Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Neuropilin-2 Inhibits Drug Resistance and Progression of Melanoma Involving the MiR-331-3p Regulated Cascade

Author(s): Qun Xie, Ruirui Zhang, Dandan Liu*, Jing Yang*, Qiang Hu, Chao Shan and Xiaohan Li

Volume 16, Issue 7, 2023

Published on: 02 February, 2023

Article ID: e201222212052 Pages: 13

DOI: 10.2174/1874467216666221220111756

Price: $65

Abstract

Background: MicroRNAs (miRs) are small noncoding RNAs that are crucial in the development and progression of tumours. Melanoma is an aggressive form of skin cancer and is resistant to most of the chemotherapeutic agents. However, the role of miRs in melanoma remains poorly studied.

Objective: The work aimed to demonstrate that miR-331-3p is downregulated in melanoma against the benign melanocytic nevi.

Methods: RT-PCR analysis was performed for the expression of proteins; cell proliferation and wound healing assays were carried out. Flow cytometry study was conducted for cell cycle analysis; colony formation assay was performed by soft agar method. For developing a tumour xenograft model, nu/nu mice were selected.

Results: Up-regulation of miR-331-3p in melanoma cells decreased cell proliferation, cell migration, and also drug resistance. Over-expression of miR-331-3p resulted in suppression of NRP2 and up-regulation of E-cadherin levels. Moreover, the levels of MDR1, ABCG-2, and ABCG-5 were decreased. However, the knockdown of NRP2 demonstrated similar effects as that of miR- 331-3p overexpression in tumour cells. Overexpression of miR-331-3p caused significant inhibition of tumour growth and its metastasis in mice model of melanoma, which was associated with depletion of NRP2 protein and increased expression of E-cadherin. However, the effects of miR- 331-3p on the migration, cell proliferation, and self-renewal were overturned by the upregulation of NRP2, which also resulted in the inhibition of E-cadherin and overexpression of MDR-1, ABCG-2, and ABCG-5.

Conclusion: The findings point out the key role of miR-331-3p in the progression and drug resistance of melanoma involving NRP2.

Graphical Abstract

[1]
Balch, C.M.; Buzaid, A.C.; Soong, S.J.; Atkins, M.B.; Cascinelli, N.; Coit, D.G.; Fleming, I.D.; Gershenwald, J.E.; Houghton, A., Jr; Kirkwood, J.M.; McMasters, K.M.; Mihm, M.F.; Morton, D.L.; Reintgen, D.S.; Ross, M.I.; Sober, A.; Thompson, J.A.; Thompson, J.F. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J. Clin. Oncol., 2001, 19(16), 3635-3648.
[http://dx.doi.org/10.1200/JCO.2001.19.16.3635] [PMID: 11504745]
[2]
Balch, C.M.; Soong, S.J.; Gershenwald, J.E.; Thompson, J.F.; Reintgen, D.S.; Cascinelli, N.; Urist, M.; McMasters, K.M.; Ross, M.I.; Kirkwood, J.M.; Atkins, M.B.; Thompson, J.A.; Coit, D.G.; Byrd, D.; Desmond, R.; Zhang, Y.; Liu, P.Y.; Lyman, G.H.; Morabito, A. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J. Clin. Oncol., 2001, 19(16), 3622-3634.
[http://dx.doi.org/10.1200/JCO.2001.19.16.3622] [PMID: 11504744]
[3]
La Porta, C. Mechanism of drug sensitivity and resistance in melanoma. Curr. Cancer Drug Targets, 2009, 9(3), 391-397.
[http://dx.doi.org/10.2174/156800909788166574] [PMID: 19442058]
[4]
Davies, M.A.; Gershenwald, J.E. Targeted therapy for melanoma: a primer. Surg. Oncol. Clin. N. Am., 2011, 20(1), 165-180.
[http://dx.doi.org/10.1016/j.soc.2010.09.003] [PMID: 21111965]
[5]
Flaherty, K.T.; Puzanov, I.; Kim, K.B.; Ribas, A.; McArthur, G.A.; Sosman, J.A.; O’Dwyer, P.J.; Lee, R.J.; Grippo, J.F.; Nolop, K.; Chapman, P.B. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med., 2010, 363(9), 809-819.
[http://dx.doi.org/10.1056/NEJMoa1002011] [PMID: 20818844]
[6]
Kim, K.B.; Eton, O.; Davis, D.W.; Frazier, M.L.; McConkey, D.J.; Diwan, A.H.; Papadopoulos, N.E.; Bedikian, A.Y.; Camacho, L.H.; Ross, M.I.; Cormier, J.N.; Gershenwald, J.E.; Lee, J.E.; Mansfield, P.F.; Billings, L.A.; Ng, C.S.; Charnsangavej, C.; Bar-Eli, M.; Johnson, M.M.; Murgo, A.J.; Prieto, V.G. Phase II trial of imatinib mesylate in patients with metastatic melanoma. Br. J. Cancer, 2008, 99(5), 734-740.
[http://dx.doi.org/10.1038/sj.bjc.6604482] [PMID: 18728664]
[7]
Gottesman, M.M.; Fojo, T.; Bates, S.E. Multidrug resistance in cancer: role of ATP–dependent transporters. Nat. Rev. Cancer, 2002, 2(1), 48-58.
[http://dx.doi.org/10.1038/nrc706] [PMID: 11902585]
[8]
Chen, K.G.; Valencia, J.C.; Gillet, J.P.; Hearing, V.J.; Gottesman, M.M. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res., 2009, 22(6), 740-749.
[http://dx.doi.org/10.1111/j.1755-148X.2009.00630.x] [PMID: 19725928]
[9]
Monzani, E.; Facchetti, F.; Galmozzi, E.; Corsini, E.; Benetti, A.; Cavazzin, C.; Gritti, A.; Piccinini, A.; Porro, D.; Santinami, M.; Invernici, G.; Parati, E.; Alessandri, G.; La Porta, C.A.M. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer, 2007, 43(5), 935-946.
[http://dx.doi.org/10.1016/j.ejca.2007.01.017] [PMID: 17320377]
[10]
Geretti, E.; Klagsbrun, M. Neuropilins. Cell Adhes. Migr., 2007, 1(2), 56-61.
[http://dx.doi.org/10.4161/cam.1.2.4490] [PMID: 19329879]
[11]
Wittmann, P.; Grubinger, M.; Gröger, C.; Huber, H.; Sieghart, W.; Peck-Radosavljevic, M.; Mikulits, W. Neuropilin-2 induced by transforming growth factor-β augments migration of hepatocellular carcinoma cells. BMC Cancer, 2015, 15(1), 909.
[http://dx.doi.org/10.1186/s12885-015-1919-0] [PMID: 26573807]
[12]
Yasuoka, H.; Kodama, R.; Tsujimoto, M.; Yoshidome, K.; Akamatsu, H.; Nakahara, M.; Inagaki, M.; Sanke, T.; Nakamura, Y. Neuropilin-2 expression in breast cancer: correlation with lymph node metastasis, poor prognosis, and regulation of CXCR4 expression. BMC Cancer, 2009, 9(1), 220.
[http://dx.doi.org/10.1186/1471-2407-9-220] [PMID: 19580679]
[13]
Wada, M.; Canals, D.; Adada, M.; Coant, N.; Salama, M.F.; Helke, K.L.; Arthur, J.S.; Shroyer, K.R.; Kitatani, K.; Obeid, L.M.; Hannun, Y.A. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene, 2017, 36(47), 6649-6657.
[http://dx.doi.org/10.1038/onc.2017.274] [PMID: 28783172]
[14]
Tu, D.G.; Chang, W.W.; Jan, M.S.; Tu, C.W.; Lu, Y.C.; Tai, C.K. Promotion of metastasis of thyroid cancer cells via NRP-2-mediated induction. Oncol. Lett., 2016, 12(5), 4224-4230.
[http://dx.doi.org/10.3892/ol.2016.5153] [PMID: 27895796]
[15]
Angelica Cortez, M.; Ivan, C.; Zhou, P.; Wu, X.; Ivan, M.; Adrian Calin, G. microRNAs in cancer. Adv. Cancer Res., 2010, 108, 113-157.
[http://dx.doi.org/10.1016/B978-0-12-380888-2.00004-2] [PMID: 21034967]
[16]
Fabbri, M.; Calin, G.A. Epigenetics and miRNAs in human cancer. Adv. Genet., 2010, 70, 87-99.
[http://dx.doi.org/10.1016/B978-0-12-380866-0.60004-6] [PMID: 20920746]
[17]
Ferdin, J.; Kunej, T.; Calin, G.A. Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol. Cancer Res. Treat., 2010, 9(2), 123-138.
[http://dx.doi.org/10.1177/153303461000900202] [PMID: 20218735]
[18]
Puisségur, M-P.; Mazure, N.M.; Bertero, T.; Pradelli, L.; Grosso, S.; Robbe-Sermesant, K.; Maurin, T.; Lebrigand, K.; Cardinaud, B.; Hofman, V.; Fourre, S.; Magnone, V.; Ricci, J.E.; Pouysségur, J.; Gounon, P.; Hofman, P.; Barbry, P.; Mari, B. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ., 2011, 18(3), 465-478.
[http://dx.doi.org/10.1038/cdd.2010.119] [PMID: 20885442]
[19]
Liu, B.; Wu, X.; Liu, B.; Wang, C.; Liu, Y.; Zhou, Q.; Xu, K. MiR-26a enhances metastasis potential of lung cancer cells via AKT pathway by targeting PTEN. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(11), 1692-1704.
[http://dx.doi.org/10.1016/j.bbadis.2012.07.019] [PMID: 22885155]
[20]
Li, Y.; Zhang, D.; Chen, C.; Ruan, Z.; Li, Y.; Huang, Y. MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1. Mol. Biol. Cell, 2012, 23(8), 1423-1434.
[http://dx.doi.org/10.1091/mbc.e11-09-0777] [PMID: 22357618]
[21]
Tian, Q.Q.; Xia, J.; Zhang, X.; Gao, B.Q.; Wang, W. miR-331-3p Inhibits tumor cell proliferation, metastasis, invasion by targeting MLLT10 in non-small cell lung cancer. Cancer Manag. Res., 2020, 12, 5749-5758.
[http://dx.doi.org/10.2147/CMAR.S249686] [PMID: 32765078]
[22]
Chang, R.M.; Yang, H.; Fang, F.; Xu, J.F.; Yang, L.Y. MicroRNA-331-3p promotes proliferation and metastasis of hepatocellular carcinoma by targeting PH domain and leucine-rich repeat protein phosphatase. Hepatology, 2014, 60(4), 1251-1263.
[http://dx.doi.org/10.1002/hep.27221] [PMID: 24825302]
[23]
Smalley, K.S.M.; Xiao, M.; Villanueva, J.; Nguyen, T.K.; Flaherty, K.T.; Letrero, R.; Van Belle, P.; Elder, D.E.; Wang, Y.; Nathanson, K.L.; Herlyn, M. CRAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene, 2009, 28(1), 85-94.
[http://dx.doi.org/10.1038/onc.2008.362] [PMID: 18794803]
[24]
Takeda, T.; Tsubaki, M.; Kato, N.; Genno, S.; Ichimura, E.; Enomoto, A.; Imano, M.; Satou, T.; Nishida, S. Sorafenib treatment of metastatic melanoma with c Kit aberration reduces tumor growth and promotes survival. Oncol. Lett., 2021, 22(6), 827.
[http://dx.doi.org/10.3892/ol.2021.13089] [PMID: 34691254]
[25]
Hoffner, B.; Benchich, K. Trametinib: A targeted therapy in metastatic melanoma. J. Adv. Pract. Oncol., 2018, 9(7), 741-745.
[PMID: 31249721]
[26]
Cao, Y.; Chen, J.; Wang, D.; Peng, H.; Tan, X.; Xiong, D.; Huang, A.; Tang, H. Upregulated in Hepatitis B virus-associated hepatocellular carcinoma cells, miR-331-3p promotes proliferation of hepatocellular carcinoma cells by targeting ING5. Oncotarget, 2015, 6(35), 38093-38106.
[http://dx.doi.org/10.18632/oncotarget.5642] [PMID: 26497554]
[27]
Liu, S.; Kumar, S.M.; Lu, H.; Liu, A.; Yang, R.; Pushparajan, A.; Guo, W.; Xu, X. MicroRNA-9 up-regulates E-cadherin through inhibition of NF-κB1-Snail1 pathway in melanoma. J. Pathol., 2012, 226(1), 61-72.
[http://dx.doi.org/10.1002/path.2964] [PMID: 22131135]
[28]
Fujii, T.; Shimada, K.; Asano, A.; Tatsumi, Y.; Yamaguchi, N.; Yamazaki, M.; Konishi, N. MicroRNA-331-3p suppresses cervical cancer cell proliferation and E6/E7 expression by targeting NRP2. Int. J. Mol. Sci., 2016, 17(8), 1351.
[http://dx.doi.org/10.3390/ijms17081351] [PMID: 27548144]
[29]
Choi, C.H. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int., 2005, 5(1), 30.
[http://dx.doi.org/10.1186/1475-2867-5-30] [PMID: 16202168]
[30]
Oplawski, M.; Dziobek, K.; Grabarek, B.; Zmarzły, N.; Dąbruś, D.; Januszyk, P.; Brus, R.; Tomala, B.; Boroń, D. Expression of NRP-1 and NRP-2 in Endometrial Cancer. Curr. Pharm. Biotechnol., 2019, 20(3), 254-260.
[http://dx.doi.org/10.2174/1389201020666190219121602] [PMID: 30806307]
[31]
Moriarty, W.F.; Kim, E.; Gerber, S.A.; Hammers, H.; Alani, R.M. Neuropilin-2 promotes melanoma growth and progression in vivo. Melanoma Res., 2016, 26(4), 321-328.
[http://dx.doi.org/10.1097/CMR.0000000000000190] [PMID: 26881875]
[32]
Gray, M.J.; Van Buren, G.; Dallas, N.A.; Xia, L.; Wang, X.; Yang, A.D.; Somcio, R.J.; Lin, Y.G.; Lim, S.; Fan, F.; Mangala, L.S.; Arumugam, T.; Logsdon, C.D.; Lopez-Berestein, G.; Sood, A.K.; Ellis, L.M. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver. J. Natl. Cancer Inst., 2008, 100(2), 109-120.
[http://dx.doi.org/10.1093/jnci/djm279] [PMID: 18182619]
[33]
Samuel, S.; Gaur, P.; Fan, F.; Xia, L.; Gray, M.J.; Dallas, N.A.; Bose, D.; Rodriguez-Aguayo, C.; Lopez-Berestein, G.; Plowman, G.; Bagri, A.; Sood, A.K.; Ellis, L.M. Neuropilin-2 mediated β-catenin signaling and survival in human gastro-intestinal cancer cell lines. PLoS One, 2011, 6(10), e23208.
[http://dx.doi.org/10.1371/journal.pone.0023208] [PMID: 22028766]
[34]
Do, Y.; Cho, J.G.; Park, J.Y.; Oh, S.; Park, D.; Yoo, K.H.; Lee, M.S.; Kwon, B.S.; Kim, J.; Yang, Y. MiR-146a Regulates Migration and Invasion by Targeting NRP2 in Circulating-Tumor Cell Mimicking Suspension Cells. Genes, 2020, 12(1), 45.
[http://dx.doi.org/10.3390/genes12010045] [PMID: 33396906]
[35]
Zhang, H.; Wang, R.; Wang, M. miR 331 3p suppresses cell invasion and migration in colorectal carcinoma by directly targeting NRP2. Oncol. Lett., 2019, 18(6), 6501-6508.
[http://dx.doi.org/10.3892/ol.2019.11029] [PMID: 31807170]
[36]
Chen, L.; Ma, G.; Cao, X.; An, X.; Liu, X. MicroRNA-331 inhibits proliferation and invasion of melanoma cells by targeting astrocyte-elevated gene-1. Oncol. Res., 2018, 26(9), 1429-1437.
[http://dx.doi.org/10.3727/096504018X15186047251584] [PMID: 29510779]
[37]
Frank, N.Y.; Margaryan, A.; Huang, Y.; Schatton, T.; Waaga-Gasser, A.M.; Gasser, M.; Sayegh, M.H.; Sadee, W.; Frank, M.H. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res., 2005, 65(10), 4320-4333.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3327] [PMID: 15899824]
[38]
Liu, H.G.; Pan, Y.F.; You, J.; Wang, O.C.; Huang, K.T.; Zhang, X.H. Expression of ABCG2 and its significance in colorectal cancer. Asian Pac. J. Cancer Prev., 2010, 11(4), 845-848.
[PMID: 21133588]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy