Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Landscape Analysis of Quercetin: A Potential Candidate Against SARSCoV- 2

Author(s): Furqan Shafqat, Shafeeq Ur Rehman, Omazia Nasir, Ayesha Sarwar and Kamal Niaz*

Volume 3, Issue 6, 2022

Published on: 13 December, 2022

Article ID: e231122211149 Pages: 14

DOI: 10.2174/2666796704666221123105201

Price: $65

Abstract

Fruit, vegetables, and green tea contain quercetin (a flavonoid). Some of the diet's most significant sources of quercetin are apples, onions, tomatoes, broccoli, and green tea. Antioxidant, anticancer, anti-inflammatory, antimicrobial, antibacterial, and anti-viral effects have been studied of quercetin. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus, ribonucleic acid (RNA) polymerase, and other essential viral life-cycle enzymes are all prevented from entering the body by quercetin. Despite extensive in vitro and in vivo investigations on the immune-modulating effects of quercetin and vitamin C treatment. 3-methyl-quercetin has been shown to bind to essential proteins necessary to convert minus-strand RNA into positive-strand RNAs, preventing the replication of viral RNA in the cytoplasm. Quercetin has been identified as a potential SARS-CoV-2 3C-like protease (3CLpro) suppressor in recent molecular docking studies and in silico assessment of herbal medicines. It has been demonstrated that quercetin increases the expression of heme oxygenase-1 through the nuclear factor erythroid-related factor 2 (Nrf2) signal network. Inhibition of heme oxygenase-1 may increase bilirubin synthesis, an endogenous antioxidant that defends cells. When human gingival fibroblast (HGF) cells were exposed to lipopolysaccharide (LPS), inflammatory cytokine production was inhibited. The magnesium (Mg+2) cation complexation improves quercetin free radical scavenging capacity, preventing oxidant loss and cell death. The main objective of this paper is to provide an overview of the pharmacological effects of quercetin, its protective role against SARS-CoV-2 infection, and any potential molecular processes.

Graphical Abstract

[1]
Hollman PCH, Arts ICW. Flavonols, flavones and flavanols-nature, occurrence and dietary burden. J Sci Food Agric 2000; 80(7): 1081-93.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1081::AID-JSFA566>3.0.CO;2-G]
[2]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[3]
Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003; 300(5624): 1394-9.
[http://dx.doi.org/10.1126/science.1085952] [PMID: 12730500]
[4]
Marra MA, Jones SJM, Astell CR, et al. The Genome sequence of the SARS-associated coronavirus. Science 2003; 300(5624): 1399-404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[5]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[6]
Chen L, Li J, Luo C, et al. Binding interaction of quercetin-3-β-galactoside and its synthetic derivatives with SARS-CoV 3CLpro: Structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 2006; 14(24): 8295-306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[7]
Zhou P, Yang X, Wang X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[8]
Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and vitamin C: An experimental, synergistic therapy for the prevention and treatment of SARS-CoV-2 related disease (COVID-19). Front Immunol 2020; 11: 1451.
[http://dx.doi.org/10.3389/fimmu.2020.01451] [PMID: 32636851]
[9]
Tahir ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[10]
Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising anti-viral activities of natural flavonoids against SARS-CoV-2 targets: Systematic review. Int J Mol Sci 2021; 22(20): 11069.
[http://dx.doi.org/10.3390/ijms222011069] [PMID: 34681727]
[11]
Bahun M, Jukić M, Oblak D, et al. Inhibition of the SARS-CoV-2 3CLpro main protease by plant polyphenols. Food Chem 2022; 373(Pt B): 131594.
[http://dx.doi.org/10.1016/j.foodchem.2021.131594] [PMID: 34838409]
[12]
Atherton JG, Kratzing CC, Fisher A. The effect of ascorbic acid on infection of chick-embryo ciliated tracheal organ cultures by coronavirus. Arch Virol 1978; 56(3): 195-9.
[http://dx.doi.org/10.1007/BF01317848] [PMID: 205194]
[13]
Williams CA, Harborne JB, Greenham JR, Grayer RJ, Kite GC, Eagles J. Variations in lipophilic and vacuolar flavonoids among European Pulicaria species. Phytochemistry 2003; 64(1): 275-83.
[http://dx.doi.org/10.1016/S0031-9422(03)00207-3] [PMID: 12946426]
[14]
Semalty A, Semalty M, Rawat MSM, Franceschi F. Supramolecular phospholipids-polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010; 81(5): 306-14.
[http://dx.doi.org/10.1016/j.fitote.2009.11.001] [PMID: 19919847]
[15]
Ferry DR, Smith A, Malkhandi J, et al. Phase I clinical trial of the flavonoid quercetin: Pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996; 2(4): 659-68.
[PMID: 9816216]
[16]
Erlund I, Kosonen T, Alfthan G, et al. Pharmacokinetics of quercetin from quercetin aglycone and rutin in healthy volunteers. Eur J Clin Pharmacol 2000; 56(8): 545-53.
[http://dx.doi.org/10.1007/s002280000197] [PMID: 11151743]
[17]
Graefe EU, Wittig J, Mueller S, et al. Pharmacokinetics and bioavailability of quercetin glycosides in humans. J Clin Pharmacol 2001; 41(5): 492-9.
[http://dx.doi.org/10.1177/00912700122010366] [PMID: 11361045]
[18]
Wiczkowski W, Piskuła MK. Food flavonoids. Pol J Food Nutr Sci 2004; 13(54): 101-14.
[19]
Williams CA, Grayer RJ. Anthocyanins and other flavonoids. Nat Prod Rep 2004; 21(4): 539-73.
[http://dx.doi.org/10.1039/b311404j] [PMID: 15282635]
[20]
Sun Y, Li C, Li Z, et al. Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo. Virus Res 2021; 305: 198556.
[http://dx.doi.org/10.1016/j.virusres.2021.198556] [PMID: 34492238]
[21]
Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int 2007; 31(10): 1245-50.
[http://dx.doi.org/10.1016/j.cellbi.2007.04.009] [PMID: 17583542]
[22]
Uchide N, Toyoda H. Antioxidant therapy as a potential approach to severe influenza-associated complications. Molecules 2011; 16(3): 2032-52.
[http://dx.doi.org/10.3390/molecules16032032] [PMID: 21358592]
[23]
Nair MP, Kandaswami C, Mahajan S, et al. The flavonoid, quercetin, differentially regulates Th-1 (IFNγ) and Th-2 (IL4) cytokine gene expression by normal peripheral blood mononuclear cells. Biochimica et Biophysica Acta (BBA). Mol Cell Res 2002; 1593(1): 29-36.
[PMID: 12431781]
[24]
Labarrere CA, Woods JR, Hardin JW, et al. Early prediction of cardiac allograft vasculopathy and heart transplant failure. Am J Transplant 2011; 11(3): 528-35.
[http://dx.doi.org/10.1111/j.1600-6143.2010.03401.x] [PMID: 21219580]
[25]
Cushnie TPT, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26(5): 343-56.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.09.002] [PMID: 16323269]
[26]
Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica 1990; 13(3): 207-13.
[PMID: 2125682]
[27]
Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID‐19). Phytother Res 2021; 35(3): 1230-6.
[http://dx.doi.org/10.1002/ptr.6887] [PMID: 33034398]
[28]
De Palma AM, Vliegen I, De Clercq E, Neyts J. Selective inhibitors of picornavirus replication. Med Res Rev 2008; 28(6): 823-84.
[http://dx.doi.org/10.1002/med.20125] [PMID: 18381747]
[29]
Ishitsuka H, Ohsawa C, Ohiwa T, Umeda I, Suhara Y. Antipicornavirus flavone Ro 09-0179. Antimicrob Agents Chemother 1982; 22(4): 611-6.
[http://dx.doi.org/10.1128/AAC.22.4.611] [PMID: 6295260]
[30]
Kaul TN, Middleton E Jr, Ogra PL. Antiviral effect of flavonoids on human viruses. J Med Virol 1985; 15(1): 71-9.
[http://dx.doi.org/10.1002/jmv.1890150110] [PMID: 2981979]
[31]
Liu S, Wu S, Jiang S. HIV entry inhibitors targeting gp41: From polypeptides to small-molecule compounds. Curr Pharm Des 2007; 13(2): 143-62.
[http://dx.doi.org/10.2174/138161207779313722] [PMID: 17269924]
[32]
Yang J, Li M, Shen X, Liu S. Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses 2013; 5(1): 352-73.
[http://dx.doi.org/10.3390/v5010352] [PMID: 23340380]
[33]
Xia S, Liu Q, Wang Q, et al. Middle East respiratory syndrome coronavirus (MERS-CoV) entry inhibitors targeting spike protein. Virus Res 2014; 194: 200-10.
[http://dx.doi.org/10.1016/j.virusres.2014.10.007] [PMID: 25451066]
[34]
Wu W, Li R, Li X, et al. Quercetin as an anti-viral agent inhibits influenza A virus (IAV) entry. Viruses 2015; 8(1): 6.
[http://dx.doi.org/10.3390/v8010006]
[35]
Ganesan S, Faris AN, Comstock AT, et al. Quercetin inhibits rhinovirus replication in vitro and in vivo. Antiviral Res 2012; 94(3): 258-71.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.005] [PMID: 22465313]
[36]
Ganesan S, Faris AN, Comstock AT, et al. Quercetin prevents progression of disease in elastase/LPS-exposed mice by negatively regulating MMP expression. Respir Res 2010; 11(1): 131.
[http://dx.doi.org/10.1186/1465-9921-11-131] [PMID: 20920189]
[37]
Nanua S, Zick SM, Andrade JE, et al. Quercetin blocks airway epithelial cell chemokine expression. Am J Respir Cell Mol Biol 2006; 35(5): 602-10.
[http://dx.doi.org/10.1165/rcmb.2006-0149OC] [PMID: 16794257]
[38]
Rogerio AP, Kanashiro A, Fontanari C, et al. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm Res 2007; 56(10): 402-8.
[http://dx.doi.org/10.1007/s00011-007-7005-6] [PMID: 18026696]
[39]
Shinozuka K, Kikuchi Y, Nishino C, Mori A, Tawata S. Inhibitory effect of flavonoids on DNA-dependent DNA and RNA polymerases. Experientia 1988; 44(10): 882-5.
[http://dx.doi.org/10.1007/BF01941188] [PMID: 2460368]
[40]
Ono K, Nakane H. Mechanisms of inhibition of various cellular DNA and RNA polymerases by several flavonoids. J Biochem 1990; 108(4): 609-13.
[http://dx.doi.org/10.1093/oxfordjournals.jbchem.a123251] [PMID: 2292590]
[41]
Kim CH, Kim JE, Song YJ. Anti-viral activities of quercetin and isoquercitrin against human herpesviruses. Molecules 2020; 25(10): 2379.
[http://dx.doi.org/10.3390/molecules25102379]
[42]
Vrijsen R, Everaert L, Boeyé A. Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol 1988; 69(7): 1749-51.
[http://dx.doi.org/10.1099/0022-1317-69-7-1749] [PMID: 2839607]
[43]
Vrijsen R, Everaert L, Van Hoof LM, Vlietinck AJ, Vanden Berghe DA, Boeyé A. The poliovirus-induced shut-off of cellular protein synthesis persists in the presence of 3-methylquercetin, a flavonoid which blocks viral protein and RNA synthesis. Antiviral Res 1987; 7(1): 35-42.
[http://dx.doi.org/10.1016/0166-3542(87)90037-4] [PMID: 3026245]
[44]
Kalita R, Bhattacharya K, Ali A, Sandilya S. Quercitin as an antiviral weapon-A review. J Appl Pharm Res 2021; 9(1): 1-7.
[http://dx.doi.org/10.18231/JOAPR.2021.9.1.25.29]
[45]
Castrillo JL, Carrasco L. Action of 3-methylquercetin on poliovirus RNA replication. J Virol 1987; 61(10): 3319-21.
[http://dx.doi.org/10.1128/jvi.61.10.3319-3321.1987] [PMID: 2442414]
[46]
Seo DJ, Choi C. Inhibitory mechanism of five natural flavonoids against murine norovirus. Phytomedicine 2017; 30: 59-66.
[http://dx.doi.org/10.1016/j.phymed.2017.04.011] [PMID: 28545670]
[47]
Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M. Antiviral activities of flavonoids. Biomed Pharmacother 2021; 140: 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596] [PMID: 34126315]
[48]
Nimbalkar VV, Hemnani JM, Shelke AB. Quercetin and a review on its importance. Oxid Med Cell Longev 2019.
[49]
Li BW, Zhang FH, Serrao E, et al. Design and discovery of flavonoid-based HIV-1 integrase inhibitors targeting both the active site and the interaction with LEDGF/p75. Bioorg Med Chem 2014; 22(12): 3146-58.
[http://dx.doi.org/10.1016/j.bmc.2014.04.016] [PMID: 24794743]
[50]
Spedding G, Ratty A, Middleton E Jr. Inhibition of reverse transcriptases by flavonoids. Antiviral Res 1989; 12(2): 99-110.
[http://dx.doi.org/10.1016/0166-3542(89)90073-9] [PMID: 2480745]
[51]
Ko YJ, Oh H-J, Ahn H-M, Kang H-J, Kim J-H, Ko YH. Flavonoids as potential inhibitors of retroviral enzymes. J Korean Soc Appl Biol Chem 2009; 52(4): 321-6.
[http://dx.doi.org/10.3839/jksabc.2009.057]
[52]
Cotin S, Calliste CA, Mazeron MC, et al. Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication. Antiviral Res 2012; 96(2): 181-6.
[http://dx.doi.org/10.1016/j.antiviral.2012.09.010] [PMID: 23000494]
[53]
Harakeh S, Jariwalla RJ, Pauling L. Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells. Proc Natl Acad Sci USA 1990; 87(18): 7245-9.
[http://dx.doi.org/10.1073/pnas.87.18.7245] [PMID: 1698293]
[54]
Geng L, Liu Z, Wang S, et al. Low-dose quercetin positively regulates mouse healthspan. Protein Cell 2019; 10(10): 770-5.
[http://dx.doi.org/10.1007/s13238-019-0646-8] [PMID: 31325157]
[55]
Zhou QA, Kato-Weinstein J, Li Y, et al. Potential therapeutic agents and associated bioassay data for COVID-19 and related human coronavirus infections. ACS Pharmacol Transl Sci 2020; 3(5): 813-34.
[http://dx.doi.org/10.1021/acsptsci.0c00074] [PMID: 33062950]
[56]
Cherrak SA, Merzouk H, Mokhtari-Soulimane N. Potential bioactive glycosylated flavonoids as SARS-CoV-2 main protease inhibitors: A molecular docking study. OSF Preprints 2020.
[57]
Khaerunnisa S, Kurniawan H, Awaluddin R, Suhartati S, Soetjipto S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints 2020; 2020; 2020030226.
[http://dx.doi.org/10.20944/preprints202003.0226.v1]
[58]
Sampangi-Ramaiah MH, Vishwakarma R, Uma Shaanker R. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Curr Sci 2020; 118(7): 1087-92.
[http://dx.doi.org/10.18520/cs/v118/i7/1087-1092]
[59]
Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective. Int J Biol Sci 2020; 16(10): 1708-17.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[60]
Yao C, Xi C, Hu K, et al. Inhibition of enterovirus 71 replication and viral 3C protease by quercetin. Virol J 2018; 15(1): 116.
[http://dx.doi.org/10.1186/s12985-018-1023-6] [PMID: 30064445]
[61]
Mouffouk C, Mouffouk S, Mouffouk S, Hambaba L, Haba H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases (3CLpro and PLpro), spike protein, RNA-dependent RNA polymerase (RdRp) and angiotensin-converting enzyme II receptor (ACE2). Eur J Pharmacol 2021; 891: 173759.
[http://dx.doi.org/10.1016/j.ejphar.2020.173759] [PMID: 33249077]
[62]
Gonzalez O, Fontanes V, Raychaudhuri S, et al. The heat shock protein inhibitor quercetin attenuates hepatitis C virus production. Hepatology 2009; 50(6): 1756-64.
[http://dx.doi.org/10.1002/hep.23232] [PMID: 19839005]
[63]
Hosokawa N, Hirayoshi K, Kudo H, et al. Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 1992; 12(8): 3490-8.
[PMID: 1321338]
[64]
Khan M, Rauf W, Habib F, Rahman M, Iqbal M. Screening and identification of bioactive compounds from citrus against non-structural protein 3 protease of hepatitis C virus genotype 3a by fluorescence resonance energy transfer assay and mass spectrometry. World J Hepatol 2020; 12(11): 976-92.
[http://dx.doi.org/10.4254/wjh.v12.i11.976] [PMID: 33312423]
[65]
Yin C. Genotyping coronavirus SARS-CoV-2: Methods and implications. Genomics 2020; 112(5): 3588-96.
[http://dx.doi.org/10.1016/j.ygeno.2020.04.016] [PMID: 32353474]
[66]
Chen B, Tian EK, He B, et al. Overview of lethal human coronaviruses. Signal Transduct Target Ther 2020; 5(1): 89.
[http://dx.doi.org/10.1038/s41392-020-0190-2] [PMID: 32533062]
[67]
Ravikumar N, Kavitha CN. Immunomodulatory effect of Quercetin on dysregulated Th1/Th2 cytokine balance in mice with both type 1 diabetes and allergic asthma. J Appl Pharm Sci 2020; 10(3): 80-7.
[http://dx.doi.org/10.7324/JAPS.2020.103010]
[68]
Álvarez P, Alvarado C, Puerto M, Schlumberger A, Jiménez L, De la Fuente M. Improvement of leukocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutrition 2006; 22(9): 913-21.
[http://dx.doi.org/10.1016/j.nut.2005.12.012] [PMID: 16809023]
[69]
Exon JH, Magnuson BA, South EH, Hendrix K. Effect of dietary chlorogenic acid on multiple immune functions and formation of aberrant crypt foci in rats. J Toxicol Environ Health A 1998; 53(5): 375-84.
[http://dx.doi.org/10.1080/009841098159231] [PMID: 9515940]
[70]
Kim Y, Kim H, Bae S, et al. Vitamin C is an essential factor on the anti-viral immune responses through the production of interferon-α/β at the initial stage of influenza A virus (H3N2) infection. Immune Netw 2013; 13(2): 70-4.
[http://dx.doi.org/10.4110/in.2013.13.2.70] [PMID: 23700397]
[71]
Dayem AA, Choi HY, Kim YB, Cho SG. Antiviral effect of methylated flavonol isorhamnetin against influenza. PLoS One 2015; 10(3): e0121610.
[http://dx.doi.org/10.1371/journal.pone.0121610] [PMID: 25806943]
[72]
Kataoka A, Imai H, Inayoshi S, Tsuda T. Intermittent high-dose vitamin C therapy in patients with HTLV-I associated myelopathy. J Neurol Neurosurg Psychiatry 1993; 56(11): 1213-6.
[http://dx.doi.org/10.1136/jnnp.56.11.1213] [PMID: 8229033]
[73]
Kodama D, Tanaka M, Matsuzaki T, et al. Anti-human T-cell leukemia virus type 1 (HTLV-1) antibody assays in cerebrospinal fluid for the diagnosis of HTLV-1-associated myelopathy/tropical spastic paraparesis. J Clin Microbiol 2021; 59(5): e03230-20.
[http://dx.doi.org/10.1128/JCM.03230-20] [PMID: 33658267]
[74]
Nakagawa M, Nakahara K, Maruyama Y, et al. Therapeutic trials in 200 patients with HTLV-Iassociated myelopathy/tropical spastic paraparesis. J Neurovirol 1996; 2(5): 345-55.
[http://dx.doi.org/10.3109/13550289609146899] [PMID: 8912211]
[75]
Debnath S, Chakravorty R, Devi D. A review on role of medicinal plants in immune system. Asian J Pharm Technol 2020; 10(4): 273-7.
[http://dx.doi.org/10.5958/2231-5713.2020.00045.8]
[76]
Siegel BV. Enhanced interferon response to murine leukemia virus by ascorbic acid. Infect Immun 1974; 10(2): 409-10.
[http://dx.doi.org/10.1128/iai.10.2.409-410.1974] [PMID: 4368679]
[77]
Horvath CM. The Jak-STAT pathway stimulated by interferon gamma. Sci STKE 2004; 2004(260): tr8.
[http://dx.doi.org/10.1126/stke.2602004tr8] [PMID: 15561980]
[78]
Stantic-Pavlinic M, Banic S, Marin J, Klamenc P. Vitamin C - a challenge in the management of rabies. Swiss Med Wkly 2004; 134(21-22): 326-7.
[http://dx.doi.org/10.4414/smw.2004.10506] [PMID: 15243845]
[79]
Kukongviriyapan U, Sompamit K, Pannangpetch P, Kukongviriyapan V, Donpunha W. Preventive and therapeutic effects of quercetin on lipopolysaccharide-induced oxidative stress and vascular dysfunction in mice. Can J Physiol Pharmacol 2012; 90(10): 1345-53.
[http://dx.doi.org/10.1139/y2012-101] [PMID: 22873715]
[80]
Luangaram S, Kukongviriyapan U, Pakdeechote P, Kukongviriyapan V, Pannangpetch P. Protective effects of quercetin against phenylhydrazine-induced vascular dysfunction and oxidative stress in rats. Food Chem Toxicol 2007; 45(3): 448-55.
[http://dx.doi.org/10.1016/j.fct.2006.09.008] [PMID: 17084956]
[81]
Kim BH, Choi JS, Yi EH, et al. Relative antioxidant activities of quercetin and its structurally related substances and their effects on NF-κB/CRE/AP-1 signaling in murine macrophages. Mol Cells 2013; 35(5): 410-20.
[http://dx.doi.org/10.1007/s10059-013-0031-z] [PMID: 23649461]
[82]
Heijnen CGM, Haenen GRMM, Minou Oostveen R, Stalpers EM, Bast A. Protection of flavonoids against lipid peroxidation: The structure activity relationship revisited. Free Radic Res 2002; 36(5): 575-81.
[http://dx.doi.org/10.1080/10715760290025951] [PMID: 12150545]
[83]
Boesch-Saadatmandi C, Loboda A, Wagner AE, et al. Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155. J Nutr Biochem 2011; 22(3): 293-9.
[http://dx.doi.org/10.1016/j.jnutbio.2010.02.008] [PMID: 20579867]
[84]
Saakre M, Mathew D, Ravisankar V. Perspectives on plant flavonoid quercetin-based drugs for novel SARS-CoV-2. Beni Suef Univ J Basic Appl Sci 2021; 10(1): 21.
[http://dx.doi.org/10.1186/s43088-021-00107-w] [PMID: 33782651]
[85]
Merarchi M, Dudha N, Das BC, Garg M. Natural products and phytochemicals as potential anti‐SARS‐CoV-2 drugs. Phytother Res 2021; 35(10): 5384-96.
[http://dx.doi.org/10.1002/ptr.7151] [PMID: 34132421]
[86]
Medzhitov R. Origin and physiological roles of inflammation. Nature 2008; 454(7203): 428-35.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[87]
Gargouri B, Boukholda K, Kumar A, et al. Bifenthrin insecticide promotes oxidative stress and increases inflammatory mediators in human neuroblastoma cells through NF-kappaB pathway. Toxicol In Vitro 2020; 65: 104792.
[http://dx.doi.org/10.1016/j.tiv.2020.104792] [PMID: 32061760]
[88]
Škandík M, Mrvová N, Bezek Š, Račková L. Semisynthetic quercetin-quinone mitigates BV-2 microglia activation through modulation of Nrf2 pathway. Free Radic Biol Med 2020; 152: 18-32.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.030] [PMID: 32142880]
[89]
Schottelius AJG, Baldwin AS Jr. A role for transcription factor NF- k B in intestinal inflammation. Int J Colorectal Dis 1999; 14(1): 18-28.
[http://dx.doi.org/10.1007/s003840050178] [PMID: 10207726]
[90]
Wang Y, Tao B, Wan Y, et al. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases. Biomed Pharmacother 2020; 128: 110372.
[http://dx.doi.org/10.1016/j.biopha.2020.110372] [PMID: 32521458]
[91]
Ma JQ, Li Z, Xie WR, Liu CM, Liu SS. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int Immunopharmacol 2015; 28(1): 531-9.
[http://dx.doi.org/10.1016/j.intimp.2015.06.036] [PMID: 26218279]
[92]
Cheng SC, Wu YH, Huang WC, Pang JHS, Huang TH, Cheng CY. Anti-inflammatory property of quercetin through downregulation of ICAM-1 and MMP-9 in TNF-α-activated retinal pigment epithelial cells. Cytokine 2019; 116: 48-60.
[http://dx.doi.org/10.1016/j.cyto.2019.01.001] [PMID: 30685603]
[93]
Jaisinghani RN. Antibacterial properties of quercetin. Microbiol Res 2017; 8(1): 13-4.
[http://dx.doi.org/10.4081/mr.2017.6877]
[94]
Wang S, Yao J, Zhou B, et al. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 2018; 81(1): 68-78.
[http://dx.doi.org/10.4315/0362-028X.JFP-17-214] [PMID: 29271686]
[95]
Wu D, Kong Y, Han C, et al. d-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int J Antimicrob Agents 2008; 32(5): 421-6.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.06.010] [PMID: 18774266]
[96]
Guan X, Zhou Y, Liang X, Xiao J, He L, Li J. Effects of compounds found in Nidus Vespae on the growth and cariogenic virulence factors of Streptococcus mutans. Microbiol Res 2012; 167(2): 61-8.
[http://dx.doi.org/10.1016/j.micres.2011.03.002] [PMID: 21498060]
[97]
Phaiboon N, Pulbutr P, Sungthong B, Rattanakiat S. Effects of the ethanolic extracts of guava leaves, licorice roots and cloves on the cariogenic properties of streptococcus mutans. Pharmacogn J 2019; 11(5): 1029-36.
[http://dx.doi.org/10.5530/pj.2019.11.162]
[98]
Plaper A, Golob M, Hafner I, Oblak M, Šolmajer T, Jerala R. Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 2003; 306(2): 530-6.
[http://dx.doi.org/10.1016/S0006-291X(03)01006-4] [PMID: 12804597]
[99]
Hossion AML, Zamami Y, Kandahary RK, et al. Quercetin diacylglycoside analogues showing dual inhibition of DNA gyrase and topoisomerase IV as novel antibacterial agents. J Med Chem 2011; 54(11): 3686-703.
[http://dx.doi.org/10.1021/jm200010x] [PMID: 21534606]
[100]
Zeng Y, Nikitkova A, Abdelsalam H, Li J, Xiao J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch Oral Biol 2019; 98: 9-16.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.005] [PMID: 30419487]
[101]
Butt FA, Bhat M, Rashid U, et al. Imidazolium based surface active ionic liquids: Promising boosters to enhance the radical scavenging and antioxidant activity of conventional surfactant solubilised quercetin. Catal Lett 2022; 152: 1276-85.
[http://dx.doi.org/10.1007/s10562-021-03738-x]
[102]
Milanezi FG, Meireles LM, de Christo Scherer MM, et al. Antioxidant, antimicrobial and cytotoxic activities of gold nanoparticles capped with quercetin. Saudi Pharm J 2019; 27(7): 968-74.
[http://dx.doi.org/10.1016/j.jsps.2019.07.005] [PMID: 31997903]
[103]
Eftekhari A, Ahmadian E, Panahi-Azar V, Hosseini H, Tabibiazar M, Maleki Dizaj S. Hepatoprotective and free radical scavenging actions of quercetin nanoparticles on aflatoxin B1-induced liver damage: In vitro/in vivo studies. Artif Cells Nanomed Biotechnol 2018; 46(2): 411-20.
[http://dx.doi.org/10.1080/21691401.2017.1315427] [PMID: 28423950]
[104]
Song X, Wang Y, Gao L. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex. J Mol Model 2020; 26(6): 133.
[http://dx.doi.org/10.1007/s00894-020-04356-x] [PMID: 32399900]
[105]
Heřmánková E, Zatloukalová M, Biler M, et al. Redox properties of individual quercetin moieties. Free Radic Biol Med 2019; 143: 240-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.08.001] [PMID: 31381971]
[106]
Bajracharya GB, Paudel M, Rajendra K, Shyaula SL. Structure-activity relationship and MM2 energy minimized conformational analysis of quercetin and its derivatives in the DPPH radical scavenging capacity. BIBECHANA 2020; 17: 20-7.
[http://dx.doi.org/10.3126/bibechana.v17i0.25208]
[107]
Amić A, Lučić B, Stepanić V, et al. Free radical scavenging potency of quercetin catecholic colonic metabolites: Thermodynamics of 2H+/2e− processes. Food Chem 2017; 218: 144-51.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.018] [PMID: 27719890]
[108]
Crascì L, Cardile V, Longhitano G, Nanfitò F, Panico A. Anti-degenerative effect of apigenin, luteolin and quercetin on human keratinocyte and chondrocyte cultures: Sar evaluation. Drug Res 2018; 68(3): 132-8.
[http://dx.doi.org/10.1055/s-0043-120662] [PMID: 29108086]
[109]
Gandhi GR, Neta MTSL, Sathiyabama RG, et al. Flavonoids as Th1/Th2 cytokines immunomodulators: A systematic review of studies on animal models. Phytomedicine 2018; 44: 74-84.
[http://dx.doi.org/10.1016/j.phymed.2018.03.057] [PMID: 29895495]
[110]
Asadi-Samani M, Bagheri N, Rafieian-Kopaei M, Shirzad H. Inhibition of Th1 and Th17 cells by medicinal plants and their derivatives: A systematic review. Phytother Res 2017; 31(8): 1128-39.
[http://dx.doi.org/10.1002/ptr.5837] [PMID: 28568565]
[111]
Jeon J, Lee BC, Kim D, Cho D, Kim T. Hydrophilic astragalin galactoside induces T helper type 1-mediated immune responses via dendritic cells. Int J Mol Sci 2018; 19(10): 3120.
[http://dx.doi.org/10.3390/ijms19103120] [PMID: 30314368]
[112]
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory effects of flavonoids: possible induction of T CD4+ regulatory cells through suppression of mTOR pathway signaling activity. Front Immunol 2019; 10: 51.
[http://dx.doi.org/10.3389/fimmu.2019.00051] [PMID: 30766532]
[113]
Maleki SJ, Crespo JF, Cabanillas B. Anti-inflammatory effects of flavonoids. Food Chem 2019; 299: 125124.
[http://dx.doi.org/10.1016/j.foodchem.2019.125124] [PMID: 31288163]
[114]
Bhattacharya K, Chanu NR, Bhattacharjee A, et al. In handbook of research on knowledge and organization systems in library and information science. IGI Global 2021; pp. 69-87.
[115]
Ding Y, Li C, Zhang Y, et al. Quercetin as a Lyn kinase inhibitor inhibits IgE-mediated allergic conjunctivitis. Food Chem Toxicol 2020; 135: 110924.
[http://dx.doi.org/10.1016/j.fct.2019.110924] [PMID: 31672514]
[116]
Adithya J, Nair B, Aishwarya TS, Nath LR. The plausible role of Indian traditional medicine in combating corona virus (SARS-CoV 2): A mini-review. Curr Pharm Biotechnol 2021; 22(7): 906-19.
[http://dx.doi.org/10.2174/1389201021666200807111359] [PMID: 32767920]
[117]
Khazdair M, Anaeigoudari A, Agbor G. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pac J Trop Biomed 2021; 11(8): 327.
[http://dx.doi.org/10.4103/2221-1691.319567]
[118]
Mlcek J, Jurikova T, Skrovankova S, Sochor J. Quercetin and its anti-allergic immune response. Molecules 2016; 21(5): 623.
[http://dx.doi.org/10.3390/molecules21050623] [PMID: 27187333]
[119]
Saeedi-Boroujeni A, Mahmoudian-Sani MR. Anti-inflammatory potential of quercetin in COVID-19 treatment. J Inflamm 2021; 18(1): 3.
[http://dx.doi.org/10.1186/s12950-021-00268-6] [PMID: 33509217]
[120]
Wang Y, Liu X, Shi H, et al. NLRP3 inflammasome, an immune‐inflammatory target in pathogenesis and treatment of cardiovascular diseases. Clin Transl Med 2020; 10(1): 91-106.
[http://dx.doi.org/10.1002/ctm2.13] [PMID: 32508013]
[121]
Choe JY, Kim SK. Quercetin and ascorbic acid suppress fructose-induced NLRP3 inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 2017; 40(3): 980-94.
[http://dx.doi.org/10.1007/s10753-017-0542-4] [PMID: 28326454]
[122]
Jiang W, Huang Y, Han N, et al. Quercetin suppresses NLRP3 inflammasome activation and attenuates histopathology in a rat model of spinal cord injury. Spinal Cord 2016; 54(8): 592-6.
[http://dx.doi.org/10.1038/sc.2015.227] [PMID: 26754474]
[123]
Lim H, Min DS, Park H, Kim HP. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol 2018; 355: 93-102.
[http://dx.doi.org/10.1016/j.taap.2018.06.022] [PMID: 29960001]
[124]
Williams CA, Harborne JB, Greenham J. Geographical variation in the surface flavonoids of Pulicaria dysenterica. Biochem Syst Ecol 2000; 28(7): 679-87.
[http://dx.doi.org/10.1016/S0305-1978(99)00104-0] [PMID: 10854743]
[125]
Di Carlo G, Mascolo N, Izzo AA, Capasso F. Flavonoids: Old and new aspects of a class of natural therapeutic drugs. Life Sci 1999; 65(4): 337-53.
[http://dx.doi.org/10.1016/S0024-3205(99)00120-4] [PMID: 10421421]
[126]
Materska M. Quercetin and its derivatives: Chemical structure and bioactivity- A review. Pol J Food Nutr Sci 2008; 58(4): 407-13.
[127]
Miyazawa T, Yamakido M, Ikeda S, et al. Implantation of ultraflex nitinol stents in malignant tracheobronchial stenoses. Chest 2000; 118(4): 959-65.
[http://dx.doi.org/10.1378/chest.118.4.959] [PMID: 11035663]
[128]
Vilegas W, Sanommiya M, Rastrelli L, Pizza C. Isolation and structure elucidation of two new flavonoid glycosides from the infusion of maytenus aquifolium leaves. Evaluation of the antiulcer activity of the infusion. J Agric Food Chem 1999; 47(2): 403-6.
[http://dx.doi.org/10.1021/jf980114i] [PMID: 10563907]
[129]
Chen Y, Evans J, Feldlaufer M. Horizontal and vertical transmission of viruses in the honey bee, apis mellifera. J Invertebr Pathol 2006; 92(3): 152-9.
[http://dx.doi.org/10.1016/j.jip.2006.03.010] [PMID: 16793058]
[130]
Gackowski D, Speina E, Zielinska M, et al. Products of oxidative DNA damage and repair as possible biomarkers of susceptibility to lung cancer. Cancer Res 2003; 63(16): 4899-902.
[PMID: 12941813]
[131]
Kelly GS. Quercetin. monograph. Altern Med Rev 2011; 16(2): 172-94.
[PMID: 21649459]
[132]
Hollman PC, de Vries JH, van Leeuwen SD, Mengelers MJ, Katan MB. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr 1995; 62(6): 1276-82.
[http://dx.doi.org/10.1093/ajcn/62.6.1276] [PMID: 7491892]
[133]
Kim TY, Leem E, Lee JM, Kim SR. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids. Antioxidants 2020; 9(7): 583.
[http://dx.doi.org/10.3390/antiox9070583] [PMID: 32635299]
[134]
Johari J, Kianmehr A, Mustafa M, Abubakar S, Zandi K. Antiviral activity of baicalein and quercetin against the Japanese encephalitis virus. Int J Mol Sci 2012; 13(12): 16785-95.
[http://dx.doi.org/10.3390/ijms131216785] [PMID: 23222683]
[135]
Mondal A, Maity TK, Bishayee A. Analgesic and anti-inflammatory activities of quercetin-3-methoxy-4′-glucosyl-7-glucoside isolated from Indian medicinal plant Melothria heterophylla. Medicines 2019; 6(2): 59.
[http://dx.doi.org/10.3390/medicines6020059] [PMID: 31137810]
[136]
Deng Y, Li Q, Li M, Han T, Li G, Liu Q. Network pharmacology identifies the mechanisms of sang-xing-zhi-ke-fang against pharyngitis. Evid -Based Compl Altern Med 2020; 2020.
[http://dx.doi.org/10.1155/2020/2421916]
[137]
Gao K, Song YP, Song A. Exploring active ingredients and function mechanisms of Ephedra-bitter almond for prevention and treatment of Corona virus disease 2019 (COVID-19) based on network pharmacology. BioData Min 2020; 13(1): 19.
[http://dx.doi.org/10.1186/s13040-020-00229-4] [PMID: 33292385]
[138]
Fan D, Zhou X, Zhao C, Chen H, Zhao Y, Gong X. Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia 2011; 82(6): 805-10.
[http://dx.doi.org/10.1016/j.fitote.2011.04.007] [PMID: 21570451]
[139]
Mahmoud Hashemi A, Solahaye Kahnamouii S, Aghajani H, et al. Quercetin decreases Th17 production by down-regulation of MAPK-TLR4 signaling pathway on T cells in dental pulpitis. J Dent 2018; 19(4): 259-64.
[PMID: 30680297]
[140]
Yang AK, He SM, Liu L, Liu JP, Qian WM, Zhou SF. Herbal interactions with anticancer drugs: Mechanistic and clinical considerations. Curr Med Chem 2010; 17(16): 1635-78.
[http://dx.doi.org/10.2174/092986710791111279] [PMID: 20345351]
[141]
Beshbishy AM, Batiha GES, Alkazmi L, et al. Therapeutic effects of atranorin towards the proliferation of babesia and theileria parasites. Pathogens 2020; 9(2): 127.
[http://dx.doi.org/10.3390/pathogens9020127] [PMID: 32079149]
[142]
Khan S, Hussain A, Vahdani Y, et al. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. Arab J Chem 2021; 14(10): 103353.
[http://dx.doi.org/10.1016/j.arabjc.2021.103353] [PMID: 34909059]
[143]
Hollman PCH, Katan MB. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem Toxicol 1999; 37(9-10): 937-42.
[http://dx.doi.org/10.1016/S0278-6915(99)00079-4] [PMID: 10541448]
[144]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[145]
Gu YY, Zhang M, Cen H, et al. Quercetin as a potential treatment for COVID-19-induced acute kidney injury: Based on network pharmacology and molecular docking study. PLoS One 2021; 16(1): e0245209.
[http://dx.doi.org/10.1371/journal.pone.0245209] [PMID: 33444408]
[146]
Huang Y, Zheng W, Ni Y, et al. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology. BioData Min 2020; 13(1): 15.
[http://dx.doi.org/10.1186/s13040-020-00225-8] [PMID: 32983259]
[147]
Ahmed SSSJ, Ramakrishnan V. Systems biological approach of molecular descriptors connectivity: Optimal descriptors for oral bioavailability prediction. PLoS One 2012; 7(7): e40654.
[http://dx.doi.org/10.1371/journal.pone.0040654] [PMID: 22815781]
[148]
Ursu O, Rayan A, Goldblum A, Oprea TI. Understanding drug‐likeness. Wiley Interdiscip Rev Comput Mol Sci 2011; 1(5): 760-81.
[http://dx.doi.org/10.1002/wcms.52]
[149]
Wang M, Fu D, Yao L, Li J. Theoretical study of the molecular mechanism of maxingyigan decoction against COVID-19: Network pharmacology-based strategy. Comb Chem High Throughput Screen 2021; 24(2): 294-305.
[http://dx.doi.org/10.2174/18755402MTA4kODky5] [PMID: 32767929]
[150]
Agrawal PK, Agrawal C, Blunden G. Anti-viral significance and possible COVID-19 integrative considerations. Nat Prod Commun 2020; 15(12)
[http://dx.doi.org/10.1177/1934578X20976293]
[151]
Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA. Natural flavonoids as potential angiotensin-converting enzyme 2 inhibitors for anti-SARS-CoV-2. Molecules 2020; 25(17): 3980.
[http://dx.doi.org/10.3390/molecules25173980] [PMID: 32882868]
[152]
Godinho PIC, Soengas RG, Silva VLM. Therapeutic potential of glycosyl flavonoids as anti-coronaviral agents. Pharmaceuticals 2021; 14(6): 546.
[http://dx.doi.org/10.3390/ph14060546] [PMID: 34200456]
[153]
Tao Q, Du J, Li X, et al. Network pharmacology and molecular docking analysis on molecular targets and mechanisms of Huashi Baidu formula in the treatment of COVID-19. Drug Dev Ind Pharm 2020; 46(8): 1345-53.
[http://dx.doi.org/10.1080/03639045.2020.1788070] [PMID: 32643448]
[154]
Wu XJ, Zhou XB, Chen C, Mao W. Systematic investigation of quercetin for treating cardiovascular disease based on network pharmacology. Comb Chem High Throughput Screen 2019; 22(6): 411-20.
[http://dx.doi.org/10.2174/1386207322666190717124507] [PMID: 31573877]
[155]
Liang J, Wu M, Bai C, et al. Network pharmacology approach to explore the potential mechanisms of jieduan-niwan formula treating acute-on-chronic liver failure. Evid-Based Compl Altern Med 2020; 2020.
[http://dx.doi.org/10.1155/2020/1041307]
[156]
Chen J, Wang W, Tang Y, Huang X, Yu X, Lan HY. Inflammatory stress in SARS-COV-2 associated acute kidney injury. Int J Biol Sci 2021; 17(6): 1497-506.
[http://dx.doi.org/10.7150/ijbs.58791] [PMID: 33907513]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy