Generic placeholder image

New Emirates Medical Journal

Editor-in-Chief
ISSN (Online): 0250-6882

Mini-Review Article

Gut Microbiome and Insomnia: A Mini-Review

Author(s): Noor Yaser Asaad, Maram Walid Ballan, Heba Yead Abdel-Latif Shalabi and Ashfaque Hossain*

Volume 4, Issue 1, 2023

Published on: 24 January, 2023

Article ID: e221122211098 Pages: 7

DOI: 10.2174/04666221122085900

Price: $0

Abstract

Background: The gut microbiome (microorganisms present in our gut) has emerged as an important determinative factor in a variety of diseases and health conditions. One new area in which the role of the gut microbiome is of intense interest is its role in various neurological manifestations, including insomnia, the most common sleep disorder. In this mini-review, we aim to highlight the latest research developments concerning the association between the gut microbiome and insomnia and summarize gut-brain interaction for a better understanding of the role of microbiota in insomnia.

Methods: Our search results included publications written in English from the year 2010 up to the year 2022. We used Pubmed, Google Scholar, and ScienceDirect to search for original articles pertaining to the relationship between the gut microbiome and insomnia using the following search terms: “Gut-brain Axis and Insomnia,” “Brain and Gut Microbiome,” ” Gut-brain Homeostasis”, and “Circadian Rhythm and Gut Microbiome”. Relevant articles from the reference list were reviewed in order to collect additional information.

Results: Studies have shown that the microbiome-gut-brain axis is thus associated with the development of insomnia. The gut microbiome can have an important role in the development of insomnia. On the other hand, insomnia can also modulate the gut microbiome. However, scientific work in this field is limited as relevant scientific research is at the initial state.

Conclusion: Bacteria present in the gut send signals to the brain via the vagus nerve by stimulating the afferent neurons of the enteric nervous system and influencing sleep quality and stress reactivity of the hypothalamic-pituitary-adrenal axis. The gut microbiome also communicates with the nervous system via the neuroendocrine pathway through various metabolic products. Insomnia also influences the structure and function of the gut microbiome.

[1]
Smith RP, Easson C, Lyle SM. Gut microbiome diversity is associated with sleep physiology in humans. Plos One 2019; 2014(14): e0222394.
[http://dx.doi.org/10.1371/journal.pone.0222394]
[2]
Burman D, Muzumdar H. Sleep architecture and physiology. In: Chopra A, Das P, Doghramji K, Eds. Management of sleep disorders in psychiatry. Oxford, UK: Oxford University Press 2020; pp. 12-22.
[http://dx.doi.org/10.1093/med/9780190929671.003.0002]
[3]
Krahn LE, Arand DL, Avidan AY, et al. Recommended protocols for the multiple sleep latency test and maintenance of wakefulness test in adults: Guidance from the American Academy of Sleep Medicine. J Clin Sleep Med 2021; 17(12): 2489-98.
[http://dx.doi.org/10.5664/jcsm.9620] [PMID: 34423768]
[4]
Jehan S, Myers AK, Zizi F, et al. Sleep health disparity: The putative role of race, ethnicity and socioeconomic status. Sleep Med Disord 2018; 2: 127-33.
[5]
Buysse DJ. Insomnia. JAMA 2013; 309(7): 706-16.
[http://dx.doi.org/10.1001/jama.2013.193] [PMID: 23423416]
[6]
Cresci GA, Bawden E. Gut Microbiome. Nutr Clin Pract 2015; 30(6): 734-46.
[http://dx.doi.org/10.1177/0884533615609899] [PMID: 26449893]
[7]
Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90(3): 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[8]
Manley GCA, Lee YK, Zhang Y. Gut microbiota and immunology of the gastrointestinal tract. In: Clin Basic Neurogastroenterol Motility. Elsevier: Academic Press 2020; pp. 63-78.
[9]
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: An integrative view. Cell 2012; 148(6): 1258-70.
[http://dx.doi.org/10.1016/j.cell.2012.01.035] [PMID: 22424233]
[10]
Feng Y, Fu S, Li C, et al. Interaction of gut microbiota and brain function in patients with chronic insomnia: A regional homogeneity study. Front Neurosci 2022; 15: 804843.
[http://dx.doi.org/10.3389/fnins.2021.804843]
[11]
Rutsch A, Kantsjö JB, Ronchi F. The Gut-Brain Axis: How microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 2020; 11: 604179.
[http://dx.doi.org/10.3389/fimmu.2020.604179] [PMID: 33362788]
[12]
Zhang Y, Xie B, Chen X, Zhang J, Yuan S. A key role of gut microbiota-vagus nerve/spleen axis in sleep deprivation-mediated aggravation of systemic inflammation after LPS administration. Life Sci 2021; 265: 118736.
[http://dx.doi.org/10.1016/j.lfs.2020.118736]
[13]
Morais LH, Schreiber HL IV, Mazmanian SK. The gut microbiota–brain axis in behaviour and brain disorders. Nat Rev Microbiol 2021; 19(4): 241-55.
[http://dx.doi.org/10.1038/s41579-020-00460-0] [PMID: 33093662]
[14]
Mayer EA. Gut feelings: The emerging biology of gut–brain communication. Nat Rev Neurosci 2011; 12(8): 453-66.
[http://dx.doi.org/10.1038/nrn3071] [PMID: 21750565]
[15]
Grosso G. Nutritional psychiatry: How diet affects brain through gut microbiota. Nutrients 2021; 13(4): 1282.
[http://dx.doi.org/10.3390/nu13041282] [PMID: 33919680]
[16]
Chakrabarti A, Geurts L, Hoyles L, et al. The microbiota-gut-brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 2022; 79(2): 80.
[http://dx.doi.org/10.1007/s00018-021-04060-w]
[17]
Yoo BB, Mazmanian SK. The enteric network: Interactions between the immune and nervous systems of the gut. Immunity 2017; 46(6): 910-26.
[http://dx.doi.org/10.1016/j.immuni.2017.05.011] [PMID: 28636959]
[18]
Zhang YJ, Li S, Gan RY, Zhou T, Xu DP, Li HB. Impacts of gut bacteria on human health and diseases. Int J Mol Sci 2015; 16(12): 7493-519.
[http://dx.doi.org/10.3390/ijms16047493] [PMID: 25849657]
[19]
Jiang Z, Zhuo LB, He Y, et al. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat Commun 2022; 13(1): 3002.
[http://dx.doi.org/10.1038/s41467-022-30712-x]
[20]
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal mechanisms for sleep / wake regulation and modulatory drive. Neuropsychopharmacology 2018; 43(5): 937-52.
[http://dx.doi.org/10.1038/npp.2017.294] [PMID: 29206811]
[21]
Levenson JC, Kay DB, Buysse DJ. The pathophysiology of insomnia. Chest 2015; 147(4): 1179-92.
[http://dx.doi.org/10.1378/chest.14-1617] [PMID: 25846534]
[22]
Li Y, Yanli H, Fang F, Zhang B. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry 2018; 9: 669.
[http://dx.doi.org/10.3389/fpsyt.2018.00669]
[23]
Szentirmai É, Millican NS, Massie AR, Kapás L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep 2019; 9(1): 7035.
[http://dx.doi.org/10.1038/s41598-019-43502-1] [PMID: 31065013]
[24]
Heijtz RD, Wang S, Anuar F, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108(7): 3047-52.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[25]
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota gut brain axis. Neuropharmacology 2017; 112(Pt B): 399-412.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002] [PMID: 27392632]
[26]
Wagner-Skacel J, Dalkner N, Moerkl S, et al. Sleep and microbiome psychiatric diseases. Nutrients 2020; 12(8): 2198.
[http://dx.doi.org/10.3390/nu12082198] [PMID: 32718072]
[27]
Zhang Q, Yun Y, An H, et al. Gut microbiome composition associated with major depressive disorder and sleep quality. Front Psychiatry 2021; 2: 645045.
[http://dx.doi.org/10.3389/fpsyt.2021.645045]
[28]
Ogawa Y, Miyoshi C, Obana N, et al. Gut microbiota depletion by chronic antibiotic treatment alters the sleep/wake architecture and sleep EEG power spectra in mice. Sci Rep 2020; 10(1): 19554.
[http://dx.doi.org/10.1038/s41598-020-76562-9] [PMID: 33177599]
[29]
Brown R, Andrews K, Brown L, et al. Muramyl peptides and the functions of sleep. Behav Brain Res 1995; 69(1-2): 85-90.
[http://dx.doi.org/10.1016/0166-4328(95)00004-D] [PMID: 7546321]
[30]
Lendrum J, Seebach B, Kher BA. Sleep and the gut microbiome: Antibiotic-induced depletion of the gut microbiota reduces nocturnal sleep in mice. bioRvix 2017; 2017: 199075.
[http://dx.doi.org/10.1101/199075]
[31]
Benedict C, Vogel H, Jonas W, et al. Gut microbiota and glucometabolic alterations in response to recurrent partial sleep deprivation in normal-weight young individuals. Mol Metab 2016; 5(12): 1175-86.
[http://dx.doi.org/10.1016/j.molmet.2016.10.003] [PMID: 27900260]
[32]
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: From the metabolic syndrome to cancer. Nat Rev Endocrinol 2020; 16(12): 731-9.
[http://dx.doi.org/10.1038/s41574-020-00427-4] [PMID: 33106657]
[33]
Gutierrez Lopez DE, Lashinger LM, Weinstock GM, Bray MS, Bray MS. Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet. Cell Metab 2021; 33(5): 873-87.
[http://dx.doi.org/10.1016/j.cmet.2021.03.015] [PMID: 33789092]
[34]
Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian rhythm and the gut microbiome. Int Rev Neurobiol 2016; 131: 193-205.
[http://dx.doi.org/10.1016/bs.irn.2016.07.002] [PMID: 27793218]
[35]
Han M, Yuan S, Zhang J. The interplay between sleep and gut microbiota. Brain Res Bull 2022; 180: 131-46.
[http://dx.doi.org/10.1016/j.brainresbull.2021.12.016] [PMID: 35032622]
[36]
Reynolds AC, Paterson JL, Ferguson SA, et al. The shift work and health research agenda: Considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med Rev 2017; 34: 3-9.
[http://dx.doi.org/10.1016/j.smrv.2016.06.009]
[37]
Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms 2019; 7: 41.
[http://dx.doi.org/10.3390/microorganisms7020041]
[38]
Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev 2020; 53: 101340.
[http://dx.doi.org/10.1016/j.smrv.2020.101340] [PMID: 32668369]
[39]
Liu Z, Wei ZY, Chen J, et al. Acute sleep-wake cycle shift results in community alteration of human gut microbiome. MSphere 2020; 5(1): e00914-19.
[http://dx.doi.org/10.1128/mSphere.00914-19] [PMID: 32051239]
[40]
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: Metabolism of nutrients and other food components. Eur J Nutr 2018; 57(1): 1-24.
[http://dx.doi.org/10.1007/s00394-017-1445-8] [PMID: 28393285]
[41]
Kang Y, Kang X, Cai Y. The gut microbiome as a target for adjuvant therapy in insomnia disorder. Clin Res Hepatol Gastroenterol 2022; 46(1): 101834.
[http://dx.doi.org/10.1016/j.clinre.2021.101834] [PMID: 34800683]
[42]
Dos Reis Lucena L, Terra Loyola V, Leopoldino de Bortolli C, Levy Andersen M, Tufik S, Hachul H. Effects of supplementation with Lactobacillus probiotics on insomnia treatment. Altern Ther Health Med 2021; 27(S1): 178-84.
[PMID: 33609341]
[43]
Qi X, Ye J, Wen Y, et al. Evaluating the effects of diet-gut microbiota interactions on sleep traits using the UK biobank cohort. Nutrients 2022; 14(6): 1134.
[http://dx.doi.org/10.3390/nu14061134] [PMID: 35334789]
[44]
Leeming ER, Johnson AJ, Spector TD, Le Roy CI. Effect of diet on the gut microbiota: Rethinking intervention duration. Nutrients 2019; 11(12): 2862.
[http://dx.doi.org/10.3390/nu11122862] [PMID: 31766592]
[45]
Scoditti E, Tumolo MR, Garbarino S. Mediterranean diet on sleep: A health alliance. Nutrients 2022; 14(14): 2998.
[http://dx.doi.org/10.3390/nu14142998]
[46]
Sen P, Molinero-Perez A, O’Riordan KJ, McCafferty CP, O’Halloran KD, Cryan JF. Microbiota and sleep: Awakening the gut feeling. Trends Mol Med 2021; 27(10): 935-45.
[http://dx.doi.org/10.1016/j.molmed.2021.07.004] [PMID: 34364787]
[47]
Grosicki GJ, Riemann BL, Flatt AA, Valentino T, Lustgarten MS. Self-reported sleep quality is associated with gut microbiome composition in young, healthy individuals: A pilot study. Sleep Med 2020; 73: 76-81.
[http://dx.doi.org/10.1016/j.sleep.2020.04.013] [PMID: 32795890]
[48]
Wang Z, Yuan K, Ji YB, et al. Alterations of the gut microbiota in response to total sleep deprivation and recovery sleep in mice. Nat Sci Sleep 2022; 14: 121-33.
[http://dx.doi.org/10.2147/NSS.S334985] [PMID: 35115853]
[49]
Besedovsky L, Lange T, Haack M. The Sleep-immune crosstalk in health and disease. Physiol Rev 2019; 99(3): 1325-80.
[http://dx.doi.org/10.1152/physrev.00010.2018] [PMID: 30920354]
[50]
Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep 2016; 6(1): 35405.
[http://dx.doi.org/10.1038/srep35405] [PMID: 27739530]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy