Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Morelloflavone as Phytomedicine-An Ethnopharmacological Review on the Therapeutical Properties, Biological Efficacy and Pharmacological Activity

Author(s): Dinesh Kumar Patel*

Volume 21, Issue 2, 2023

Published on: 26 December, 2022

Article ID: e141122210887 Pages: 11

DOI: 10.2174/2211352521666221114114425

Price: $65

Abstract

Background: Flavonoids are low molecular weight class secondary metabolites found to be present throughout the plant kingdom. Structurally, flavonoid class phytochemicals consist of C6-C3-C6 chemical structures with different substitution patterns and have drug-like nature. Morelloflavone is a biflavonoid class phytochemical found to be present abundantly in the Garcinia genus. Morelloflavone has been investigated in the scientific field for its numerous pharmacological activities. The present work aims to discuss the scientific progress of health beneficial aspects and pharmacological potential of morelloflavone in medicine.

Methods: The purpose of this work is to provide scientific information about the biological potential and health beneficial effects of flavonoids in medicine with special reference to the morelloflavone. In this work, we have collected the scientific data of morelloflavone for the biological potential and pharmacological activities against different types of human illnesses with their mechanism of action from Google, Google Scholar, Science Direct and PubMed and analyzed. Further, the preventive role of morelloflavone against various types of human illnesses and the mechanism of action have also been discussed in the present work. This work will provide upto- date information on the health beneficial aspects of morelloflavone in medicine for the prevention and treatment of human complications.

Results: Morelloflavone exhibited a wide-range of pharmacologic activity in regulating numerous kinds of human disorders. Present work revealed the health beneficial aspects and pharmacological activities of morelloflavone for the prevention and treatment of human disorders due to its anti-microbial, anti-plasmodial, anti-oxidant, anti-atherosclerosis, anti-inflammatory, anti-tumor anti-restenosis, anti-HIV, aphrodisiac, anti-Alzheimer's and apoptotic potential in the medicine. Further, its biological potential on phospholipase A2, melanin, kallikreins, monoamine oxidase, aromatase, Eg5 Inhibition and proprotein convertases have been also analyzed in the present work. Analytical data signified the importance of modern analytical tools for the separation and isolation of morelloflavone in medicine.

Conclusion: Present work revealed the detailed pharmacological activities of morelloflavone that can be utilized in the future for the development of new pharmacologic agents.

Graphical Abstract

[1]
Menezes, J.C.J.M.D.S.; Campos, V.R. Natural biflavonoids as potential therapeutic agents against microbial diseases. Sci. Total Environ., 2021, 769, 145168.
[http://dx.doi.org/10.1016/j.scitotenv.2021.145168] [PMID: 33493916]
[2]
Menezes, J.C.J.M.D.S.; Diederich, M.F. Bioactivity of natural biflavonoids in metabolism-related disease and cancer therapies. Pharmacol. Res., 2021, 167, 105525.
[http://dx.doi.org/10.1016/j.phrs.2021.105525] [PMID: 33667686]
[3]
Majhi, S.; Das, D. Chemical derivatization of natural products: Semisynthesis and pharmacological aspects- A decade update. Tetrahedron, 2021, 78, 131801.
[http://dx.doi.org/10.1016/j.tet.2020.131801]
[4]
Naves, V.M.L.; dos Santos, M.H.; Ribeiro, I.S.; da Silva, C.A.; Silva, N.C.; da Silva, M.A.; da Silva, G.A.; Dias, A.L.T.; Ionta, M.; Dias, D.F. Antimicrobial and antioxidant activity of Garcinia brasiliensis extracts. S. Afr. J. Bot., 2019, 124, 244-250.
[http://dx.doi.org/10.1016/j.sajb.2019.05.021]
[5]
Che Hassan, N.K.N.; Taher, M.; Susanti, D. Phytochemical constituents and pharmacological properties of Garcinia xanthochymus- a review. Biomed. Pharmacother., 2018, 106, 1378-1389.
[http://dx.doi.org/10.1016/j.biopha.2018.07.087] [PMID: 30119210]
[6]
Castardo, J.C.; Prudente, A.S.; Ferreira, J.; Guimarães, C.L.; Monache, F.D.; Filho, V.C.; Otuki, M.F.; Cabrini, D.A. Anti-inflammatory effects of hydroalcoholic extract and two biflavonoids from Garcinia gardneriana leaves in mouse paw oedema. J. Ethnopharmacol., 2008, 118(3), 405-411.
[http://dx.doi.org/10.1016/j.jep.2008.05.002] [PMID: 18555627]
[7]
Domínguez-Rodríguez, G.; Plaza, M.; Marina, M.L. High-performance thin-layer chromatography and direct analysis in real time-high resolution mass spectrometry of non-extractable polyphenols from tropical fruit peels. Food Res. Int., 2021, 147, 110455.
[http://dx.doi.org/10.1016/j.foodres.2021.110455] [PMID: 34399456]
[8]
Ma, Y. Kosińska-Cagnazzo, A.; Kerr, W.L.; Amarowicz, R.; Swanson, R.B.; Pegg, R.B. Separation and characterization of phenolic compounds from dry-blanched peanut skins by liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A, 2014, 1356, 64-81.
[http://dx.doi.org/10.1016/j.chroma.2014.06.027] [PMID: 25016324]
[9]
Mitjavila, Mitjavila MT;Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem. Pharmacol., 2012, 84, 111322.
[10]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[11]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[12]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[13]
Patel, K.; Husain, G.M.; Katiyar, D.K.; Prasad, S.K.; Patel, D.K. Sophoricoside: Bioactive compounds from Sophora japonica, their role in disease prevention and treatment. Curr. Tradit. Med., 2021, 7(2), 180-188.
[http://dx.doi.org/10.2174/2215083806666200214114106]
[14]
Patel, K.; Patel, D.K. Health beneficial potential of pectolinarigenin on human diseases: An updated review of medicinal importance and pharmacological activity. Nat. Prod. J., 2021, 11(1), 3-12.
[http://dx.doi.org/10.2174/2210315509666191111110901]
[15]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[16]
Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[17]
Abou Baker, D.H. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol. Rep., 2022, 9, 445-469.
[http://dx.doi.org/10.1016/j.toxrep.2022.03.011] [PMID: 35340621]
[18]
Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current Methodologiest refine bioavailability, delivery, and Theraeutic efficaey of plant flavonoids in cancer treatment. J. Nutr. Biochem., 2021, 94, 108623.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108623] [PMID: 33705948]
[19]
Beigh, S.; Rehman, M.U.; Khan, A.; Patil, B.R.; Makeen, H.A.; Rasool, S. Therapeutic role of flavonoids in lung inflammatory disorders. Phytomed. Plus, 2022, 2(1), 100221.
[http://dx.doi.org/10.1016/j.phyplu.2022.100221]
[20]
Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.A.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A.H. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother., 2022, 146, 112442.
[http://dx.doi.org/10.1016/j.biopha.2021.112442] [PMID: 35062053]
[21]
Miao, Z.; Zhao, Y.; Chen, M.; He, C. Using flavonoids as a therapeutic intervention against rheumatoid arthritis: The known and unknown. Pharmacol. Res. Mod. Chin. Med., 2022, 3, 100014.
[http://dx.doi.org/10.1016/j.prmcm.2021.100014]
[22]
Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother., 2021, 140, 111596.
[http://dx.doi.org/10.1016/j.biopha.2021.111596] [PMID: 34126315]
[23]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[24]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[25]
Patel, K.; Patel, D.K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[26]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14(2), 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910] [PMID: 34313205]
[27]
Rodríguez-Arce, E.; Saldías, M. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomed. Pharmacother., 2021, 143, 112236.
[http://dx.doi.org/10.1016/j.biopha.2021.112236] [PMID: 34649360]
[28]
Lin, Y.M.; Flavin, M.T.; Cassidy, C.S.; Mar, A.; Chen, F.C. Biflavonoids as novel antituberculosis agents. Bioorg. Med. Chem. Lett., 2001, 11(16), 2101-2104.
[http://dx.doi.org/10.1016/S0960-894X(01)00382-1] [PMID: 11514148]
[29]
Chen, J.; Chang, H.W.; Kim, H.P.; Park, H. Synthesis of phospholipase A2 inhibitory biflavonoids. Bioorg. Med. Chem. Lett., 2006, 16(9), 2373-2375.
[http://dx.doi.org/10.1016/j.bmcl.2006.01.117] [PMID: 16504502]
[30]
Moon, T.C.; Quan, Z.; Kim, J.; Kim, H.P.; Kudo, I.; Murakami, M.; Park, H.; Chang, H.W. Inhibitory effect of synthetic C-C biflavone on various phospholipase A2s activity. Bioorg. Med. Chem., 2007, 15(22), 7138-7143.
[http://dx.doi.org/10.1016/j.bmc.2007.07.054] [PMID: 17826099]
[31]
Hartini, Y.; Saputra, B.; Wahono, B.; Auw, Z.; Indayani, F.; Adelya, L.; Namba, G.; Hariono, M. Biflavonoid as potential 3-chymotrypsin-like protease (3CLpro) inhibitor of SARS-coronavirus. Results Chem., 2021, 3, 100087.
[http://dx.doi.org/10.1016/j.rechem.2020.100087] [PMID: 33520632]
[32]
Carrillo-Hormaza, L.; Ramírez, A.M.; Quintero-Ortiz, C.; Cossio, M.; Medina, S.; Ferreres, F.; Gil-Izquierdo, A.; Osorio, E. Comprehensive characterization and antioxidant activities of the main biflavonoids of Garcinia madruno: A novel tropical species for developing functional products. J. Funct. Foods, 2016, 27, 503-516.
[http://dx.doi.org/10.1016/j.jff.2016.10.001]
[33]
Pinkaew, D.; Cho, S.G.; Hui, D.Y.; Wiktorowicz, J.E.; Hutadilok-Towatana, N.; Mahabusarakam, W.; Tonganunt, M.; Stafford, L.J.; Phongdara, A.; Liu, M.; Fujise, K. Morelloflavone blocks injury-induced neointimal formation by inhibiting vascular smooth muscle cell migration. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(1), 31-39.
[http://dx.doi.org/10.1016/j.bbagen.2008.09.006] [PMID: 18930785]
[34]
Shen, K.; Ji, L.; Lu, B.; Xu, C.; Gong, C.; Morahan, G.; Wang, Z. Andrographolide inhibits tumor angiogenesis via blocking VEGFA/VEGFR2-MAPKs signaling cascade. Chem. Biol. Interact., 2014, 218, 99-106.
[http://dx.doi.org/10.1016/j.cbi.2014.04.020] [PMID: 24814888]
[35]
Laudadio, E.; Mobbili, G.; Minnelli, C.; Massaccesi, L.; Galeazzi, R. Salts influence cathechins and flavonoids encapsulation in liposomes: A molecular dynamics investigation. Mol. Inform., 2017, 36(11), 1700059.
[http://dx.doi.org/10.1002/minf.201700059] [PMID: 28635075]
[36]
Sengupta, S.; Mehta, G. Non-peptidic natural products as ubiquitin-proteasome inhibitors. Tetrahedron, 2019, 75(7), 817-853.
[http://dx.doi.org/10.1016/j.tet.2018.12.012]
[37]
de Paula, C.A.A.; Coulson-Thomas, V.J.; Ferreira, J.G.; Maza, P.K.; Suzuki, E.; Nakahata, A.M.; Nader, H.B.; Sampaio, M.U.; Oliva, M.L.V. Enterolobium contortisiliquum trypsin inhibitor (EcTI), a plant proteinase inhibitor, decreases in vitro cell adhesion and invasion by inhibition of Src protein-focal adhesion kinase (FAK) signaling pathways. J. Biol. Chem., 2012, 287(1), 170-182.
[http://dx.doi.org/10.1074/jbc.M111.263996] [PMID: 22039045]
[38]
Uddin, M.S.; Kabir, M.T.; Tewari, D.; Mathew, B.; Aleya, L. Emerging signal regulating potential of small molecule biflavonoids to combat neuropathological insults of Alzheimer’s disease. Sci. Total Environ., 2020, 700, 134836.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134836] [PMID: 31704512]
[39]
Gontijo, V.S.; Judice, W.A.S.; Codonho, B.; Pereira, I.O.; Assis, D.M.; Januário, J.P.; Caroselli, E.E.; Juliano, M.A.; de Carvalho Dosatti, A.; Marques, M.J.; Junior, C.V.; Henrique dos Santos, M. Leishmanicidal, antiproteolytic and antioxidant evaluation of natural biflavonoids isolated from Garcinia brasiliensis and their semisynthetic derivatives. Eur. J. Med. Chem., 2012, 58, 613-623.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.021] [PMID: 23178961]
[40]
Gontijo, V.S.; de Souza, T.C.; Rosa, I.A.; Soares, M.G.; da Silva, M.A.; Vilegas, W.; Viegas, C.; dos Santos, M.H. Isolation and evaluation of the antioxidant activity of phenolic constituents of the Garcinia brasiliensis epicarp. Food Chem., 2012, 132(3), 1230-1235.
[http://dx.doi.org/10.1016/j.foodchem.2011.10.110] [PMID: 29243605]
[41]
Elfita, E.; Muharni, M.; Latief, M.; Darwati, D.; Widiyantoro, A.; Supriyatna, S.; Bahti, H.H.; Dachriyanus, D.; Cos, P.; Maes, L.; Foubert, K.; Apers, S.; Pieters, L. Antiplasmodial and other constituents from Indonesian garcinia spp. Phytochemistry, 2009, 70(7), 907-912.
[http://dx.doi.org/10.1016/j.phytochem.2009.04.024] [PMID: 19481231]
[42]
Tamburini, D. Investigating Asian colourants in Chinese textiles from Dunhuang (7th-10th century AD) by high performance liquid chromatography tandem mass spectrometry-Towards the creation of a mass spectra database. Dyes Pigments, 2019, 163, 454-474.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.025]
[43]
Ramirez, C.; Gil, J.H.; Marín-Loaiza, J.C.; Rojano, B.; Durango, D. Chemical constituents and antioxidant activity of Garcinia madruno (Kunth). Hammel. J. King Saud Univ. Sci., 2019, 31(4), 1283-1289.
[http://dx.doi.org/10.1016/j.jksus.2018.07.017]
[44]
Ishola, I.O.; Agbaje, O.E.; Narender, T.; Adeyemi, O.O.; Shukla, R. Bioactivity guided isolation of analgesic and anti-inflammatory constituents of Cnestis ferruginea Vahl ex DC (Connaraceae) root. J. Ethnopharmacol., 2012, 142(2), 383-389.
[http://dx.doi.org/10.1016/j.jep.2012.05.004] [PMID: 22613233]
[45]
Saroni Arwa, P.; Zeraik, M.L.; Farias Ximenes, V.; da Fonseca, L.M.; da Silva Bolzani, V.; Siqueira Silva, D.H. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J. Ethnopharmacol., 2015, 174, 410-418.
[http://dx.doi.org/10.1016/j.jep.2015.08.041] [PMID: 26320685]
[46]
Diel, K.A.P.; Marinho, L.C.; von Poser, G.L. The ethnobotanical relevance of the tribe Symphonieae (Clusiaceae) around the world. J. Ethnopharmacol., 2022, 284, 114745.
[http://dx.doi.org/10.1016/j.jep.2021.114745] [PMID: 34656665]
[47]
Sabogal-Guáqueta, A.M.; Carrillo-Hormaza, L.; Osorio, E.; Cardona-Gómez, G.P. Effects of biflavonoids from Garcinia madruno on a triple transgenic mouse model of Alzheimer’s disease. Pharmacol. Res., 2018, 129, 128-138.
[http://dx.doi.org/10.1016/j.phrs.2017.12.002] [PMID: 29229355]
[48]
Dong, F.Y.; Jiang, R.W. Research progress of the natural products against prostate cancer. Chin. J. Nat. Med., 2011, 9, 81-89.
[49]
Pereañez, J.A.; Patiño, A.C.; Núñez, V.; Osorio, E. The biflavonoid morelloflavone inhibits the enzymatic and biological activities of a snake venom phospholipase A2. Chem. Biol. Interact., 2014, 220, 94-101.
[http://dx.doi.org/10.1016/j.cbi.2014.06.015] [PMID: 24995575]
[50]
Bezerra, É.A.; Alves, M.M.M.; Lima, S.K.R.; Pinheiro, E.E.A.; Amorim, L.V.; Lima Neto, J.S.; Carvalho, F.A.A.; Citó, A.M.G.L.; Arcanjo, D.D.R. Biflavones from Platonia insignis mart. flowers promote in vitro antileishmanial and immunomodulatory effects against internalized amastigote forms of Leishmania amazonensis. Pathogens, 2021, 10(9), 1166.
[http://dx.doi.org/10.3390/pathogens10091166] [PMID: 34578198]
[51]
Silva, A.K.F.E.; Dos Reis, A.C.; Pinheiro, E.E.A.; de Sousa, J.N.; de Alcântara Oliveira, F.A.; Moura, A.K.S.; de Sousa, L. Neto, J.; das Graças L Citó, A.M.; Siqueira-Júnior, J.P.; Kaatz, G.W.; Barreto, H.M. Modulation of the drug resistance by Platonia insignis Mart. extract, ethyl acetate fraction and morelloflavone/volkensiflavone (biflavonoids) in Staphylococcus aureus strains overexpressing efflux pump genes. Curr. Drug Metab., 2021, 22(2), 114-122.
[http://dx.doi.org/10.2174/18755453MTA2CODUp1] [PMID: 32445452]
[52]
Nganou, B.K.; Simo Konga, I.; Fankam, A.G.; Bitchagno, G.T.M.; Sonfack, G.; Nayim, P.; Celik, I.; Koyutürk, S.; Kuete, V.; Tane, P. Guttiferone BL with antibacterial activity from the fruits of Allanblackia gabonensis. Nat. Prod. Res., 2019, 33(18), 2638-2646.
[http://dx.doi.org/10.1080/14786419.2018.1465424] [PMID: 29683342]
[53]
Kuete, V.; Azebaze, A.G.B.; Mbaveng, A.; Nguemfo, E.L.; Tshikalange, E.T.; Chalard, P.; Nkengfack, A.E. Antioxidant, antitumor and antimicrobial activities of the crude extract and compounds of the root bark of Allanblackia floribunda. Pharm. Biol., 2011, 49(1), 57-65.
[http://dx.doi.org/10.3109/13880209.2010.494673] [PMID: 20738222]
[54]
Jamila, N.; Khairuddean, M.; Khan, S.N.; Khan, N. Complete NMR assignments of bioactive rotameric (3 → 8) biflavonoids from the bark of Garcinia hombroniana. Magn. Reson. Chem., 2014, 52(7), 345-352.
[http://dx.doi.org/10.1002/mrc.4071] [PMID: 24700704]
[55]
Ngouamegne, E.T.; Fongang, R.S.; Ngouela, S.; Boyom, F.F.; Rohmer, M.; Tsamo, E.; Gut, J.; Rosenthal, P.J. Endodesmiadiol, a friedelane triterpenoid, and other antiplasmodial compounds from Endodesmia calophylloides. Chem. Pharm. Bull. (Tokyo), 2008, 56(3), 374-377.
[http://dx.doi.org/10.1248/cpb.56.374] [PMID: 18310952]
[56]
Azebaze, A.G.B.; Teinkela, J.E.M.; Nguemfo, E.L.; Valentin, A.; Dongmo, A.B.; Vardamides, J.C. Antiplasmodial activity of some phenolic compounds from Cameroonians Allanblackia. Afr. Health Sci., 2015, 15(3), 835-840.
[http://dx.doi.org/10.4314/ahs.v15i3.18] [PMID: 26957972]
[57]
Castro, A.; de Mattos, A.; Pereira, N.; Anchieta, N.; Silva, M.; Dias, D.; Silva, C.; Barros, G.; Souza, R.; Dos Santos, M.; Marques, M. Potent schistosomicidal constituents from Garcinia brasiliensis. Planta Med., 2015, 81(9), 733-741.
[http://dx.doi.org/10.1055/s-0035-1545927] [PMID: 25905590]
[58]
Akpanika, G.A.; Winters, A.; Wilson, T.; Ayoola, G.A.; Adepoju-Bello, A.A.; Hauck, B. Polyphenols from Allanblackia floribunda seeds: Identification, quantification and antioxidant activity. Food Chem., 2017, 222, 35-42.
[http://dx.doi.org/10.1016/j.foodchem.2016.12.002] [PMID: 28041556]
[59]
Anu Aravind, A.P.; Asha, K.R.T.; Rameshkumar, K.B. Phytochemical analysis and antioxidant potential of the leaves of Garcinia travancorica Bedd. Nat. Prod. Res., 2016, 30(2), 232-236.
[http://dx.doi.org/10.1080/14786419.2015.1043551] [PMID: 25982126]
[60]
Osorio, E.; Londoño, J.; Bastida, J. Low-density lipoprotein (LDL)-antioxidant biflavonoids from Garcinia madruno. Molecules, 2013, 18(5), 6092-6100.
[http://dx.doi.org/10.3390/molecules18056092] [PMID: 23698056]
[61]
Pinkaew, D.; Hutadilok-Towatana, N.; Teng, B.B.; Mahabusarakam, W.; Fujise, K. Morelloflavone, a biflavonoid inhibitor of migration-related kinases, ameliorates atherosclerosis in mice. Am. J. Physiol. Heart Circ. Physiol., 2012, 302(2), H451-H458.
[http://dx.doi.org/10.1152/ajpheart.00669.2011] [PMID: 22058152]
[62]
Tabares-Guevara, J.H.; Lara-Guzmán, O.J.; Londoño-Londoño, J.A.; Sierra, J.A.; León-Varela, Y.M.; Álvarez-Quintero, R.M.; Osorio, E.J.; Ramirez-Pineda, J.R. Natural biflavonoids modulate macrophage–oxidized ldl interaction in vitro and promote atheroprotection in vivo. Front. Immunol., 2017, 8, 923.
[http://dx.doi.org/10.3389/fimmu.2017.00923] [PMID: 28824646]
[63]
Tuansulong, K.A.; Hutadilok-Towatana, N.; Mahabusarakam, W.; Pinkaew, D.; Fujise, K. Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother. Res., 2011, 25(3), 424-428.
[PMID: 20734327]
[64]
Hutadilok-Towatana, N.; Kongkachuay, S.; Mahabusarakam, W. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Nat. Prod. Res., 2007, 21(7), 655-662.
[http://dx.doi.org/10.1080/14786410701371256] [PMID: 17613824]
[65]
Otuki, M.F.; Bernardi, C.A.; Prudente, A.S.; Laskoski, K.; Gomig, F.; Horinouchi, C.D.S.; Guimarães, C.L.; Ferreira, J.; Delle-Monache, F.; Cechinel-Filho, V.; Cabrini, D.A. Garcinia gardneriana (Planchon & Triana) Zappi. (Clusiaceae) as a topical anti-inflammatory alternative for cutaneous inflammation. Basic Clin. Pharmacol. Toxicol., 2011, 109(1), 56-62.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00689.x] [PMID: 21362142]
[66]
Araújo, F.O.; Moreira, M.E.C.; Lima, C.F.; Toledo, R.C.L.; de Sousa, A.R.; Veloso, M.P.; de Freitas, P.G.; dos Santos, M.H.; de Souza, E.C.G.; Mantovani, H.C.; Martino, H.S.D. Bacupari (Garcinia brasiliensis) extract modulates intestinal microbiota and reduces oxidative stress and inflammation in obese rats. Food Res. Int., 2019, 122, 199-208.
[http://dx.doi.org/10.1016/j.foodres.2019.04.012] [PMID: 31229073]
[67]
Sanz, M.J.; Ferrandiz, M.L.; Cejudo, M.; Terencio, M.C.; Gil, B.; Bustos, G.; Ubeda, A.; Gunasegaran, R.; Alcaraz, M.J. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica, 1994, 24(7), 689-699.
[http://dx.doi.org/10.3109/00498259409043270] [PMID: 7975732]
[68]
Pang, X.; Yi, T.; Yi, Z.; Cho, S.G.; Qu, W.; Pinkaew, D.; Fujise, K.; Liu, M. Morelloflavone, a biflavonoid, inhibits tumor angiogenesis by targeting rho GTPases and extracellular signal-regulated kinase signaling pathways. Cancer Res., 2009, 69(2), 518-525.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2531] [PMID: 19147565]
[69]
Li, X.; Ai, H.; Sun, D.; Wu, T.; He, J.; Xu, Z.; Ding, L.; Wang, L. Anti-tumoral activity of native compound morelloflavone in glioma. Oncol. Lett., 2016, 12(5), 3373-3377.
[http://dx.doi.org/10.3892/ol.2016.5094] [PMID: 27900007]
[70]
Brusotti, G.; Papetti, A.; Serra, M.; Temporini, C.; Marini, E.; Orlandini, S.; Sanda, A.K.; Watcho, P.; Kamtchouing, P. Allanblackia floribunda Oliv.: An aphrodisiac plant with vasorelaxant properties. J. Ethnopharmacol., 2016, 192, 480-485.
[http://dx.doi.org/10.1016/j.jep.2016.09.033] [PMID: 27647010]
[71]
Lin, Y.M.; Anderson, H.; Flavin, M.T.; Pai, Y.H.S.; Mata-Greenwood, E.; Pengsuparp, T.; Pezzuto, J.M.; Schinazi, R.F.; Hughes, S.H.; Chen, F.C. In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J. Nat. Prod., 1997, 60(9), 884-888.
[http://dx.doi.org/10.1021/np9700275] [PMID: 9322359]
[72]
Liu, X.; Yu, T.; Gao, X.M.; Zhou, Y.; Qiao, C.F.; Peng, Y.; Chen, S.L.; Luo, K.Q.; Xu, H.X. Apoptotic effects of polyprenylated benzoylphloroglucinol derivatives from the twigs of Garcinia multiflora. J. Nat. Prod., 2010, 73(8), 1355-1359.
[http://dx.doi.org/10.1021/np100156w] [PMID: 20681570]
[73]
Ren, Y.; Lantvit, D.D.; Carcache de Blanco, E.J.; Kardono, L.B.S.; Riswan, S.; Chai, H.; Cottrell, C.E.; Farnsworth, N.R.; Swanson, S.M.; Ding, Y.; Li, X.C.; Marais, J.P.J.; Ferreira, D.; Kinghorn, A.D. Proteasome-inhibitory and cytotoxic constituents of Garcinia lateriflora: Absolute configuration of caged xanthones. Tetrahedron, 2010, 66(29), 5311-5320.
[http://dx.doi.org/10.1016/j.tet.2010.05.010] [PMID: 20730041]
[74]
Mulholland, D.A.; Mwangi, E.M.; Dlova, N.C.; Plant, N.; Crouch, N.R.; Coombes, P.H. Non-toxic melanin production inhibitors from Garcinia livingstonei (Clusiaceae). J. Ethnopharmacol., 2013, 149(2), 570-575.
[http://dx.doi.org/10.1016/j.jep.2013.07.023] [PMID: 23891889]
[75]
Santos, J.A.N.; Kondo, M.Y.; Freitas, R.F.; dos Santos, M.H.; Ramalho, T.C.; Assis, D.M.; Juliano, L.; Juliano, M.A.; Puzer, L. The natural flavone fukugetin as a mixed-type inhibitor for human tissue kallikreins. Bioorg. Med. Chem. Lett., 2016, 26(5), 1485-1489.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.039] [PMID: 26848109]
[76]
Recalde-Gil, MA; Klein-Júnior, LC; dos Santos Passos, C; Salton, J; de Loreto Bordignon, SA Monace, FD Monoamine oxidase inhibitory activity of biflavonoids from branches of Garcinia gardneriana (Clusiaceae). Nat Prod Commun, 2017, 12, 1934578X1701200.
[77]
Recalde-Gil, A.M.; Klein-Júnior, L.; Salton, J.; Bordignon, S.; Cechinel-Filho, V.; Matté, C.; Henriques, A. Aromatase (CYP19) inhibition by biflavonoids obtained from the branches of Garcinia gardneriana (Clusiaceae). Z. Naturforsch. C J. Biosci., 2019, 74(9-10), 279-282.
[http://dx.doi.org/10.1515/znc-2019-0036] [PMID: 31393836]
[78]
Ogunwa, T.H.; Laudadio, E.; Galeazzi, R.; Miyanishi, T. Insights into the molecular mechanisms of Eg5 Inhibition by (+)-morelloflavone. Pharmaceuticals (Basel), 2019, 12(2), 58.
[http://dx.doi.org/10.3390/ph12020058] [PMID: 30995725]
[79]
Ogunwa, T.H.; Taii, K.; Sadakane, K.; Kawata, Y.; Maruta, S.; Miyanishi, T. Morelloflavone as a novel inhibitor of mitotic kinesin Eg5. J. Biochem., 2019, 166(2), 129-137.
[http://dx.doi.org/10.1093/jb/mvz015] [PMID: 30785183]
[80]
de Souza, A.A.; de Andrade, D.M.; Siqueira, F.S.; Di Iorio, J.F.; Veloso, M.P.; Coelho, C.M.; Viegas, Junior, C.; Gontijo, V.S.; dos Santos, M.H.; Meneghetti, M.C.Z.; Nader, H.B.; Tersariol, I.L.S.; Juliano, L.; Juliano, M.A.; Judice, W.A.S. Semysinthetic biflavonoid Morelloflavone-7,4′7″3‴4‴-penta-O-butanoyl is a more potent inhibitor of Proprotein Convertases Subtilisin/Kexin PC1/3 than Kex2 and Furin. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(12), 130016.
[http://dx.doi.org/10.1016/j.bbagen.2021.130016] [PMID: 34560176]
[81]
John, O.D.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Physiological and metabolic effects of yellow mangosteen (Garcinia dulcis) rind in rats with diet-induced metabolic syndrome. Int. J. Mol. Sci., 2019, 21(1), 272.
[http://dx.doi.org/10.3390/ijms21010272] [PMID: 31906096]
[82]
Moreira, M.E.C.; de Oliveira Araújo, F.; de Sousa, A.R.; Toledo, R.C.L.; dos Anjos Benjamin, L.; Veloso, M.P.; de Souza Reis, K.; dos Santos, M.H.; Martino, H.S.D. Bacupari peel extracts (Garcinia brasiliensis) reduces the biometry, lipogenesis and hepatic steatosis in obese rats. Food Res. Int., 2018, 114, 169-177.
[http://dx.doi.org/10.1016/j.foodres.2018.08.004] [PMID: 30361013]
[83]
Carrillo-Hormaza, L.; Ramírez, A.M.; Osorio, E. Chemometric classification of Garcinia madruno raw material: Impact of the regional origin and ripeness stage of a neotropical exotic species. Food Chem., 2019, 293, 291-298.
[http://dx.doi.org/10.1016/j.foodchem.2019.04.118] [PMID: 31151614]
[84]
Zan, R.A.; Fernandes, Â.; Jedoz, S.; Oludemi, T.; Calhelha, R.C.; Pires, T.C.S.P.; Alves, M.J.; Martins, R.C.C.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties and phytochemical assessment of Bacupari-anão (Garcinia brasiliensis Mart.) leaves native to Rondônia, Brazil. Food Funct., 2018, 9(11), 5621-5628.
[http://dx.doi.org/10.1039/C8FO01474D] [PMID: 30302477]
[85]
Aravind, APA; Pandey, R; Kumar, B; Asha, KRT; Rameshkumar, KB Phytochemical screening of garcinia travancorica by HPLC-ESI-QTOF mass spectrometry and cytotoxicity studies of the major biflavonoid fukugiside. Nat Prod Commun, 2016, 11, 1934578X1601101.
[http://dx.doi.org/10.1177/1934578X1601101216]
[86]
Liu, L.; Li, Y-F.; Gan, F.; Yang, G-Z.; Chen, Y. Chemical constituents from leaves of Garcinia xanthochymus. Zhongguo Zhongyao Zazhi, 2016, 41(11), 2098-2104.
[PMID: 28901107]
[87]
Stark, T.D.; Lösch, S.; Wakamatsu, J.; Balemba, O.B.; Frank, O.; Hofmann, T. UPLC-ESI-TOF MS-based metabolite profiling of the antioxidative food supplement Garcinia buchananii. J. Agric. Food Chem., 2015, 63(32), 7169-7179.
[http://dx.doi.org/10.1021/acs.jafc.5b02544] [PMID: 26226176]
[88]
Jamila, N.; Khan, N.; Khan, I.; Khan, A.A.; Khan, S.N. A bioactive cycloartane triterpene from Garcinia hombroniana. Nat. Prod. Res., 2016, 30(12), 1388-1397.
[http://dx.doi.org/10.1080/14786419.2015.1060594] [PMID: 26158779]
[89]
Ito, T.; Yokota, R.; Watarai, T.; Mori, K.; Oyama, M.; Nagasawa, H.; Matsuda, H.; Iinuma, M. Isolation of six isoprenylated biflavonoids from the leaves of Garcinia subelliptica. Chem. Pharm. Bull. (Tokyo), 2013, 61(5), 551-558.
[http://dx.doi.org/10.1248/cpb.c12-01057] [PMID: 23649198]
[90]
Yang, H.; Figueroa, M.; To, S.; Baggett, S.; Jiang, B.; Basile, M.J.; Weinstein, I.B.; Kennelly, E.J. Benzophenones and biflavonoids from Garcinia livingstonei fruits. J. Agric. Food Chem., 2010, 58(8), 4749-4755.
[http://dx.doi.org/10.1021/jf9046094] [PMID: 20345100]
[91]
Acuña, U.M.; Figueroa, M.; Kavalier, A.; Jancovski, N.; Basile, M.J.; Kennelly, E.J. Benzophenones and biflavonoids from Rheedia edulis. J. Nat. Prod., 2010, 73(11), 1775-1779.
[http://dx.doi.org/10.1021/np100322d] [PMID: 21028890]
[92]
Lin, Y.M.; Chen, F.C.; Lee, K.H. Hinokiflavone, a cytotoxic principle from Rhus succedanea and the cytotoxicity of the related biflavonoids. Planta Med., 1989, 55(2), 166-168.
[http://dx.doi.org/10.1055/s-2006-961914] [PMID: 2526343]
[93]
Li, S.; Chen, R-Y.; Yu, D-Q. Study on chemical constituents of Myricaria paniculata I. Zhongguo Zhongyao Zazhi, 2007, 32(5), 403-406. s
[PMID: 17511145]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy