Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Ammodaucus leucotrichus Acts as an Antihypertensive and Vasorelaxant Agent Through sGC and Prostaglandin Synthesis Pathways

Author(s): Smail Amtaghri, Miloudia Slaoui and Mohamed Eddouks*

Volume 21, Issue 3, 2023

Published on: 02 February, 2023

Page: [177 - 192] Pages: 16

DOI: 10.2174/1871525721666221209161605

Price: $65

Abstract

Background: Ammodaucus leucotrichus is a medicinal plant used in traditional medicine to treat various ailments, including hypertension.

Aims: The study aimed to determine the antihypertensive activity of Ammodaucus leucotrichus.

Objective: The study aimed to investigate the antihypertensive and vasorelaxant activities of the aqueous extract of Ammodaucus leucotrichus fruits (ALAE) in rats.

Methods: ALAE was prepared to study its antihypertensive effect in L-NAME (Nω-L-arginine methyl ester)-induced hypertensive rats and its vasorelaxant activity in isolated thoracic aortas of rats. The acute and subchronic effects of ALAE on systolic, diastolic, mean arterial pressure, and heart rate (HR) were evaluated after oral administration of ALAE (60 and 100 mg/kg body weight) for 6 h for the acute experiment and over 7 days for the subchronic test. Isolated thoracic aortic rings were prepared to examine the vasorelaxant action of ALAE. Several common pharmacological agents were used to test potential pathways implicated in vasorelaxant action.

Results: The results showed that ALAE reduced blood pressure parameters (systolic, mean, and diastolic blood pressure) in L-NAME-induced hypertension rats after repeated oral treatment over seven days without affecting normotensive rats. Furthermore, in thoracic aortic rings pre-contracted with epinephrine (EP) (10 μM) or KCl (80 mM), ALAE (0.250-1.625 mg/ml) showed a vasorelaxant effect. In isolated rat thoracic aortas, blockage of soluble guanylyl cyslase with blue methylene (P < 0.01) partially decreased this vasorelaxant effect. In addition, blockage of the prostaglandin synthesis pathway with indomethacin (P<0.05) also reduced the vasorelaxant activity of ALAE. Pretreatment of aortic rings with glibenclamide, propanolol, L-NAME, MLN-4760, or nifedipine did not affect ALAE-induced vasorelaxation.

Conclusion:Ammodaucus leucotrichus is a prescient medicinal plant, able to act as an antihypertensive agent. Moreover, the results suggest that the extract increased cGMP in NO-independent manner.

[1]
Angeli, F.; Reboldi, G.; Trapasso, M.; Gentile, G.; Pinzagli, M.G.; Aita, A.; Verdecchia, P. European and US guidelines for arterial hypertension: Similarities and differences. Eur. J. Intern. Med., 2019, 63, 3-8.
[http://dx.doi.org/10.1016/j.ejim.2019.01.016] [PMID: 30732939]
[2]
Kearney, P.M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P.K.; He, J. Global burden of hypertension: Analysis of worldwide data. Lancet, 2005, 365(9455), 217-223.
[http://dx.doi.org/10.1016/S0140-6736(05)17741-1] [PMID: 15652604]
[3]
Mendis, S.; Puska, P.; Norrving, B. Global atlas on cardiovascular disease prevention and control; World Health Organization, 2011.
[4]
Ozenda, P. Flora and Vegetation of the Sahara (3rd updated and expanded edition); National Center for Scientific Research: Paris, 1991, pp. 250-278.
[5]
Velasco-Negueruela, A.; Pérez-Alonso, M.J.; Pérez de Paz, P.L.; Palá-Paúl, J.; Sanz, J. Analysis by gas chromatography-mass spectrometry of the volatiles from the fruits of Ammodaucus leucotrichus subsp. leucotrichus and subsp. nanocarpus grown in North Africa and the Canary Islands, respectively. J. Chromatogr. A, 2006, 1108(2), 273-275.
[http://dx.doi.org/10.1016/j.chroma.2006.01.031] [PMID: 16472529]
[6]
Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol., 2006, 105(3), 358-367.
[http://dx.doi.org/10.1016/j.jep.2005.11.028] [PMID: 16414225]
[7]
El Mansouri, L.; Ennabili, A.; Bousta, D. Socioeconomic interest and valorization of medicinal plants from the Rissani oasis (SE of Morocco). Bol. Latinoam. Caribe Plantas Med. Aromat., 2011, 10(1), 30-45.
[8]
Nassif, F.; Tanji, A. Gathered food plants in morocco the long-forgotten species in ethnobotanical research by Fatima Nassif and Abbes Tanji. Life Sci. Leafl., 2013, 37, 17.
[9]
El-Ouady, F.; Eddouks, M. Glucose lowering activity of aqueous Ammodaucus leucotrichus extract in diabetic rats. Cardiovasc. Hematol. Disord. Drug Targets, 2020, 20(2), 152-159.
[http://dx.doi.org/10.2174/1871529X19666190222182312] [PMID: 30806327]
[10]
Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Calarco, A.; Boukhira, S.; Noman, O.M.; Mothana, R.A.; Nasr, F.A.; Bekkari, H.; Bousta, D. Defatted hydroethanolic extract of Ammodaucus leucotrichus Cosson and Durieu Seeds: Antidiabetic and anti-inflammatory activities. Appl. Sci., 2020, 10(24), 9147.
[http://dx.doi.org/10.3390/app10249147]
[11]
Louail, Z.; Kameli, A.; Benabdelkader, T.; Bouti, K.; Hamza, K.; Krimat, S. Antimicrobial and antioxidant activity of essential oil of Ammodaucusl eucotrichus Coss. & Dur. seeds. J. Mater. Environ. Sci., 2016, 7(7), 2328-2334.
[12]
Gherraf, N.; Zellagui, A.; Kabouche, A.; Lahouel, M.; Salhi, R.; Rhouati, S. Chemical constituents and antimicrobial activity of essential oils of Ammodaucus leucotricus. Arab. J. Chem., 2017, 10, S2476-S2478.
[http://dx.doi.org/10.1016/j.arabjc.2013.09.013]
[13]
Ziani, B.E.C.; Rached, W.; Bachari, K.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Ferreira, I.C.F.R. Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. J. Funct. Foods, 2019, 53, 237-247.
[http://dx.doi.org/10.1016/j.jff.2018.12.023]
[14]
Sadaoui, N.; Bec, N.; Barragan-Montero, V.; Kadri, N.; Cuisinier, F.; Larroque, C.; Arab, K.; Khettal, B. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia, 2018, 130, 1-5.
[http://dx.doi.org/10.1016/j.fitote.2018.07.015] [PMID: 30056187]
[15]
Manssouri, M.; Znini, M.; Harrak, A.; Majid, L. Antifungal activity of essential oil from the fruits of Ammodaucus leucotrichus Coss. and Dur., in liquid and vapour phase against postharvest phytopathogenic fungi in apples. J. Appl. Pharm. Sci., 2016, 6(5), 131-136.
[http://dx.doi.org/10.7324/JAPS.2016.60520]
[16]
Naima, B.; Abdelkrim, R.; Ouarda, B.; Salah, N.N.; Larbi, B.A.M. Chemical composition, antimicrobial, antioxidant and anticancer activities of essential oil from Ammodaucus leucotrichus Cosson & Durieu (Apiaceae) growing in South Algeria. Bull. Chem. Soc. Ethiop., 2019, 33(3), 541-549.
[http://dx.doi.org/10.4314/bcse.v33i3.14]
[17]
Beghalia, M. Screening for anti-crystallisation calcium oxalate urolithiasis activity in Algerian Plants. Malaysian J. Biochem. Mol. Biol., 2008, 16(1), 11-15.
[18]
Ajebli, M.; Eddouks, M.; Buxussempervirens, L. Buxus sempervirens L improves streptozotocin-induced diabetes mellitus in rats. Cardiovasc. Hematol. Disord. Drug Targets, 2017, 17(2), 142-152.
[PMID: 28925906]
[19]
Ajebli, M.; Eddouks, M. Antihypertensive activity of Petroselinum crispum through inhibition of vascular calcium channels in rats. J. Ethnopharmacol., 2019, 242, 112039.
[http://dx.doi.org/10.1016/j.jep.2019.112039] [PMID: 31252093]
[20]
Anwar, M.A.; Samaha, A.A.; Ballan, S.; Saleh, A.I.; Iratni, R.; Eid, A.H. Salvia fruticosa induces vasorelaxation in rat isolated thoracic aorta: Role of the PI3K/Akt/eNOS/NO/cGMP signaling pathway. Sci. Rep., 2017, 7(1), 686.
[http://dx.doi.org/10.1038/s41598-017-00790-9] [PMID: 28386068]
[21]
Stenmark, K.R.; Rabinovitch, M. Emerging therapies for the treatment of pulmonary hypertension. Pediatr. Crit. Care Med., 2010, 11(2), S85-S90.
[http://dx.doi.org/10.1097/PCC.0b013e3181c76db3] [PMID: 20216170]
[22]
Kopincová, J.; Púzserová, A.; Bernátová, I. L-NAME in the cardiovascular system – nitric oxide synthase activator? Pharmacol. Rep., 2012, 64(3), 511-520.
[http://dx.doi.org/10.1016/S1734-1140(12)70846-0] [PMID: 22814004]
[23]
Bian, K.; Doursout, M.F.; Murad, F. Vascular system: Role of nitric oxide in cardiovascular diseases. J. Clin. Hypertens., 2008, 10(4), 304-310.
[http://dx.doi.org/10.1111/j.1751-7176.2008.06632.x] [PMID: 18401228]
[24]
Bredt, D.S.; Ferris, C.D.; Snyder, S.H. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J. Biol. Chem., 1992, 267(16), 10976-10981.
[http://dx.doi.org/10.1016/S0021-9258(19)49862-1] [PMID: 1375933]
[25]
McNeill, J.R.; Jurgens, T.M. A systematic review of mechanisms by which natural products of plant origin evoke vasodilatation. Can. J. Physiol. Pharmacol., 2006, 84(8-9), 803-821.
[http://dx.doi.org/10.1139/y06-028] [PMID: 17111026]
[26]
Schmitt, C.A.; Dirsch, V.M. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide, 2009, 21(2), 77-91.
[http://dx.doi.org/10.1016/j.niox.2009.05.006] [PMID: 19497380]
[27]
Kiriyama, A.; Honbo, A.; Nishimura, A.; Shibata, N.; Iga, K. Pharmacokinetic-pharmacodynamic analyses of antihypertensive drugs, nifedipine and propranolol, in spontaneously hypertensive rats to investigate characteristics of effect and side effects. Regul. Toxicol. Pharmacol., 2016, 76, 21-29.
[http://dx.doi.org/10.1016/j.yrtph.2016.01.003] [PMID: 26773344]
[28]
Potue, P.; Wunpathe, C.; Maneesai, P.; Kukongviriyapan, U.; Prachaney, P.; Pakdeechote, P. Nobiletin alleviates vascular alterations through modulation of Nrf-2/HO-1 and MMP pathways in L -NAME induced hypertensive rats. Food Funct., 2019, 10(4), 1880-1892.
[http://dx.doi.org/10.1039/C8FO02408A] [PMID: 30864566]
[29]
Moncada, S.; Higgs, E.A. The discovery of nitric oxide and its role in vascular biology. Br. J. Pharmacol., 2006, 147(S1), 193-201.
[http://dx.doi.org/10.1038/sj.bjp.0706458]
[30]
Jouad, H.; Haloui, M.; Rhiouani, H.; El Hilaly, J.; Eddouks, M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J. Ethnopharmacol., 2001, 77(2-3), 175-182.
[http://dx.doi.org/10.1016/S0378-8741(01)00289-6] [PMID: 11535361]
[31]
Mohammedi, H.; Idjeri-Mecherara, S.; Menaceur, F.; Azine, K.; Hassani, A. Chemical compositions of extracted volatile oils of Ammodaucus leucotrichus L. fruit from different geographical regions of Algeria with evaluation of its toxicity, anti-inflammatory and antimicrobial activities. J. Essent. Oil-Bear. Plants, 2018, 21(6), 1568-1584.
[http://dx.doi.org/10.1080/0972060X.2018.1559102]
[32]
Ajebli, M.; Eddouks, M. Vasorelaxant and antihypertensive effects of Mentha pulegium L. in rats: An in vitro and in vivo approach. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(7), 1289-1299.
[http://dx.doi.org/10.2174/1871530320666200909093908] [PMID: 32901591]
[33]
Chinnadurai, S.; Fonnesbeck, C.; Snyder, K.M.; Sathe, N.A.; Morad, A.; Likis, F.E.; McPheeters, M.L. Pharmacologic interventions for infantile hemangioma: A meta-analysis. Pediatrics, 2016, 137(2), e20153896.
[http://dx.doi.org/10.1542/peds.2015-3896] [PMID: 26772662]
[34]
Baratam, S.R.; Janjanam, K.C. Determination of nifedipine in human plasma by high-performance liquid chromatography–tandem mass spectrometry and its validation. World J. Pharm. Pharm. Sci., 2018, 7, 678-691.
[35]
Vanhoutte, P.M. Endothelium and control of vascular function. State of the art lecture. Hypertension, 1989, 13(6_pt_2), 658-667.
[http://dx.doi.org/10.1161/01.HYP.13.6.658] [PMID: 2661425]
[36]
Derbyshire, E.R.; Marletta, M.A. Structure and regulation of soluble guanylate cyclase. Annu. Rev. Biochem., 2012, 81(1), 533-559.
[http://dx.doi.org/10.1146/annurev-biochem-050410-100030] [PMID: 22404633]
[37]
Xiao, S.; Li, Q.; Hu, L.; Yu, Z.; Yang, J.; Chang, Q.; Chen, Z.; Hu, G. Soluble guanylate cyclase stimulators and activators: Where are we and where to go? Mini Rev. Med. Chem., 2019, 19(18), 1544-1557.
[http://dx.doi.org/10.2174/1389557519666190730110600] [PMID: 31362687]
[38]
Buys, E.; Sips, P. New insights into the role of soluble guanylate cyclase in blood pressure regulation. Curr. Opin. Nephrol. Hypertens., 2014, 23(2), 135-142.
[http://dx.doi.org/10.1097/01.mnh.0000441048.91041.3a] [PMID: 24419369]
[39]
Zhu, X.M.; Fang, L.H.; Li, Y.J.; Du, G.H. Endothelium-dependent and -independent relaxation induced by pinocembrin in rat aortic rings. Vascul. Pharmacol., 2007, 46(3), 160-165.
[http://dx.doi.org/10.1016/j.vph.2006.09.003] [PMID: 17074538]
[40]
Tao, L.; Hu, H.S.; Shen, X.C. Endothelium-dependent vasodilatation effects of the essential oil from Fructus Alpiniae Zerumbet (EOFAZ) on rat thoracic aortic rings in vitro. Phytomedicine, 2013, 20(5), 387-393.
[http://dx.doi.org/10.1016/j.phymed.2012.12.014] [PMID: 23369344]
[41]
Gorzalczany, S.; Moscatelli, V.; Ferraro, G. Artemisia copa aqueous extract as vasorelaxant and hypotensive agent. J. Ethnopharmacol., 2013, 148(1), 56-61.
[http://dx.doi.org/10.1016/j.jep.2013.03.061] [PMID: 23588093]
[42]
Qu, Z.; Zhang, J.; Gao, W.; Chen, H.; Guo, H.; Wang, T.; Li, H.; Liu, C. Vasorelaxant effects of Cerebralcare Granule® are mediated by NO/cGMP pathway, potassium channel opening and calcium channel blockade in isolated rat thoracic aorta. J. Ethnopharmacol., 2014, 155(1), 572-579.
[http://dx.doi.org/10.1016/j.jep.2014.05.062] [PMID: 24924524]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy