Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Review Article

Recent Developments in Catecholic Polymers: Polymerization and Applications

Author(s): Saad Moulay*

Volume 16, Issue 3, 2023

Published on: 06 January, 2023

Page: [262 - 315] Pages: 54

DOI: 10.2174/2666145416666221122114444

Price: $65

Abstract

Over the last few years, research on catechol-containing polymers has focused mainly on making mussel-inspired catechol-containing polymers and examining their adhesion ability onto various substrata under dry and wet conditions. Indeed, a surge of dopamine-bearing vinylic monomers such as dopamine acrylates and their protected ones have been homopolymerized or copolymerized with fittingly chosen comonomers for targeted applications. Novel polymerization methods such as RAFT and ATRP have been gratifyingly employed to realize these polymers with controlled molecular weights and polydispersity indexes. The protection of hydroxyl groups of the dopamine-based vinyl derivatives has been achieved with different groups, namely, alkyl, benzyl, acetal, silyl, and ester. Nevertheless, in several cases, the unprotected dopamine-based vinylic monomers have been unprecedentedly shown to undergo polymerization with no inhibition or retardation. Ring-opening polymerization has been applied to copolymerizing several oxiranecontaining dopamine monomers and catechol-containing monomers with cyclic comonomers with no major difficulty. Polymers from this method exhibited excellent scaffolds for preparing various materials with desired functions such as electronic conductivity and adhesion to a wide range of objects. Catechol and catechol-containing molecules have been subjected to polycondensation with a number of comonomers, such as formaldehyde, polyamines, polyols, and polyacids, polyisocyanates, under special conditions. These polycondensation resins have been evaluated mainly for their adsorption capacity towards heavy metals and dyes for wastewater decontamination. Proteins antifouling properties of some of these resins have been demonstrated as well. Their special chemistry allowed their use in realizing metal nanoparticles for different purposes.

Graphical Abstract

[1]
Moulay S. Polymers with dihydroxy/dialkoxybenzene moieties. C R Chim 2009; 12(5): 577-601.
[http://dx.doi.org/10.1016/j.crci.2008.05.011]
[2]
Cassidy HG. Electron exchange-polymers. I. J Am Chem Soc 1949; 71(2): 402-6.
[http://dx.doi.org/10.1021/ja01170a009]
[3]
Updegraff IH, Cassidy HG. Electron exchange-polymers. II. Vinylhydroquinone monomer and polymer. J Am Chem Soc 1949; 71(2): 407-10.
[http://dx.doi.org/10.1021/ja01170a010]
[4]
Moulay S. Dihydroxybenzene/benzoquinone-containing polymers: Organic redox polymers. Actual Chim 2000; 237: 12-27.
[5]
Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 1963; 85(14): 2149-54.
[http://dx.doi.org/10.1021/ja00897a025]
[6]
Patil N, Marcilla R. Catechol-containing polymers for electrochemical energy storageRedox Polymers for Energy and Nanomedicine. London: Royal Society of Chemistry 2021; pp. 245-87.
[http://dx.doi.org/10.1039/9781788019743]
[7]
Schweigert N, Zehnder AJB, Eggen RIL. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 2001; 3(2): 81-91.
[http://dx.doi.org/10.1046/j.1462-2920.2001.00176.x] [PMID: 11321547]
[8]
Moulay S. Galloylated Biopolymers with main applications in biomedicals. synergism between a biomaterial and a bioconjugation. In: Mishra M, Ed. Encyclopedia of Polymers Polymeric Materials, and Polymer Technology.
[9]
Moulay S. Galloylated polymers: Synthesis in tune with applications. Curr Appl Polym Sci
[10]
Waite JH, Tanzer ML. Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-dopa and hydroxyproline. Science 1981; 212(4498): 1038-40.
[http://dx.doi.org/10.1126/science.212.4498.1038] [PMID: 17779975]
[11]
Moulay S. DOPA/catechol-tethered polymers: Bioadhesives and biomimetic adhesive materials. Polym Rev (Phila Pa) 2014; 54(3): 436-513.
[http://dx.doi.org/10.1080/15583724.2014.881373]
[12]
Moulay S. Recent trends in mussel-inspired catechol-containing polymers. Orient J Chem 2018; 34(3): 1153-97.
[http://dx.doi.org/10.13005/ojc/340301]
[13]
Moulay S. Mussel-inspired polymers, recent trends. Curr Appl Polym Sci 2019; 3(1): 30-63.
[http://dx.doi.org/10.2174/2452271602666180910141623]
[14]
Quan W-Y, Hu Z, Liu H-Z, et al. Mussel-inspired catechol-functionalized hydrogels and their medical applications. Molecules 2019; 24(14): 2586.
[http://dx.doi.org/10.3390/molecules24142586] [PMID: 31315269]
[15]
Yabu H. Catechol-containing polymers: A biomimetic approach for creating novel adhesive and reducing polymers. In: Yamamoto H, Kato T, Eds. Molecular Technology: Materials Innovation 1st ed. 2019; 3: pp. 53-70.
[16]
Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: From design principles to promising applications. Chem Soc Rev 2020; 49(11): 3605-37.
[http://dx.doi.org/10.1039/C9CS00849G] [PMID: 32393930]
[17]
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale 2020; 12(3): 1307-24.
[http://dx.doi.org/10.1039/C9NR09780E] [PMID: 31907498]
[18]
Yang J, Saggiomo V, Velders AH, Cohen Stuart MA, Kamperman M. Reaction pathways in catechol/primary amine mixtures: A win-dow on crosslinking chemistry. PLoS One 2016; 11(12): e0166490.
[19]
Kord Forooshani P, Lee BP. Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J Polym Sci A Polym Chem 2017; 55(1): 9-33.
[http://dx.doi.org/10.1002/pola.28368] [PMID: 27917020]
[20]
Lynge ME, Schattling P, Städler B. Recent developments in poly(dopamine)-based coatings for biomedical applications. Nanomedicine (Lond) 2015; 10(17): 2725-42.
[http://dx.doi.org/10.2217/nnm.15.89] [PMID: 26377046]
[21]
Hofman AH, van Hees IA, Yang J, Kamperman M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv Mater 2018; 30(19): 1704640.
[http://dx.doi.org/10.1002/adma.201704640] [PMID: 29356146]
[22]
Maier GP, Rapp MV, Waite JH, Israelachvili JN, Butler A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015; 349(6248): 628-32.
[http://dx.doi.org/10.1126/science.aab0556] [PMID: 26250681]
[23]
Mu Y, Wu X, Pei D, et al. The contribution of the polarity of mussel-inspired adhesives in the realization of strong underwater bond-ing. ACS Biomater Sci Eng 2017; 3(12): 3133-40.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00673] [PMID: 33445356]
[24]
Moulay S. Hydrogels from catechol-conjugated polymeric materials Hydrogels: Recent Advances”, Gels Horizons: From Science to Smart Materials. Springer Nature Singapore Pte Ltd. 2018; pp. 435-70.
[http://dx.doi.org/10.1007/978-981-10-6077-9_16]
[25]
Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W. Catechol functionalized hyperbranched polymers as biomedical materials. Prog Polym Sci 2018; 78: 47-55.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.09.002]
[26]
Razaviamri S, Wang K, Liu B, Lee BP. Catechol-based antimicrobial polymers. Molecules 2021; 26(3): 559.
[http://dx.doi.org/10.3390/molecules26030559] [PMID: 33494541]
[27]
Li K, Sun Y, Tsoi JKH, Yiu CKY. The application of mussel-inspired molecule in dentin bonding. J Dent 2020; 99(5): 103404.
[http://dx.doi.org/10.1016/j.jdent.2020.103404] [PMID: 32522689]
[28]
Li K, Tsoi JKH, Yiu CKY. The application of novel mussel-inspired compounds in dentistry. Dent Mater 2021; 37(4): 655-71.
[http://dx.doi.org/10.1016/j.dental.2021.01.005] [PMID: 33579531]
[29]
Costa PM, Learmonth DA, Gomes DB, et al. Mussel-inspired catechol functionalisation as a strategy to enhance biomaterial adhesion: A systematic review. Polymers (Basel) 2021; 13(19): 3317.
[http://dx.doi.org/10.3390/polym13193317] [PMID: 34641133]
[30]
Daly WH, Moulay S. Synthesis of poly (vinylcatechols). J Polym Sci Polym Symp 1986; 74(1): 227-42.
[http://dx.doi.org/10.1002/polc.5070740120]
[31]
Ratvijitvech T. Bio-inspired catechol-based hypercrosslinked polymer for iron (fe) removal from water. J Polym Environ 2020; 28: 2211-8.
[http://dx.doi.org/10.1007/s10924-020-01766-z]
[32]
Yang Y, Ji H, Duan H, Fu Y, Xia S, Lü C. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications. Polym Chem 2019; 10(33): 4537-50.
[http://dx.doi.org/10.1039/C9PY00846B]
[33]
Zhang Y, Yang Y, Duan H, Lü C. Mussel-inspired catechol-formaldehyde resin coated Fe3O4 core-shell magnetic nanospheres: An effective catalyst support for highly active palladium nanoparticles. ACS Appl Mater Interfaces 2018; 10(51): 44535-45.
[http://dx.doi.org/10.1021/acsami.8b19489] [PMID: 30499653]
[34]
Yang Y, Zhu W, Shi B, Lü C. Construction of a thermo-responsive polymer brush decorated Fe3 O4 @catechol-formaldehyde resin core–shell nanosphere stabilized carbon dots/PdNP nanohybrid and its application as an efficient catalyst. J Mater Chem A Mater Energy Sustain 2020; 8(7): 4017-29.
[http://dx.doi.org/10.1039/C9TA12614G]
[35]
Bhatt RR, Shah BA. Sorption studies of heavy metal ions by salicylic acid–formaldehyde–catechol terpolymeric resin: Isotherm, kinetic and thermodynamics. Arab J Chem 2015; 8(3): 414-26.
[http://dx.doi.org/10.1016/j.arabjc.2013.03.012]
[36]
Arasaretnam S, Jayarathna UPD. Synthesis, characterization, and metal adsorption properties of formaldehydebased terpolymeric resins derived from anthranilic acid, salicylic acid, and catechol. J Chem 2020. Article OD = 8843162.
[http://dx.doi.org/10.1155/2020/8843162]
[37]
Mandavgade SK. Electrical conductance properties of a copolymer resin derived from 4-hydroxyacetophenone and catechol. Int J Innov Eng Sci 2018; 3(5): 137-41.
[38]
Arrachart G, Kenaan A, Gracia S, Turgis R, Dubois V, Pellet-Rostaing S. Design and evaluation of chelating resins through EDTA- and DTPA-modified ligands. Sep Sci Technol 2015; 50(12): 1882-9.
[http://dx.doi.org/10.1080/01496395.2015.1012591]
[39]
Arrambide Cruz C, Marie S, Arrachart G, Pellet-Rostaing S. Selective extraction and separation of germanium by catechol based resins. Separ Purif Tech 2018; 193: 214-9.
[http://dx.doi.org/10.1016/j.seppur.2017.11.013]
[40]
Liu Q, Liu Q, Ruan Z, Chang X, Yao J. Removal of Cu(II) from aqueous solution using synthetic poly(catechol-diethylenetriamine-p-phenylenediamine) particles. Ecotoxicol Environ Saf 2016; 129: 273-81.
[http://dx.doi.org/10.1016/j.ecoenv.2016.03.037] [PMID: 27057995]
[41]
Liu Q, Liu Q, Wu Z, Wu Y, Gao T, Yao J. Efficient removal of methyl orange and alizarin Red S from pH-unregulated aqueous solu-tion by the catechol-amine resin composite using hydrocellulose as precursor. ACS Sustain Chem& Eng 2017; 5(2): 1871-80.
[http://dx.doi.org/10.1021/acssuschemeng.6b02593]
[42]
Hu T, Liu Q, Liu Q, Wu Y, Qiao C, Yao J. Toxic Cr removal from aqueous media using catechol-amine copolymer coating onto as-prepared cellulose. Carbohydr Polym 2019; 209(1): 291-8.
[http://dx.doi.org/10.1016/j.carbpol.2019.01.046] [PMID: 30732811]
[43]
Long Y, Xiao L, Cao Q. Co-polymerization of catechol and polyethylenimine on magnetic nanoparticles for efficient selective removal of anionic dyes from water. Powder Technol 2017; 310: 24-34.
[http://dx.doi.org/10.1016/j.powtec.2017.01.013]
[44]
Chen Y, Wu X, Wei J, Wu H. Characterization and application to fiber reinforced composite of catechol/polyethyleneimine modified polyester fabrics by mussel-inspiration. Fibers Polym 2020; 21(11): 2625-34.
[http://dx.doi.org/10.1007/s12221-020-1161-5]
[45]
Zhu G, Gao T, Si S, Zhang Z, Liu Q, Zhou G. Mussel-inspired polymerization of catechol and 1,6-hexamethylenediamine for material-independent surface chemistry. Appl Surf Sci 2020; 507: 145080.
[http://dx.doi.org/10.1016/j.apsusc.2019.145080]
[46]
Krüger JM, Börner HG. Accessing the next generation of synthetic mussel-glue polymers via mussel-inspired polymerization. Angew Chem Int Ed 2021; 60(12): 6408-13.
[http://dx.doi.org/10.1002/anie.202015833] [PMID: 33507605]
[47]
Xu Y, Liu Q, Narayanan A, Jain D, Dhinojwala A, Joy A. Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion. Adv Mater Interfaces 2017; 4(22): 1700506.
[http://dx.doi.org/10.1002/admi.201700506]
[48]
Briz-López EM, Navarro R, Martínez-Hernández H, Téllez-Jurado L, Marcos-Fernández Á. Design and synthesis of bio-inspired pol-yurethane films with high performance. Polymers (Basel) 2020; 12(11): 2727.
[http://dx.doi.org/10.3390/polym12112727] [PMID: 33213051]
[49]
Duan J, Wu W, Wei Z, Zhu D, Tu H, Zhang A. Synthesis of functional catechols as monomers of mussel-inspired biomimetic poly-mers. Green Chem 2018; 20(4): 912-20.
[http://dx.doi.org/10.1039/C7GC03323K]
[50]
Jenkins CL, Siebert HM, Wilker JJ. Integrating mussel chemistry into a bio-based polymer to create degradable adhesives. Macromolecules 2017; 50(2): 561-8.
[http://dx.doi.org/10.1021/acs.macromol.6b02213]
[51]
Siebert HM, Wilker JJ. Improving the molecular weight and synthesis of a renewable biomimetic adhesive polymer. Eur Polym J 2019; 113: 321-7.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.01.063]
[52]
Hiraishi N, Kaneko D, Taira S, Wang S, Otsuki M, Tagami J. Mussel-mimetic, bioadhesive polymers from plant-derived materials. J Investig Clin Dent 2015; 6(1): 59-62.
[http://dx.doi.org/10.1111/jicd.12054] [PMID: 23857900]
[53]
Wang S, Kitamura Y, Hiraishi N, et al. Preparation of mussel-inspired biopolyester adhesive and comparative study of effects of meta- or para-hydroxyphenylpropionic acid segments on their properties. Polymer (Guildf) 2019; 165: 152-62.
[http://dx.doi.org/10.1016/j.polymer.2019.01.012]
[54]
Yu X, Dong C, Zhuang W, et al. Bio-based hotmelt adhesives with well-adhesion in water. Polymers (Basel) 2021; 13(4): 666.
[http://dx.doi.org/10.3390/polym13040666] [PMID: 33672307]
[55]
Becker G, Ackermann LM, Schechtel E, Klapper M, Tremel W, Wurm FR. Joining two natural motifs: Catechol-containing poly(phosphoester)s. Biomacromolecules 2017; 18(3): 767-77.
[http://dx.doi.org/10.1021/acs.biomac.6b01613] [PMID: 28140560]
[56]
Joshi S, Kathuria H, Verma S, Valiyaveettil S. Functional catechol-metal polymers via interfacial polymerization for applications in water purification. ACS Appl Mater Interfaces 2020; 12(16): 19044-53.
[http://dx.doi.org/10.1021/acsami.0c03133] [PMID: 32227990]
[57]
Xu LQ, Pranantyo D, Neoh K-G, Kang E-T, Teo SL-M, Fu GD. Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym Chem 2016; 7(2): 493-501.
[http://dx.doi.org/10.1039/C5PY01234A]
[58]
Sha X, Zhang C, Qi M, et al. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions. Macromol Rapid Commun 2020; 41(10): 2000055.
[http://dx.doi.org/10.1002/marc.202000055] [PMID: 32297374]
[59]
Baby M, Periya VK, Sankaranarayanan SK, Maniyeri SC. Bioinspired surface activators for wet/dry environments through greener epoxy-catechol amine chemistry. Appl Surf Sci 2020; 505: 144414.
[http://dx.doi.org/10.1016/j.apsusc.2019.144414]
[60]
Panchireddy S, Grignard B, Thomassin JM, Jerome C, Detrembleur C. Catechol containing polyhydroxyurethanes as high perfor-mance coatings and adhesives. ACS Sustain Chem& Eng 2018; 6(11): 14936-44.
[http://dx.doi.org/10.1021/acssuschemeng.8b03429]
[61]
Klöckner B, Niederer K, Fokina A, Frey H, Zentel R. Conducting polymer with orthogonal catechol and disulfide anchor groups for the assembly of inorganic nanostructures. Macromolecules 2017; 50(10): 3779-88.
[http://dx.doi.org/10.1021/acs.macromol.7b00217]
[62]
Alhaffar MT, Akhtar MN, Ali SA. Utilization of catecholic functionality in natural safrole and eugenol to synthesize mussel-inspired polymers. RSC Advances 2019; 9(37): 21265-77.
[http://dx.doi.org/10.1039/C9RA04719K] [PMID: 35521353]
[63]
Niederer K, Schüll C, Leibig D, Johann T, Frey H. Catechol acetonide glycidyl ether (CAGE): A functional epoxide monomer for line-ar and hyperbranched multi-catechol functional polyether architectures. Macromolecules 2016; 49(5): 1655-65.
[http://dx.doi.org/10.1021/acs.macromol.5b02441]
[64]
Patil N, Falentin-Daudré C, Jérôme C, Detrembleur C. Mussel-inspired protein-repelling ambivalent block copolymers: Controlled synthesis and characterization. Polym Chem 2015; 6(15): 2919-33.
[http://dx.doi.org/10.1039/C5PY00127G]
[65]
Patil N, Cordella D, Aqil A, et al. Surface- and redox-active multifunctional polyphenol-derived poly(ionic liquid)s: Controlled synthe-sis and characterization. Macromolecules 2016; 49(20): 7676-91.
[http://dx.doi.org/10.1021/acs.macromol.6b01857]
[66]
Patil N, Aqil A, Ouhib F, et al. Bioinspired redox‐active catechol‐bearing polymers as ultrarobust organic cathodes for lithium storage. Adv Mater 2017; 29(40): 1703373.
[http://dx.doi.org/10.1002/adma.201703373] [PMID: 28869678]
[67]
Patil N, Aqil M, Aqil A, et al. integration of redox-active catechol pendants into poly (ionic liquid) for the design of high-performance lithium-ion battery cathodes. Chem Mater 2018; 30(17): 5831-5.
[http://dx.doi.org/10.1021/acs.chemmater.8b02307]
[68]
Patil N, Mavrandonakis A, Jérôme C, Detrembleur C, Palma J, Marcilla R. Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion and post Li-ion (mono-, di- and trivalent) batteries. ACS Appl Energy Mater 2019; 2(5): 3035-41.
[http://dx.doi.org/10.1021/acsaem.9b00443]
[69]
Gallastegui A, Minudri D, Casado N, et al. Proton trap effect on catechol–pyridine redox polymer nanoparticles as organic electrodes for lithium batteries. Sustain Energy Fuels 2020; 4(8): 3934-42.
[http://dx.doi.org/10.1039/D0SE00531B]
[70]
Patil N, Jérôme C, Detrembleur C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy stor-age and environment. Prog Polym Sci 2018; 82: 34-91.
[http://dx.doi.org/10.1016/j.progpolymsci.2018.04.002]
[71]
Kohri M, Yamazaki S, Irie S, Teramoto N, Taniguchi T, Kishikawa K. Adhesion control of branched catecholic polymers by acid stim-ulation. ACS Omega 2018; 3(12): 16626-32.
[http://dx.doi.org/10.1021/acsomega.8b02768] [PMID: 31458294]
[72]
Nam KH, Jin JU, Lee JH, et al. Highly efficient thermal oxidation and cross-linking reaction of catechol functionalized polyacrylonitrile copolymer composites for halogen-free flame retardant. Compos, Part B Eng 2020; 184: 107687.
[http://dx.doi.org/10.1016/j.compositesb.2019.107687]
[73]
Zhang Y, Hasegawa K, Kamo S, Takagi K, Ma W, Takahara A. Enhanced adhesion effect of epoxy resin on metal surfaces using pol-ymer with catechol and epoxy groups. ACS Appl Polym Mater 2020; 2(4): 1500-7.
[http://dx.doi.org/10.1021/acsapm.9b01179]
[74]
Zhang Y, Chu CW, Ma W, Takahara A. Functionalization of metal surface via thiol-ene click chemistry: Synthesis, adsorption behavior, and postfunctionalization of a catechol- and allyl-containing copolymer. ACS Omega 2020; 5(13): 7488-96.
[http://dx.doi.org/10.1021/acsomega.0c00259] [PMID: 32280892]
[75]
Lee SB, González-Cabezas C, Kim KM, Kim KN, Kuroda K. Catechol-functionalized synthetic polymer as a dental adhesive to contam-inated dentin surface for a composite restoration. Biomacromolecules 2015; 16(8): 2265-75.
[http://dx.doi.org/10.1021/acs.biomac.5b00451] [PMID: 26176305]
[76]
Zhai Y, Chen X, Yuan Z, Han X, Liu H. A mussel-inspired catecholic ABA triblock copolymer exhibits better antifouling properties compared to a diblock copolymer. Polym Chem 2020; 11(28): 4622-9.
[http://dx.doi.org/10.1039/D0PY00810A]
[77]
Yang J, Bos I, Pranger W, et al. A clear coat from a water soluble precursor: A bioinspired paint concept. J Mater Chem A Mater Energy Sustain 2016; 4(18): 6868-77.
[http://dx.doi.org/10.1039/C5TA09437B]
[78]
Saito Y, Yabu H. Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organ-ic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt-b-PSt. Chem Commun (Camb) 2015; 51(18): 3743-6.
[http://dx.doi.org/10.1039/C4CC08366K] [PMID: 25500961]
[79]
Saito Y, Higuchi T, Jinnai H, et al. Silver nanoparticle arrays prepared by in situ automatic reduction of silver ions in mussel-inspired block copolymer films. Macromol Chem Phys 2016; 217(6): 726-34.
[http://dx.doi.org/10.1002/macp.201500504]
[80]
Brennan MJ, Meredith HJ, Jenkins CL, Wilker JJ, Liu JC. Cytocompatibility studies of a biomimetic copolymer with simplified struc-ture and high-strength adhesion. J Biomed Mater Res A 2016; 104(4): 983-90.
[http://dx.doi.org/10.1002/jbm.a.35633] [PMID: 26714824]
[81]
Nishimori K, Tenjimbayashi M, Naito M, Ouchi M. Alternating copolymers of vinyl catechol or vinyl phenol with alkyl maleimide for adhesive and water repellent coating materials. ACS Appl Polym Mater 2020; 2(11): 4604-12.
[http://dx.doi.org/10.1021/acsapm.0c00682]
[82]
Pirnat K, Casado N, Porcarelli L, Ballard N, Mecerreyes D. Synthesis of redox polymer nanoparticles based on poly(vinyl catechols) and their electroactivity. Macromolecules 2019; 52(21): 8155-66.
[http://dx.doi.org/10.1021/acs.macromol.9b01405]
[83]
Leibig D, Müller AHE, Frey H. Anionic polymerization of vinylcatechol derivatives: Reversal of the monomer gradient directed by the position of the catechol moiety in the copolymerization with styrene. Macromolecules 2016; 49(13): 4792-801.
[http://dx.doi.org/10.1021/acs.macromol.6b00831]
[84]
Leibig D, Lange AK, Birke A, Frey H. Capitalizing on protecting groups to influence vinyl catechol monomer reactivity and monomer gradient in carbanionic copolymerization. Macromol Chem Phys 2017; 218(12): 1600553.
[http://dx.doi.org/10.1002/macp.201600553]
[85]
Kim J, You NH, Ku BC. Highly efficient halogen-free flame retardants of thermally-oxidized polyacrylonitrile copolymers containing bio-derived caffeic acid derivatives. Polym Chem 2020; 11(41): 6658-69.
[http://dx.doi.org/10.1039/D0PY00854K]
[86]
Kim J, Choi M, You NH, Yu J, Yoo H, Ku BC. High-flame retarding properties of polyacrylonitrile copolymer nanocomposites with synergistic effect of elemental sulfur-doped reduced graphene oxide and bio-derived catechol units. Compos, Part A Appl Sci Manuf 2021; 148: 106477.
[http://dx.doi.org/10.1016/j.compositesa.2021.106477]
[87]
Bartucci MA, Napadensky E, Lenhart JL, Orlicki JA. Side chain length impacting thermal transitions and water uptake of acrylate–maleimide copolymers with pendent catechols. RSC Advances 2017; 7(77): 49114-8.
[http://dx.doi.org/10.1039/C7RA08769A]
[88]
Bartucci MA, Savage AM, Flanagan D, et al. Maleimide‐acrylate copolymers with pendent catechols: Platform for probing adhesion. Polym Int 2021; 70(6): 790-4.
[http://dx.doi.org/10.1002/pi.6175]
[89]
Wang RY, Kang H, Park MJ. High-capacity, sustainable lithium-sulfur batteries based on multifunctional polymer binders. ACS Appl Energy Mater 2021; 4(3): 2696-706.
[http://dx.doi.org/10.1021/acsaem.0c03244]
[90]
Takeshima H, Satoh K, Kamigaito M. Scalable synthesis of bio-based functional styrene: Protected vinyl catechol from caffeic acid and controlled radical and anionic polymerizations thereof. ACS Sustain Chem& Eng 2018; 6(11): 13681-6.
[http://dx.doi.org/10.1021/acssuschemeng.8b04400]
[91]
Takeshima H, Satoh K, Kamigaito M. Bio‐based vinylphenol family: Synthesis via decarboxylation of naturally occurring cinnamic acids and living radical polymerization for functionalized polystyrenes. J Polym Sci 2020; 58(1): 91-100.
[http://dx.doi.org/10.1002/pola.29453]
[92]
Takeshima H, Satoh K, Kamigaito M. Bio-based functional styrene monomers derived from naturally occurring ferulic acid for poly(vinylcatechol) and poly(vinylguaiacol) via controlled radical polymerization. Macromolecules 2017; 50(11): 4206-16.
[http://dx.doi.org/10.1021/acs.macromol.7b00970]
[93]
Hirai T, Kawada J, Narita M, et al. Fully bio-based polymer blend of polyamide 11 and Poly(vinylcatechol) showing thermodynamic miscibility and excellent engineering properties. Polymer (Guildf) 2019; 181: 121667.
[http://dx.doi.org/10.1016/j.polymer.2019.121667]
[94]
Tanizaki S, Kubo T, Satoh K. Novel bio-based catechol-containing copolymers by precision polymerization of caffeic acid-derived styrenes using ester protection. Macromol Chem Phys 2022; 223(12): 2100378.
[http://dx.doi.org/10.1002/macp.202100378]
[95]
Yang J, Keijsers J, van Heek M, Stuiver A, Cohen Stuart MA, Kamperman M. The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive. Polym Chem 2015; 6(16): 3121-30.
[http://dx.doi.org/10.1039/C4PY01790K]
[96]
Xiong X, Liu Y, Shi F, Zhang G, Weng J, Qu S. Enhanced adhesion of mussel-inspired adhesive through manipulating contents of dopamine methacrylamide and molecular weight of polymer. J Bionics Eng 2018; 15(3): 461-70.
[http://dx.doi.org/10.1007/s42235-018-0037-5]
[97]
Xue J, Zhang Z, Nie J, Du B. Formation of microgels by utilizing the reactivity of catechols with radicals. Macromolecules 2017; 50(14): 5285-92.
[http://dx.doi.org/10.1021/acs.macromol.7b01304]
[98]
Wen M, Liu M, Xue W, Yang K, Chen G, Zhang W. Simple and green strategy for the synthesis of “Pathogen-mimetic” Glycoadju-vant@AuNPs by combination of photoinduced RAFT and bioinspired dopamine chemistry. ACS Macro Lett 2018; 7(1): 70-4.
[http://dx.doi.org/10.1021/acsmacrolett.7b00837] [PMID: 35610919]
[99]
Putnam AA, Wilker JJ. Changing polymer catechol content to generate adhesives for high versus low energy surfaces. Soft Matter 2021; 17(7): 1999-2009.
[http://dx.doi.org/10.1039/D0SM01944E] [PMID: 33438707]
[100]
Jones TA, Wilker JJ. Influences of phosphates on the adhesion of a catechol-containing polymer. ACS Appl Polym Mater 2020; 2(11): 4632-9.
[http://dx.doi.org/10.1021/acsapm.0c00699]
[101]
Zhang H, Zhao T, Newland B, et al. On-demand and negative-thermo-swelling tissue adhesive based on highly branched ambivalent PEG–catechol copolymers. J Mater Chem B Mater Biol Med 2015; 3(31): 6420-8.
[http://dx.doi.org/10.1039/C5TB00949A] [PMID: 32262550]
[102]
Li J, Ejima H, Yoshie N. Seawater-assisted self-healing of catechol polymers via hydrogen bonding and coordination interactions. ACS Appl Mater Interfaces 2016; 8(29): 19047-53.
[http://dx.doi.org/10.1021/acsami.6b04075] [PMID: 27377859]
[103]
Ejima H, Oba A, Yoshie N. Tuning the mechanical properties of bioinspired catechol polymers by incorporating dual coordination bonds. J Photopolym Sci Technol 2018; 31(1): 75-80.
[http://dx.doi.org/10.2494/photopolymer.31.75]
[104]
Kim C, Ejima H, Yoshie N. Non-swellable self-healing polymer with long-term stability under seawater. RSC Advances 2017; 7(31): 19288-95.
[http://dx.doi.org/10.1039/C7RA01778B]
[105]
Xu LQ, Pranantyo D, Ng YX, et al. Antifouling coatings of catecholamine copolymers on stainless steel. Ind Eng Chem Res 2015; 54(22): 5959-67.
[http://dx.doi.org/10.1021/acs.iecr.5b00171]
[106]
Liu B, Zhou C, Zhang Z, Roland JD, Lee BP. Antimicrobial property of halogenated catechols. Chem Eng J 2021; 403: 126340.
[http://dx.doi.org/10.1016/j.cej.2020.126340] [PMID: 32848507]
[107]
Zhao P, Wei K, Feng Q, et al. Mussel-mimetic hydrogels with defined cross-linkers achieved via controlled catechol dimerization ex-hibiting tough adhesion for wet biological tissues. Chem Commun (Camb) 2017; 53(88): 12000-3.
[http://dx.doi.org/10.1039/C7CC07215E] [PMID: 29052668]
[108]
Grewal MS, Yabu H. Biomimetic catechol-based adhesive polymers for dispersion of polytetrafluoroethylene (PTFE) nanoparticles in an aqueous medium. RSC Advances 2020; 10(7): 4058-63.
[http://dx.doi.org/10.1039/C9RA10606E] [PMID: 35492658]
[109]
Gallastegui A, Porcarelli L, Palacios RE, Gómez ML, Mecerreyes D. Catechol-containing acrylic poly(ionic liquid) hydrogels as bioin-spired filters for water decontamination. ACS Appl Polym Mater 2019; 1(7): 1887-95.
[http://dx.doi.org/10.1021/acsapm.9b00443]
[110]
Degawa K, Matsumoto A. Retardation effect of catechol moiety during radical copolymerization of 3,4-dihydroxystyrene with various monomers. Chem Lett 2019; 48(8): 928-31.
[http://dx.doi.org/10.1246/cl.190305]
[111]
Matos-Pérez CR, White JD, Wilker JJ. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J Am Chem Soc 2012; 134(22): 9498-505.
[http://dx.doi.org/10.1021/ja303369p] [PMID: 22582754]
[112]
North MA, Del Grosso CA, Wilker JJ. High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS Appl Mater Interfaces 2017; 9(8): 7866-72.
[http://dx.doi.org/10.1021/acsami.7b00270] [PMID: 28177600]
[113]
Takeshima H, Satoh K, Kamigaito M. R–Cl/SnCl4/n -Bu4 NCl-induced direct living cationic polymerization of naturally-derived un-protected 4-vinylphenol, 4-vinylguaiacol, and 4-vinylcatechol in CH3 CN. Polym Chem 2019; 10(10): 1192-201.
[http://dx.doi.org/10.1039/C8PY01831F]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy