Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Progress in Polymer-based Composites as Efficient Materials for Electromagnetic Interference Shielding Applications: A Review

Author(s): Franklin Anaele Opara, Henry Chinedu Obasi*, Benedict Chukwudi Eke and Wilson Uzochukwu Eze

Volume 16, Issue 3, 2023

Published on: 23 January, 2023

Page: [235 - 261] Pages: 27

DOI: 10.2174/2666145416666221205124150

Price: $65

Abstract

Different electromagnetic interference (EMI) shielding materials have been developed over time. In the past electromagnetic (EM) shielding technology made use of metals and their composites because of good shielding effectiveness but their low elasticity high density and corrosion tendency render them obsolete. Ceramic-based composites have also gained popularity for EMI shielding applications because of their low density and excellent corrosion resistance but high absorption loss is a major drawback. Recently, polymer-based composites have attracted attention because they make for superb EMI shielding with the advantages of electromagnetic wave absorption over reflection and have been widely used with fast growth in application after their emergence. This paper reviews the progress of polymer-based composites as efficient materials for electromagnetic interference shielding and applications.

Electromagnetic (EM) waves are formed by the interaction of an electric field and a magnetic field. EM waves require no specific medium through which they can move. Their movement can be though air solid materials liquid or even vacuum. The EM spectrum ranges from lower energy waves (longer wavelengths) such as radio waves and microwaves to higher energy waves (shorter wavelengths), such as gamma rays and X-rays. Traditional materials such as metals and ceramics were found to be useful as EMI shielding materials. However, low elasticity high density and high absorption loss tend to limit their EMI effectiveness. Recently polymer-based electromagnetic shielding materials have been widely employed as EMI shielding materials. Given the above different EMI shielding materials based on diverse matrix materials are discussed with emphasis on polymer-based composites as emerging and alternative EMI shielding materials.

The development of the electronic industry offers weight reduction as an additional technical requirement besides good EMI shielding performance. EMI shielding ensures the inhibition of the transmission of EM waves from one point to another using shield materials. Metals as conventional EMI shielding materials have been substituted with alternative materials which are lighter such as polymer-based materials and ceramic-based materials.

Next »
Graphical Abstract

[1]
Wanasinghe D, Aslani F, Ma G, Habibi D. Review of polymer composites with diverse nanofillers for electromagnetic interference shielding. Nanomaterials (Basel) 2020; 10(3): 541.
[http://dx.doi.org/10.3390/nano10030541] [PMID: 32192158]
[2]
Zhang Liying, Bi Shuguang, Ming L. Lightweight electromagnetic interference shielding materials and their mechanisms. Electromag-netic Materials and Devices. IntechOpen 2018.
[3]
Davidovits J. Years of successes and failures in geopolymer applications: market trends and potential breakthroughs. France; Melbourne, Australia: Geopolymer 2002; Institute Saint‐Quentin 2002; p. 29.
[4]
Ishimaru A. Electromagnetic wave propagation, radiation, and scattering: from fundamentals to applications. John Wiley & Sons 2017.
[http://dx.doi.org/10.1002/9781119079699]
[5]
Nikita P, Kevin V, Mateo H. Electromagnetic Radiation. Chemistry LibreTexts 2015.
[6]
Goubau G, Schwering F. On the guided propagation of electromagnetic wave beams. IRE Trans Antennas Propag 1961; 9(3): 248-56.
[http://dx.doi.org/10.1109/TAP.1961.1144999]
[7]
Keldysh L. Ionization in the field of a strong electromagnetic wave. Sov Phys JETP 1965; 20: 1307-14.
[8]
Singh AK, Shishkin A, Koppel T, Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos, Part B Eng 2018; 149: 188-97.
[http://dx.doi.org/10.1016/j.compositesb.2018.05.027]
[9]
Hertel JP, Flintoft ID, Porter SJ, Marvin AC. Measurement of EMI on network cables due to multiple GSM phones. IEEE Trans Electromagn Compat 2000; 42(4): 358-67.
[http://dx.doi.org/10.1109/15.902305]
[10]
Chen S, Nehl T, Lai J-S, et al. Towards EMI prediction of a PM motor drive for automotive applications. Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition. Miami Beach, FL, USA: IEEE. 2003.2003 09-13 February 2003;
[http://dx.doi.org/10.1109/APEC.2003.1179170]
[11]
Ahlbom A, Bridges J, de Seze R, et al. Possible effects of electromagnetic fields (EMF) on human health--opinion of the scientific committee on emerging and newly identified health risks (SCENIHR). Toxicology 2008; 246(2-3): 248-50.
[http://dx.doi.org/10.1016/j.tox.2008.02.004] [PMID: 18453044]
[12]
Li DK, Chen H, Ferber JR, Odouli R, Quesenberry C. Exposure to magnetic field non-ionizing radiation and the risk of miscarriage: A prospective cohort study. Sci Rep 2017; 7(1): 17541.
[http://dx.doi.org/10.1038/s41598-017-16623-8] [PMID: 29235463]
[13]
Chen H, Yu Y, Zhong T, et al. Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose 2017; 24(1): 333-47.
[http://dx.doi.org/10.1007/s10570-016-1116-6]
[14]
Blettner M, Schlehofer B, Breckenkamp J, et al. Mobile phone base stations and adverse health effects: phase 1 of a population-based, cross-sectional study in Germany. Occup Environ Med 2008; 66(2): 118-23.
[http://dx.doi.org/10.1136/oem.2007.037721] [PMID: 19017702]
[15]
Röösli M. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: A systematic review. Environ Res 2008; 107(2): 277-87.
[http://dx.doi.org/10.1016/j.envres.2008.02.003] [PMID: 18359015]
[16]
Kumar P, Narayan MU, Sikdar A, Kumar DT, Kumar A, Sudarsan V. Recent advances in polymer and polymer composites for elec-tromagnetic interference shielding: review and future prospects. Polym Rev (Phila Pa) 2019; 59(4): 687-738.
[http://dx.doi.org/10.1080/15583724.2019.1625058]
[17]
Shukla V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanoscale Adv 2019; 1(5): 1640-71.
[http://dx.doi.org/10.1039/C9NA00108E] [PMID: 36134227]
[18]
Zhang H. Study on material of polymer-based electromagnetic shielding composites. Insight-Nucl Sci 2021; 1(1)
[19]
Jian X, Wu B, Wei Y, et al. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties. ACS Appl Mater 2016; 8: 6101-9.
[20]
Li TT, Chen AP, Hwang PW, et al. Synergistic effects of micro-/nano-fillers on conductive and electromagnetic shielding properties of polypropylene nanocomposites. Mater Manuf Process 2018; 33(2): 149-55.
[http://dx.doi.org/10.1080/10426914.2016.1269924]
[21]
Geetha S, Satheesh Kumar KK, Rao CRK, Vijayan M, Trivedi DC. EMI shielding: Methods and materials-A review. J Appl Polym Sci 2009; 112(4): 2073-86.
[http://dx.doi.org/10.1002/app.29812]
[22]
Choudary V, Dhawan S, Saini P. Polymer based nanocomposites for electromagnetic interference (EMI) shielding. EMI Shielding Theory Development of New Materials Research Signpost 2012; pp. 67-100.
[23]
Saini P, Aror M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polym Special Appl 2012; 3: 73-112.
[http://dx.doi.org/10.5772/48779]
[24]
Jiang D, Murugadoss V, Wang Y, et al. Electromagnetic interference shielding polymers and nanocomposites-A review. Polym Rev (Phila Pa) 2019; 59(2): 280-337.
[http://dx.doi.org/10.1080/15583724.2018.1546737]
[25]
Abdi MM, Kassim AB, Ekramul Mahmud HNM, Yunus WMM, Talib ZA. Electromagnetic interference shielding effectiveness of new conducting polymer composite. J Macromol Sci Part A Pure Appl Chem 2009; 47(1): 71-5.
[http://dx.doi.org/10.1080/10601320903399834]
[26]
Rathi V, Panwar V. Electromagnetic interference shielding analysis of conducting composites in near-and far-field region. IEEE Trans Electromagn Compat 2018; 60(6): 1795-801.
[http://dx.doi.org/10.1109/TEMC.2017.2780883]
[27]
Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4-18.0GHz range. Synth Met 2011; 161(15-16): 1522-6.
[http://dx.doi.org/10.1016/j.synthmet.2011.04.033]
[28]
Pawar SP, Biswas S, Kar GP, Bose S. High frequency millimetre wave absorbers derived from polymeric nanocomposites. Polymer (Guildf) 2016; 84: 398-419.
[http://dx.doi.org/10.1016/j.polymer.2016.01.010]
[29]
Zhu J, Gu H, Luo Z, et al. Carbon nanostructure-derived polyaniline metacomposites: Electrical, dielectric, and giant magnetoresistive properties. Langmuir 2012; 28(27): 10246-55.
[http://dx.doi.org/10.1021/la302031f] [PMID: 22703477]
[30]
Sun K, Xie P, Wang Z, et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer (Guildf) 2017; 125: 50-7.
[http://dx.doi.org/10.1016/j.polymer.2017.07.083]
[31]
Ramana CV, Smith RJ, Hussain OM, Julien CM. On the growth mechanism of pulsed-laser deposited vanadium oxide thin films. Mater Sci Eng B 2004; 111(2-3): 218-25.
[http://dx.doi.org/10.1016/j.mseb.2004.04.017]
[32]
He C, Wang Q, Qu Z. Research Progress of Electromagnetic Shielding Materials Earth and Environmental Science. IOP Publishing 2018; p. 032027.
[33]
Yim YJ, Baek YM, Park SJ. Influence of nickel layer on electromagnetic interference shielding effectiveness of CuS‐polyacrylonitrile fibers. Bull Korean Chem Soc 2018; 39(12): 1406-11.
[http://dx.doi.org/10.1002/bkcs.11615]
[34]
Vaid K, Rathore D, Dwivedi UK. Electromagnetic interference of nickel ferrite and copper ferrite filled low-density polyethylene com-posite. J Compos Mater 2020; 54(30): 4799-806.
[http://dx.doi.org/10.1177/0021998320938836]
[35]
do Amaral Junior MA, Marcuzzo JS, Pinheiro BS, et al. Study of reflection process for nickel coated activated carbon fiber felt applied with electromagnetic interference shielding. J Mater Res Technol 2019; 8(5): 4040-7.
[http://dx.doi.org/10.1016/j.jmrt.2019.07.014]
[36]
Yim YJ, Rhee KY, Park SJ. Electromagnetic interference shielding effectiveness of nickel-plated MWCNTs/high-density polyethylene composites. Compos, Part B Eng 2016; 98: 120-5.
[http://dx.doi.org/10.1016/j.compositesb.2016.04.061]
[37]
Prudnik A, Zamastotsky Y, Siarheyev V, Siuborov V, Stankevich E, Pobol I. Electromagnetic interference shielding properties of the Cu, Ti and Cr coatings deposited by Arc-PVD on textile materials. Electr Rev 2012; 88: 81-3.
[38]
Sankaran S, Deshmukh K, Ahamed MB, Khadheer Pasha SK. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos, Part A Appl Sci Manuf 2018; 114: 49-71.
[http://dx.doi.org/10.1016/j.compositesa.2018.08.006]
[39]
Basandrai D, Bedi RK, Dhami A, et al. Aluminum and chromium substituted Z-type hexaferrites for antenna and microwave absorber applications. J Sol-Gel Sci Technol 2018; 85(1): 59-65.
[http://dx.doi.org/10.1007/s10971-017-4532-7]
[40]
Smeltz DC, Stevens EW. Flexible clip-on shielding and/or grounding strips. United States Google Patents 2008.
[41]
Cheng HC, Chen CR, Hsu S, Cheng KB. Electromagnetic shielding effectiveness and conductivity of PTFE/Ag/MWCNT conductive fabrics using the screen printing method. Sustainability (Basel) 2020; 12(15): 5899.
[http://dx.doi.org/10.3390/su12155899]
[42]
Chen Y, Pang L, Li Y, et al. Ultra-thin and highly flexible cellulose nanofiber/silver nanowire conductive paper for effective electro-magnetic interference shielding. Compos, Part A Appl Sci Manuf 2020; 135: 105960.
[http://dx.doi.org/10.1016/j.compositesa.2020.105960]
[43]
Lin S, Wang H, Wu F, et al. Room-temperature production of silver-nanofiber film for large-area, transparent and flex-ible surface electromagnetic interference shielding. npj Flexible Electr 2019; 3(1): 6.
[http://dx.doi.org/10.1038/s41528-019-0050-8]
[44]
Kim DG, Choi JH, Choi DK, Kim SW. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. ACS Appl Mater Interfaces 2018; 10(35): 29730-40.
[http://dx.doi.org/10.1021/acsami.8b07054] [PMID: 30106270]
[45]
Kim E, Lim DY, Kang Y, Yoo E. Fabrication of a stretchable electromagnetic interference shielding silver nanoparticle/elastomeric polymer composite. RSC Advances 2016; 6(57): 52250-4.
[http://dx.doi.org/10.1039/C6RA04765C]
[46]
Li J, Liu H, Guo J, et al. Flexible, conductive, porous, fibrillar polymer–gold nanocomposites with enhanced electromagnetic interfer-ence shielding and mechanical properties. J Mater Chem C Mater Opt Electron Devices 2017; 5(5): 1095-105.
[http://dx.doi.org/10.1039/C6TC04780G]
[47]
Xie S, Wang J, Wang W, et al. Electromagnetic wave absorption properties of cement based composites using helical carbon fibers as absorbent. Mater Res Express 2018; 5(2): 025605.
[http://dx.doi.org/10.1088/2053-1591/aaae51]
[48]
Wen S, Chung DDL. Electromagnetic interference shielding reaching 70 dB in steel fiber cement. Cement Concr Res 2004; 34(2): 329-32.
[http://dx.doi.org/10.1016/j.cemconres.2003.08.014]
[49]
Yang R, Liang W, Lou C, Lin J. Electromagnetic and microwave absorption properties of magnetic stainless steel powder in 2-18 GHz. J Appl Phy 2012; 111: 07A338.
[50]
Guan B, Ding D, Wang L, Wu J, Xiong R. The electromagnetic wave absorbing properties of cement-based composites using natural magnetite powders as absorber. Mater Res Express 2017; 4(5): 056103.
[http://dx.doi.org/10.1088/2053-1591/aa7025]
[51]
Guan B, Yang T, Xiong R, Wang Y. Electromagnetic wave absorbing properties of asphalt mixture with natural magnetite powder. J Build Mater 2016; 1: 198-203.
[52]
Wilson R, George G, Joseph K. An introduction to materials for potential EMI shielding applications: Status and future Materials for Potential EMI Shielding Applications. Elsevier 2020; pp. 1-8.
[53]
Long L, Xiao P, Luo H, Zhou W, Li Y. Enhanced electromagnetic shielding property of cf/mullite composites fabricated by spark plasma sintering. Ceram Int 2019; 45(15): 18988-93.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.139]
[54]
Ul Hassan R, Shahzad F, Abbas N, Hussain S. Ceramic based multi walled carbon nanotubes composites for highly efficient electro-magnetic interference shielding. J Mater Sci Mater Electron 2019; 30(14): 13381-8.
[http://dx.doi.org/10.1007/s10854-019-01705-2]
[55]
Delfini A, Albano M, Vricella A, et al. Advanced radar absorbing ceramic-based materials for multifunctional applications in space environment. Materials (Basel) 2018; 11(9): 1730.
[http://dx.doi.org/10.3390/ma11091730] [PMID: 30223490]
[56]
Tan Y, Luo H, Zhou X, Peng S, Zhang H. Dependences of microstructure on electromagnetic interference shielding properties of nano-layered Ti3 AlC2 ceramics. Sci Rep 2018; 8: 1-8.
[57]
Chung DDL. Materials for electromagnetic interference shielding. Mater Chem Phys 2020; 255: 123587.
[http://dx.doi.org/10.1016/j.matchemphys.2020.123587]
[58]
Li X, Yin X, Liang S, Li M, Cheng L, Zhang L. 2D carbide MXene Ti2CTX as a novel high-performance electromagnetic interference shielding material. Carbon 2019; 146: 210-7.
[http://dx.doi.org/10.1016/j.carbon.2019.02.003]
[59]
Loeblein M, Tay RY, Tsang SH, Ng WB, Teo EHT. Foams: Configurable three-dimensional boron nitride-carbon architecture and its tunable electronic behavior with stable thermal performances (Small 15/2014). Small 2014; 10(15): 2966.
[http://dx.doi.org/10.1002/smll.201470087]
[60]
Pradhan SS, Unnikrishnan L, Mohanty S, Nayak SK. Thermally conducting polymer composites with EMI shielding: A review. J Electron Mater 2020; 49(3): 1749-64.
[http://dx.doi.org/10.1007/s11664-019-07908-x]
[61]
Liang C, Wang Z, Wu L, Zhang X, Wang H, Wang Z. Light and strong hierarchical porous SiC foam for efficient electromagnetic in-terference shielding and thermal insulation at elevated temperatures. ACS Appl Mater Interfaces 2017; 9(35): 29950-7.
[http://dx.doi.org/10.1021/acsami.7b07735] [PMID: 28812868]
[62]
Li Z, Wang Y. Preparation of polymer-derived graphene-like carbon-silicon carbide nanocomposites as electromagnetic interference shielding material for high temperature applications. J Alloys Compd 2017; 709: 313-21.
[http://dx.doi.org/10.1016/j.jallcom.2017.03.080]
[63]
Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cement Concr Compos 2006; 28(5): 468-74.
[http://dx.doi.org/10.1016/j.cemconcomp.2005.12.004]
[64]
Yuchang Q, Qinlong W, Fa L, Wancheng Z, Dongmei Z. Graphene nanosheets/BaTiO 3 ceramics as highly efficient electromagnetic interference shielding materials in the X-band. J Mater Chem C Mater Opt Electron Devices 2016; 4(2): 371-5.
[http://dx.doi.org/10.1039/C5TC03035H]
[65]
Tan Y, Luo H, Zhang H, Zhou X, Peng S. Lightweight graphene nanoplatelet/boron carbide composite with high EMI shielding effec-tiveness. AIP Adv 2016; 6(3): 035208.
[http://dx.doi.org/10.1063/1.4943977]
[66]
Li S, Tan Y, Xue J, Liu T, Zhou X, Zhang H. Electromagnetic interference shielding performance of nano-layered Ti 3 SiC 2 ceramics at high-temperatures. AIP Adv 2018; 8(1): 015027.
[http://dx.doi.org/10.1063/1.5012607]
[67]
Yao R, Liao S, Dai C, Liu Y, Chen X, Zheng F. Preparation and characterization of novel glass–ceramic tile with microwave absorp-tion properties from iron ore tailings. J Magn Magn Mater 2015; 378: 367-75.
[http://dx.doi.org/10.1016/j.jmmm.2014.11.066]
[68]
Zukowski B, dos Santos Mendonça YG, de Souza JVB, Toledo Filho RD. Cement-based EMI shielding materials for potential EMI shielding applications. Elsevier 2020; pp. 333-40.
[http://dx.doi.org/10.1016/B978-0-12-817590-3.00020-8]
[69]
Wanasinghe D, Aslani F, Ma G, Habibi D. Advancements in electromagnetic interference shielding cementitious composites. Constr Build Mater 2020; 231: 117116.
[http://dx.doi.org/10.1016/j.conbuildmat.2019.117116]
[70]
Nam IW, Lee HK. Synergistic effect of MWNT/fly ash incorporation on the EMI shielding/absorbing characteristics of cementitious materials. Constr Build Mater 2016; 115: 651-61.
[http://dx.doi.org/10.1016/j.conbuildmat.2016.04.082]
[71]
Liu Z, Ge H, Wu J, Chen J. Enhanced electromagnetic interference shielding of carbon fiber/cement composites by adding ferroferric oxide nanoparticles. Constr Build Mater 2017; 151: 575-81.
[http://dx.doi.org/10.1016/j.conbuildmat.2017.06.017]
[72]
Peymanfar R, Keykavous-Amand S, Abadi MM, Yassi Y. A novel approach toward reducing energy consumption and promoting electromagnetic interference shielding efficiency in the buildings using Brick/polyaniline nanocomposite. Constr Build Mater 2020; 263: 120042.
[http://dx.doi.org/10.1016/j.conbuildmat.2020.120042]
[73]
Baoyi L, Yuping D, Yuefang Z, Shunhua L. Electromagnetic wave absorption properties of cement-based composites filled with po-rous materials. Mater Des 2011; 32(5): 3017-20.
[http://dx.doi.org/10.1016/j.matdes.2010.12.017]
[74]
Lubineau G, Mora A, Han F, Odeh IN, Yaldiz R. A morphological investigation of conductive networks in polymers loaded with car-bon nanotubes. Comput Mater Sci 2017; 130: 21-38.
[http://dx.doi.org/10.1016/j.commatsci.2016.12.041]
[75]
Thomassin JM, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon based composites as electromagnetic inter-ference (EMI) shielding materials. Mater Sci Eng Rep 2013; 74(7): 211-32.
[http://dx.doi.org/10.1016/j.mser.2013.06.001]
[76]
Yao Y, Jin S, Zou H, et al. Polymer-based lightweight materials for electromagnetic interference shielding: A review. J Mater Sci 2021; 56(11): 6549-80.
[http://dx.doi.org/10.1007/s10853-020-05635-x]
[77]
Shakir HMF, Tariq A, Afzal A, Abdul Rashid I. Mechanical, thermal and EMI shielding study of electrically conductive polymeric hybrid nano-composites. J Mater Sci Mater Electron 2019; 30(18): 17382-92.
[http://dx.doi.org/10.1007/s10854-019-02088-0]
[78]
Joseph N, Singh SK, Sirugudu RK, Murthy VRK, Ananthakumar S, Sebastian MT. Effect of silver incorporation into PVDF-barium titanate composites for EMI shielding applications. Mater Res Bull 2013; 48(4): 1681-7.
[http://dx.doi.org/10.1016/j.materresbull.2012.11.115]
[79]
Hwang S. Tensile, electrical conductivity and EMI shielding properties of solid and foamed PBT/carbon fiber composites. Compos, Part B Eng 2016; 98: 1-8.
[http://dx.doi.org/10.1016/j.compositesb.2016.05.028]
[80]
Joseph N, Varghese J, Sebastian MT. Self assembled polyaniline nanofibers with enhanced electromagnetic shielding properties. RSC Advances 2015; 5(26): 20459-66.
[http://dx.doi.org/10.1039/C5RA02113H]
[81]
Kumar A, Kumar V, Kumar M, Awasthi K. Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI appli-cations. Polym Compos 2018; 39(11): 3858-68.
[http://dx.doi.org/10.1002/pc.24418]
[82]
Pud A, Ogurtsov N, Korzhenko A, Shapoval G. Some aspects of preparation methods and properties of polyaniline blends and com-posites with organic polymers. Prog Polym Sci 2003; 28(12): 1701-53.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.001]
[83]
Colaneri NF, Schacklette LW. EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 1992; 41(2): 291-7.
[http://dx.doi.org/10.1109/19.137363]
[84]
Saini P. Conjugated Polymer-Based blends, copolymers, and composites: Synthesis, properties, and applications. Fundamentals of Conjugated Polymer Blends. Copolymers and Composites 2015; 10: 3-118.
[85]
Wang Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding. Polym Adv Technol 2005; 16(4): 344-51.
[http://dx.doi.org/10.1002/pat.589]
[86]
Shacklette LW, Colaneri NF, Kulkarni VG, Wessling B. EMI shielding of intinsically conductive polymers. J Vinyl Technol 1992; 14(2): 118-22.
[http://dx.doi.org/10.1002/vnl.730140214]
[87]
Bora PJ, Vinoy KJ, Ramamurthy PC. Kishore, Madras G. Electromagnetic interference shielding effectiveness of polyaniline-nickel oxide coated cenosphere composite film. Composites Communications 2017; 4: 37-42.
[http://dx.doi.org/10.1016/j.coco.2017.04.002]
[88]
Farukh M, Singh AP, Dhawan SK. Enhanced electromagnetic shielding behavior of multi-walled carbon nanotube entrenched poly (3,4-ethylenedioxythiophene) nanocomposites. Compos Sci Technol 2015; 114: 94-102.
[http://dx.doi.org/10.1016/j.compscitech.2015.04.004]
[89]
Lu X, Zhang W, Wang C, Wen TC, Wei Y. One-dimensional conducting polymer nanocomposites: Synthesis, properties and applica-tions. Prog Polym Sci 2011; 36(5): 671-712.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.07.010]
[90]
Melvin GJH, Zhu Y, Ni Q-Q. Nanomaterials: electromagnetic wave energy loss Nanotechnology: Applications in Energy, Drug and Food. Springer 2019; pp. 73-97.
[91]
Sambyal P, Dhawan SK, Gairola P, Chauhan SS, Gairola SP. Synergistic effect of polypyrrole/BST/RGO/Fe 3 O 4 composite for enhanced microwave absorption and EMI shielding in X-Band. Curr Appl Phys 2018; 18(5): 611-8.
[http://dx.doi.org/10.1016/j.cap.2018.03.001]
[92]
Chung DDL. Materials for electromagnetic interference shielding. J Mater Eng Perform 2000; 9(3): 350-4.
[http://dx.doi.org/10.1361/105994900770346042]
[93]
Wang Y, Gu F, Ni L, et al. Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale 2017; 9(46): 18318-25.
[http://dx.doi.org/10.1039/C7NR05951E] [PMID: 29143001]
[94]
Zhu J, Wei S, Haldolaarachchige N, Young DP, Guo Z. Electromagnetic field shielding polyurethane nanocomposites reinforced with core–shell Fe–silica nanoparticles. J Phys Chem C 2011; 115(31): 15304-10.
[http://dx.doi.org/10.1021/jp2052536]
[95]
Zhang Z, Wei Z, Zhang L, Wan M. Polyaniline nanotubes and their dendrites doped with different naphthalene sulfonic acids. Acta Mater 2005; 53(5): 1373-9.
[http://dx.doi.org/10.1016/j.actamat.2004.11.030]
[96]
Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 2009; 113(2-3): 919-26.
[http://dx.doi.org/10.1016/j.matchemphys.2008.08.065]
[97]
Wu KH, Ting TH, Wang GP, Ho WD, Shih CC. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polym Degrad Stabil 2008; 93(2): 483-8.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.11.009]
[98]
Gopakumar DA, Pai AR, Pottathara YB, et al. Cellulose nanofiber-based polyaniline flexible papers as sustainable microwave absorb-ers in the X-band. ACS Appl Mater Interfaces 2018; 10(23): 20032-43.
[http://dx.doi.org/10.1021/acsami.8b04549] [PMID: 29812890]
[99]
Schmitz DP, Ecco LG, Dul S, et al. Electromagnetic interference shielding effectiveness of ABS carbon-based composites manufac-tured via fused deposition modelling. Mater Today Commun 2018; 15: 70-80.
[http://dx.doi.org/10.1016/j.mtcomm.2018.02.034]
[100]
Ji X, Chen D, Wang Q, Shen J, Guo S. Synergistic effect of flame retardants and carbon nanotubes on flame retarding and electromagnetic shielding properties of thermoplastic polyurethane. Compos Sci Technol 2018; 163: 49-55.
[http://dx.doi.org/10.1016/j.compscitech.2018.05.007]
[101]
Ma X, Shen B, Zhang L, Liu Y, Zhai W, Zheng W. Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos Sci Technol 2018; 158: 86-93.
[http://dx.doi.org/10.1016/j.compscitech.2018.02.006]
[102]
Chauhan SS, Verma P, Malik RS, Choudhary V. Thermomechanically stable dielectric composites based on poly(ether ketone) and BaTiO3 with improved electromagnetic shielding properties in X-band. J Appl Polym Sci 2018; 135(26): 46413.
[http://dx.doi.org/10.1002/app.46413]
[103]
Maruthi N, Faisal M, Raghavendra N. Conducting polymer based composites as efficient EMI shielding materials: A comprehensive review and future prospects. Synth Met 2021; 272: 116664.
[http://dx.doi.org/10.1016/j.synthmet.2020.116664]
[104]
Bizhani H, Nayyeri V, Katbab A, Jalali-Arani A, Nazockdast H. Double percolated MWCNTs loaded PC/SAN nanocomposites as an absorbing electromagnetic shield. Eur Polym J 2018; 100: 209-18.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.01.016]
[105]
Yu WC, Xu JZ, Wang ZG, et al. Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Compos, Part A Appl Sci Manuf 2018; 110: 237-45.
[http://dx.doi.org/10.1016/j.compositesa.2018.05.004]
[106]
Li L, Li S, Shao Y, Dou R, Yin B, Yang M. PVDF/PS/HDPE/MWCNTs/Fe 3 O 4 nanocomposites: Effective and lightweight elec-tromagnetic interference shielding material through the synergetic effect of MWCNTs and Fe3O4 nanoparticles. Curr Appl Phys 2018; 18(4): 388-96.
[http://dx.doi.org/10.1016/j.cap.2018.01.014]
[107]
Zha XJ, Pu JH, Ma LF, et al. A particular interfacial strategy in PVDF/OBC/MWCNT nanocomposites for high dielectric performance and electromagnetic interference shielding. Compos, Part A Appl Sci Manuf 2018; 105: 118-25.
[http://dx.doi.org/10.1016/j.compositesa.2017.11.011]
[108]
Mao C, Huang J, Zhu Y, Jiang W, Tang Q, Ma X. Tailored parallel graphene stripes in plastic film with conductive anisotropy by shear-induced self-assembly. J Phys Chem Lett 2013; 4(1): 43-7.
[http://dx.doi.org/10.1021/jz301811b] [PMID: 26291209]
[109]
Shi YD, Yu HO, Li J, et al. Low magnetic field-induced alignment of nickel particles in segregated poly(l-lactide)/poly(ε-caprolactone)/multi-walled carbon nanotube nanocomposites: Towards remarkable and tunable conductive anisotropy. Chem Eng J 2018; 347: 472-82.
[http://dx.doi.org/10.1016/j.cej.2018.04.147]
[110]
Hashemi SA, Mousavi SM, Arjmand M, Yan N, Sundararaj U. Electrified single-walled carbon nanotube/epoxy nanocomposite via vacuum shock technique: Effect of alignment on electrical conductivity and electromagnetic interference shielding. Polym Compos 2018; 39(S2): E1139-48.
[http://dx.doi.org/10.1002/pc.24632]
[111]
Singh B, Pratap V, Katiyar M, et al. Engineering of dielectric composites on electromagnetic and microwave absorbing properties for operation in the X -band. J Adv Dielectr 2021; 11(1): 2150001.
[http://dx.doi.org/10.1142/S2010135X21500016]
[112]
Biswas S, Arief I, Panja SS, Bose S. Bose SJAam, interfaces. Absorption-dominated electromagnetic wave suppressor derived from ferrite-doped cross-linked graphene framework and conducting carbon. ACS Appl Mater Interfaces 2017; 9(3): 3030-9.
[http://dx.doi.org/10.1021/acsami.6b14853] [PMID: 28036170]
[113]
Xu Y, Yang Y, Yan DX, Duan H, Zhao G, Liu Y. Gradient structure design of flexible waterborne polyurethane conductive films for ultraefficient electromagnetic shielding with low reflection characteristic. ACS Appl Mater Interfaces 2018; 10(22): 19143-52.
[http://dx.doi.org/10.1021/acsami.8b05129] [PMID: 29766720]
[114]
Wang C, Guo R, Lan J, Tan L, Jiang S, Xiang C. Preparation of multi-functional fabric via silver/reduced graphene oxide coating with poly(diallyldimethylammonium chloride) modification. J Mater Sci Mater Electron 2018; 29(10): 8010-9.
[http://dx.doi.org/10.1007/s10854-018-8807-8]
[115]
Jin L, Zhao X, Xu J, Luo Y, Chen D, Chen G. The synergistic effect of a graphene nanoplate/Fe3O4 @BaTiO3 hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance. RSC Advances 2018; 8(4): 2065-71.
[http://dx.doi.org/10.1039/C7RA12909B] [PMID: 35542611]
[116]
Ghosh S, Ganguly S, Remanan S, et al. Ultra-light weight, water durable and flexible highly electrical conductive polyurethane foam for superior electromagnetic interference shielding materials. J Mater Sci Mater Electron 2018; 29(12): 10177-89.
[http://dx.doi.org/10.1007/s10854-018-9068-2]
[117]
Wang G, Zhao G, Wang S, Zhang L, Park CB. Injection-molded microcellular PLA/graphite nanocomposites with dramatically en-hanced mechanical and electrical properties for ultra-efficient EMI shielding applications. J Mater Chem C Mater Opt Electron Devices 2018; 6(25): 6847-59.
[http://dx.doi.org/10.1039/C8TC01326H]
[118]
Yan DX, Ren PG, Pang H, Fu Q, Yang MB, Li ZM. Efficient electromagnetic interference shielding of lightweight gra-phene/polystyrene composite. J Mater Chem 2012; 22(36): 18772-4.
[http://dx.doi.org/10.1039/c2jm32692b]
[119]
Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ. Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 2011; 3(3): 918-24.
[http://dx.doi.org/10.1021/am200021v] [PMID: 21366239]
[120]
Cui S, Liu Y, Lan M, Wang Z, Chen F. Preparation and properties of graphite-cement based composites. J-Chin Ceramic Soc 2007; 35: 91.
[121]
Han C, Shen W, Gan Y, Cui S. Preparation and properties of graphite-gypsum absorbing composite materials. Bull Chin Ceramic Soc 2017; 36: 2583-8.
[122]
Lv X, Duan Y, Chen G. Electromagnetic wave absorption properties of cement-based composites filled with graphene nano-platelets and hollow glass microspheres. Constr Build Mater 2018; 162: 280-5.
[http://dx.doi.org/10.1016/j.conbuildmat.2017.12.047]
[123]
Lu S, Chen N, Wang H, Huo J. Electromagnetic wave absorption properties of ferrite and graphite cement-based composite materials. Fuhe Cailiao Xuebao 2010; 27: 73-8.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy