 25(3): 762.
[http://dx.doi.org/10.3390/molecules25030762] [PMID: 32050623]
[43]
Waheed Janabi AH, Kamboh AA, Saeed M, et al. Flavonoid-rich foods (FRF): A promising nutraceutical approach against lifespan-shortening diseases. Iran J Basic Med Sci 2020; 23(2): 140-53.
[PMID: 32405356]
[44]
Chen MH, McClung AM, Bergman CJ. Concentrations of oligomers and polymers of proanthocyanidins in red and purple rice bran and their relationships to total phenolics, flavonoids, antioxidant capacity and whole grain color. Food Chem 2016; 208: 279-87.
[http://dx.doi.org/10.1016/j.foodchem.2016.04.004] [PMID: 27132851]
[45]
Pintha K, Yodkeeree S, Limtrakul P. Proanthocyanidin in red rice inhibits MDA-MB-231 breast cancer cell invasion via the expression control of invasive proteins. Biol Pharm Bull 2015; 38(4): 571-81.
[http://dx.doi.org/10.1248/bpb.b14-00719] [PMID: 25735761]
[46]
Labarbe B, Cheynier V, Brossaud F, Souquet JM, Moutounet M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J Agric Food Chem 1999; 47(7): 2719-23.
[http://dx.doi.org/10.1021/jf990029q] [PMID: 10552552]
[47]
Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V. Antioxidants and antioxidant activity of several pigmented rice brans. J Agric Food Chem 2011; 59(1): 193-9.
[http://dx.doi.org/10.1021/jf103649q] [PMID: 21141962]
[48]
Pengkumsri N, Chaiyasut C, Sivamaruthi BS, et al. The influence of extraction methods on composition and antioxidant properties of rice bran oil. Food Sci Technol (Campinas) 2015; 35(3): 493-501.
[http://dx.doi.org/10.1590/1678-457X.6730]
[49]
Bhat FM, Sommano SR, Riar CS, Seesuriyachan P, Chaiyaso T, Prom-u-Thai C. Status of bioactive compounds from the bran of pigmented traditional rice varieties and their scope in production of medicinal food with nutraceutical importance. Agronomy (Basel) 2020; 10(11): 1817.
[http://dx.doi.org/10.3390/agronomy10111817]
[50]
Mingyai S, Kettawan A, Srikaeo K, Singanusong R. Physicochemical and antioxidant properties of rice bran oils produced from colored rice using different extraction methods. J Oleo Sci 2017; 66(6): 565-72.
[http://dx.doi.org/10.5650/jos.ess17014] [PMID: 28515384]
[51]
Kim MK, Kim H, Koh K, Kim HS, Lee YS, Kim YH. Identification and quantification of anthocyanin pigments in colored rice. Nutr Res Pract 2008; 2(1): 46-9.
[http://dx.doi.org/10.4162/nrp.2008.2.1.46] [PMID: 20126365]
[52]
Irakli M, Kleisiaris F, Kadoglidou K, Katsantonis D. Optimizing extraction conditions of free and bound phenolic compounds from rice by-products and their antioxidant effects. Foods 2018; 7(6): 93.
[http://dx.doi.org/10.3390/foods7060093] [PMID: 29899303]
[53]
Stefanello FS, dos Santos CO, Bochi VC, et al. Analysis of polyphenols in brewer’s spent grain and its comparison with corn silage and cereal brans commonly used for animal nutrition. Food Chem 2018; 239: 385-401.
[http://dx.doi.org/10.1016/j.foodchem.2017.06.130] [PMID: 28873583]
[54]
Nadal JM, Toledo MG, Pupo YM, Padilha de Paula J, Farago PV, Zanin SMW. A stability-indicating HPLC-dad method for determination of ferulic acid into microparticles: Development, validation, forced degradation, and encapsulation efficiency. J Anal Methods Chem 2015; 2015: 1-10.
[http://dx.doi.org/10.1155/2015/286812] [PMID: 26075139]
[55]
Aguilar-Garcia C, Gavino G, Baragaño-Mosqueda M, Hevia P, Gavino VC. Correlation of tocopherol, tocotrienol, γ-oryzanol and total polyphenol content in rice bran with different antioxidant capacity assays. Food Chem 2007; 102(4): 1228-32.
[http://dx.doi.org/10.1016/j.foodchem.2006.07.012]
[56]
Patil SU, Hanumantappa M, Shashikala K, Dhanlaxm TN. Medicinal uses of red rice in coastal Karnataka. J Pharmacogn Phytochem 2018; •••: 436-9.
[57]
Ma J, Chen QX, Ling W. Study of red and black rice to health care effects. Shipin Kexue 2000; 21(12): 139-40.
[58]
Ling WH, Cheng QX, Ma J, Wang T. Red and black rice decrease atherosclerotic plaque formation and increase antioxidant status in rabbits. J Nutr 2001; 131(5): 1421-6.
[http://dx.doi.org/10.1093/jn/131.5.1421] [PMID: 11340093]
[59]
Niu Y, Gao B, Slavin M, et al. Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. Lebensm Wiss Technol 2013; 54(2): 521-7.
[http://dx.doi.org/10.1016/j.lwt.2013.06.018]
[60]
Rajpiraveen P, Mythili SR, Nikitha TC. Medicinal rice and its medicinal values. Int J Curr Microbiol Appl Sci 2019; 8(10): 2090-5.
[http://dx.doi.org/10.20546/ijcmas.2019.810.243]
[61]
Hosoda K, Sasahara H, Matsushita K, Tamura Y, Miyaji M, Matsuyama H. Anthocyanin and proanthocyanidin contents, antioxidant activity, and in situ degradability of black and red rice grains. Asian-Australas J Anim Sci 2018; 31(8): 1213-20.
[http://dx.doi.org/10.5713/ajas.17.0655] [PMID: 29514441]
[62]
Goufo P, Trindade H. Factors influencing antioxidant compounds in rice. Crit Rev Food Sci Nutr 2017; 57(5): 893-922.
[http://dx.doi.org/10.1080/10408398.2014.922046] [PMID: 25897468]
[63]
Goufo P, Trindade H. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Sci Nutr 2014; 2(2): 75-104.
[http://dx.doi.org/10.1002/fsn3.86] [PMID: 24804068]
[64]
Hansakul P, Junmarkho K. Thai pigmented rice bran extracts inhibit production of superoxide, nitric oxide radicals and inducible nitric oxide synthase in cellular models. Asian Pac J Trop Biomed 2019; 9(7): 291.
[http://dx.doi.org/10.4103/2221-1691.261809]
[65]
Limtrakul P, Yodkeeree S, Pitchakarn P, Punfa W. Anti-inflammatory effects of proanthocyanidin-rich red rice extract via suppression of MAPK, AP-1 and NF-κB pathways in Raw 264.7 macrophages. Nutr Res Pract 2016; 10(3): 251-8.
[http://dx.doi.org/10.4162/nrp.2016.10.3.251] [PMID: 27247720]
[66]
Ma X, Wang R, Yu S, Lu G, Yu Y, Jiang C. Anti-inflammatory activity of oligomeric proanthocyanidins via inhibition of NF-κB and MAPK in LPS-stimulated MAC-T Cells. Journal of Microbiology and Biotechnology 2020; 30(10): 1458-66.
[http://dx.doi.org/10.4014/jmb.2006.06030]
[67]
Callcott ET, Blanchard CL, Snell P, Santhakumar AB. The anti-inflammatory and antioxidant effects of acute consumption of pigmented rice in humans. Food Funct 2019; 10(12): 8230-9.
[http://dx.doi.org/10.1039/C9FO02455G] [PMID: 31729520]
[68]
Saji N, Francis N, Schwarz LJ, Blanchard CL, Santhakumar AB. The antioxidant and anti-inflammatory properties of rice bran phenolic extracts. Foods 2020; 9(6): 829.
[http://dx.doi.org/10.3390/foods9060829] [PMID: 32599964]
[69]
Boue SM, Daigle KW, Chen MH, Cao H, Heiman ML. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. J Agric Food Chem 2016; 64(26): 5345-53.
[http://dx.doi.org/10.1021/acs.jafc.6b01909] [PMID: 27285791]
[70]
Rahayu WM, Astuti M, Marsono Y. Improved hypoglycemic effect of anthocyanin extract combination from red rice and black soybean. In: Journal of Physics: Conference Series 2019; Vol 1146(No 1): 012015. IOP Publishing 2019.
[http://dx.doi.org/10.1088/1742-6596/1146/1/012015]
[71]
Saroj Y, Hameeda IB, Jayadeep A. Neuroprotective and hepatoprotective effect of whole red rice forms against oxidative stress in streptozotocin induced diabetic rats. Indian J Exp Biol 2022; 58(03): 151-60.
[72]
Han L, Zhang L, Ma W, Li D, Shi R, Wang M. Proanthocyanidin B 2 attenuates postprandial blood glucose and its inhibitory effect on alpha-glucosidase: analysis by kinetics, fluorescence spectroscopy, atomic force microscopy and molecular docking. Food Funct 2018; 9(9): 4673-82.
[http://dx.doi.org/10.1039/C8FO00993G] [PMID: 30188554]
[73]
Yagi T, Ataka K, Cheng KC, et al. Red rice koji extract alleviates hyperglycemia by increasing glucose uptake and glucose transporter type 4 levels in skeletal muscle in two diabetic mouse models. Food Nutr Res 2020; 64: 64.
[http://dx.doi.org/10.29219/fnr.v64.4226] [PMID: 33240034]
[74]
Hasan M, Bhatt PC, Panda BP. Chemico-biological effects ofmonascus fermented rice (angkak) in hyperlipidemic rats: A Comparative Analysis. Int J Pharm Sci Res 2015; 6(6): 2616.
[75]
Biagi M, Minoretti P, Bertona M, Emanuele E. Effects of a nutraceutical combination of fermented red rice, liposomal berberine, and curcumin on lipid and inflammatory parameters in patients with mild-to-moderate hypercholesterolemia: an 8-week, open-label, single-arm pilot study. Arch Med Sci Atheroscler Dis 2018; 3(1): 137-41.
[http://dx.doi.org/10.5114/amsad.2018.79597] [PMID: 30775604]
[76]
Poli A, Visioli F. Pharmacology of nutraceuticals with lipid-lowering properties. High Blood Press Cardiovasc Prev 2019; 26(2): 113-8.
[http://dx.doi.org/10.1007/s40292-019-00311-x] [PMID: 30877602]
[77]
Nguyen T, Karl M, Santini A. Red yeast rice. Foods 2017; 6(3): 19.
[http://dx.doi.org/10.3390/foods6030019] [PMID: 28257063]
[78]
Erdogrul O, Azirak S. A review on the red yeast rice (Monascus purpureus). KSU J Sci Engin 2005; 8: 10-5.
[79]
Tantipaiboonwong P, Pintha K, Chaiwangyen W, et al. Anti-hyperglycaemic and anti-hyperlipidaemic effects of black and red rice in streptozotocin-induced diabetic rats. Sci Asia 2017; 43(5): 281-8.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2017.43.281]
[80]
Aziz S. Elfahmi, Soemardji AA, Sukrasno. Molecular docking, synthesis, and biological evaluation of ergosterolferulate as an HMG-CoA reductase inhibitor. Pak J Pharm Sci 2020; 33(3): 997-1003.
[PMID: 33191223]
[81]
Bhaskaragoud G, Rajath S, Mahendra VP, Kumar GS, Gopala Krishna AG, Kumar GS. Hypolipidemic mechanism of oryzanol components-ferulic acid and phytosterols. Biochem Biophys Res Commun 2016; 476(2): 82-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.05.053] [PMID: 27179780]
[82]
Wu B, Huang JF, He BJ, Huang CW, Lu JH. Promotion of bone formation by red yeast rice in experimental animals: a systematic review and meta-analysis. BioMed Res Int 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/7231827] [PMID: 32832555]
[83]
Wong RWK, Rabie B. Chinese red yeast rice (Monascus purpureus-fermented rice) promotes bone formation. Chin Med 2008; 3(1): 4.
[http://dx.doi.org/10.1186/1749-8546-3-4] [PMID: 18373874]
[84]
Rittié L, Fisher GJ. UV-light-induced signal cascades and skin aging. Aging research reviews 2002; 1(4): 705-20.
[85]
Limtrakul P, Yodkeeree S, Punfa W, Srisomboon J. Inhibition of the MAPK signaling pathway by red rice extract in UVBirradiated human skin fibroblasts. Natural Product Communications 2016; 11(12): 1934578X1601101226.
[86]
Choi DW, Park HG, Kim HB, et al. Inventors; Amorepacific Corp, assignee. Skin external composition for skin moisturization containing red yeast rice extract. United States Patent US 9,877,915, 2018.
[87]
Uehara S, Hoshino T, Mutou M, Kameyama K. Composition for preparation for external use on skin and method of using the same. United States Patent application US 10/531,289, 2006.
[88]
Suhery WN, Husni DN. Effect of cream base types on the antioxidant activity of the cream preparation of red rice bran extract. Res J Pharm Biol Chem Sci 2017; 8: 255-62.
[89]
Kusumawati AH, Wulan IR, Ridwanuloh D. Formulation and physical evaluation sheet mask from red rice (Oryza Nivara) and virgin coconut oil (Cocos Nucifera L). Int J Healthc Med Sci 2020; 3(1): 60-4.
[90]
Suhery WN, Angraini N. Formulation and evaluation of peel-off gel masks from red rice bran extract with various kinds of bases. Int J Pharm Tech Res 2016; 9(12): 574-80.
[91]
Onsa-Ard A, Thongboontho R, Munkong N, et al. Anti-inflammatory effects of red rice bran extract ameliorate type I interferon production via sting pathway. Foods 2022; 11(11): 1622.
[http://dx.doi.org/10.3390/foods11111622]
[92]
Settharaksa S, Madaka F, Charkree K. The study of anti-inflammatory and antioxidant activity in cold press rice bran oil from rice in Thailand. Int J Pharm Pharm Sci 2014; 6: 428-31.
[93]
Ghatak SB, Panchal SS. Protective effect of oryzanol isolated from crude rice bran oil in experimental model of diabetic neuropathy. Rev Bras Farmacogn 2012; 22(5): 1092-103.
[http://dx.doi.org/10.1590/S0102-695X2012005000104]
[94]
Minatel IO, Lee YM, Yoon H, et al. Antiadipogenic activity of γ-oryzanol and its stability in pigmented rice. J Med Food 2016; 19(7): 710-5.
[http://dx.doi.org/10.1089/jmf.2015.3647] [PMID: 27309274]
[95]
Yodkeeree S, Thippraphan P, Punfa W, Srisomboon J, Limtrakul P. Skin anti-aging assays of proanthocyanidin rich red rice extract, oryzanol and other phenolic compounds. Natural Product Communications 2018; 13(8): 1934578X1801300812.
[http://dx.doi.org/10.1177/1934578X1801300812]
[96]
Chen MH, Choi SH, Kozukue N, Kim HJ, Friedman M. Growth-inhibitory effects of pigmented rice bran extracts and three red bran fractions against human cancer cells: relationships with composition and antioxidative activities. J Agric Food Chem 2012; 60(36): 9151-61.
[http://dx.doi.org/10.1021/jf3025453] [PMID: 22900641]
[97]
Upanan S, Yodkeeree S, Thippraphan P, Punfa W, Wongpoomchai R, Limtrakul Dejkriengkraikul P. The proanthocyanidin-rich fraction obtained from red rice germ and bran extract induces HepG2 hepatocellular carcinoma cell apoptosis. Molecules 2019; 24(4): 813-23.
[http://dx.doi.org/10.3390/molecules24040813] [PMID: 30813458]
[98]
Jung EH, Ran Kim S, Hwang IK, Youl Ha T. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem 2007; 55(24): 9800-4.
[http://dx.doi.org/10.1021/jf0714463] [PMID: 17973443]
[99]
Abeysekera WKSM, Arachchige SPG, Ratnasooriya WD, Choudhary MI, Dalvandi K, Chandrasekharan NV. Anti-diabetic related health food properties of traditional rice (Oryza sativa L.) in Sri Lanka. J Coast Life Med 2015; 3(10): 815-20.
[http://dx.doi.org/10.12980/jclm.3.2015j5-106]
[100]
Burlando B, Cornara L. Therapeutic properties of rice constituents and derivatives (Oryza sativa L.): A review update. Trends Food Sci Technol 2014; 40(1): 82-98.
[http://dx.doi.org/10.1016/j.tifs.2014.08.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy