Generic placeholder image

International Journal of Sensors, Wireless Communications and Control

Editor-in-Chief

ISSN (Print): 2210-3279
ISSN (Online): 2210-3287

Research Article

Energy Efficiency and Resource Allocation Optimization with MIMONOMA and Backhaul Beam-forming in User-centric Ultra-dense Networks

Author(s): Ravi Mancharla*, Tasher Ali Sheikh and Yaka Bulo

Volume 12, Issue 7, 2022

Published on: 10 November, 2022

Page: [510 - 520] Pages: 11

DOI: 10.2174/2210327913666221021110816

Price: $65

Abstract

Background: Non-orthogonal multiple access (NOMA) is viewed as the key multiple access technology for 5G and beyond networks, attracting the attention of academics and industries. NOMA and the multiple input multiple output (MIMO-NOMA) technology can improve a system’s throughput, latency, and energy efficiency (EE) in future-generation communication networks.

Objective: The objective of this paper is to achieve maximum EE by applying the Max-min Power Control Algorithm (MMPCA) through sub-channel optimization, resource allocation (RA) optimization, access point selection (APS), and user association. The EE results obtained with and without using MMPCA are compared to the RA optimization from a conventional water-filling algorithm (WFA).

Methods: This paper formulates a framework for user-centric (UC) joint resource allocation, such as backhaul connection via beam-forming and Access point (AP) to user connection via MIMO-NOMA. The user without interference is decoded using the NOMA principle. The MMPCA was also used to optimize cooperative power allocation, sub-channel allocation, and efficient user association. The RA for EE is framed as a mixed non-convex and non-linear function using successive convex approximation and sum ratio decoupling converted into convex and linear. A bisection method was used to achieve optimal RA, user association, and sub-channel assignment.

Results and Conclusion: The simulation shows energy efficiency (EE) improvement. Similarly, it is observed that MMPCA outperforms the WFA.

Graphical Abstract

[1]
Liu X, Jia M, Zhang X, Lu W. A novel multichannel internet of things based on dynamic spectrum sharing in 5G communication. IEEE Internet Things J 2018; 6(4): 5962-70.
[http://dx.doi.org/10.1109/JIOT.2018.2847731]
[2]
Li QC, Niu H, Papathanassiou AT, Wu G. 5G network capacity: Key elements and technologies. IEEE Veh Technol Mag 2014; 9(1): 71-8.
[http://dx.doi.org/10.1109/MVT.2013.2295070]
[3]
Li X, Zhao M, Liu Y, Li L, Ding Z, Nallanathan A. Secrecy analysis of ambient backscatter NOMA systems under I/Q imbalance. IEEE Trans Vehicular Technol 2020; 69(10): 12286-90.
[http://dx.doi.org/10.1109/TVT.2020.3006478]
[4]
Li X, Li J, Liu Y, Ding Z, Nallanathan A. Residual transceiver hardware impairments on cooperative NOMA networks. IEEE Trans Wirel Commun 2019; 19(1): 680-95.
[http://dx.doi.org/10.1109/TWC.2019.2947670]
[5]
Li X, Wang Q, Liu Y, Tsiftsis TA, Ding Z, Nallanathan A. UAV-aided multi-way NOMA networks with residual hardware impairments. IEEE Wirel Commun Lett 2020; 9(9): 1538-42.
[http://dx.doi.org/10.1109/LWC.2020.2996782]
[6]
Zhu L, Xiao Z, Xia XG, Wu DO. Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access 2019; 7: 116123-32.
[http://dx.doi.org/10.1109/ACCESS.2019.2935169]
[7]
Al-Eryani Y, Hossain E. The D-OMA method for massive multiple access in 6G: Performance, security, and challenges. IEEE Veh Technol Mag 2019; 14(3): 92-9.
[http://dx.doi.org/10.1109/MVT.2019.2919279]
[8]
Do DT, Le AT, Lee BM. NOMA in cooperative underlay cognitive radio networks under imperfect SIC. IEEE Access 2020; 8: 86180-95.
[http://dx.doi.org/10.1109/ACCESS.2020.2992660]
[9]
Khan WU, Jameel F, Jamshed MA, Pervaiz H, Khan S, Liu J. Efficient power allocation for NOMA-enabled IoT networks in 6G era. Phys Commun 2020; 39: 101043.
[http://dx.doi.org/10.1016/j.phycom.2020.101043]
[10]
Do DT, Van Nguyen MS. Device-to-device transmission modes in NOMA network with and without wireless power transfer. Comput Commun 2019; 139: 67-77.
[http://dx.doi.org/10.1016/j.comcom.2019.04.003]
[11]
Xia B, Wang J, Xiao K, Gao Y, Yao Y, Ma S. Outage performance analysis for the advanced SIC receiver in wireless NOMA systems. IEEE Trans Vehicular Technol 2018; 67(7): 6711-5.
[http://dx.doi.org/10.1109/TVT.2018.2813524]
[12]
Al Rabee F, Davaslioglu K, Gitlin R. The optimum received power levels of uplink non-orthogonal multiple access (NOMA) signals. 2017 IEEE 18th Wireless and Microwave Technology Conference (WAMICON). 2017 Apr 24; IEEE pp. 1-4.
[13]
Liu X, Zhang X. NOMA-based resource allocation for cluster-based cognitive industrial internet of things. IEEE Trans Industr Inform 2019; 16(8): 5379-88.
[http://dx.doi.org/10.1109/TII.2019.2947435]
[14]
Liu Y, Elkashlan M, Ding Z, Karagiannidis GK. Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Commun Lett 2016; 20(7): 1465-8.
[http://dx.doi.org/10.1109/LCOMM.2016.2559459]
[15]
Liu X, Zhai XB, Lu W, Wu C. QoS-guarantee resource allocation for multibeam satellite industrial internet of things with NOMA. IEEE Trans Industr Inform 2019; 17(3): 2052-61.
[http://dx.doi.org/10.1109/TII.2019.2951728]
[16]
Wang J, Peng Q, Huang Y, Wang HM, You X. Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process Lett 2017; 24(9): 1323-7.
[17]
Sindhu P, Deepak KS, KM AH. A novel low complexity power allocation algorithm for downlink NOMA networks. 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS). 2018 Dec 6; IEEE 36-40.
[18]
Zeng M, Yadav A, Dobre OA, Poor HV. Energy-efficient power allocation for MIMO-NOMA with multiple users in a cluster. IEEE Access 2018; 6: 5170-81.
[http://dx.doi.org/10.1109/ACCESS.2017.2779855]
[19]
Ruby R, Zhong S, Yang H, Wu K. Enhanced uplink resource allocation in non-orthogonal multiple access systems. IEEE Trans Wirel Commun 2017; 17(3): 1432-44.
[http://dx.doi.org/10.1109/TWC.2017.2778105]
[20]
Lv G, Li X, Shang R, Xue P, Jin Y. Dynamic resource allocation for uplink non-orthogonal multiple access systems. IET Commun 2018; 12(6): 649-55.
[http://dx.doi.org/10.1049/iet-com.2017.0972]
[21]
Tian X, Huang Y, Verma S, et al. Power allocation scheme for maximizing spectral efficiency and energy efficiency tradeoff for uplink NOMA systems in B5G/6G. Phys Commun 2020; 43: 101227.
[http://dx.doi.org/10.1016/j.phycom.2020.101227]
[22]
Jacob JL, Martinez CA, Martinez AL, Abrão T. Non-linear biobjective EE-SE optimization for NOMA-MIMO systems under user-rate fairness and variable number of users per cluster. AEU Int J Electron Commun 2021; 138: 153870.
[http://dx.doi.org/10.1016/j.aeue.2021.153870]
[23]
Udalcovs A, Schatz R, Wosinska L, Monti P. Analysis of spectral and energy efficiency tradeoff in single-line rate WDM links. J Lightwave Technol 2017; 35(10): 1847-57.
[http://dx.doi.org/10.1109/JLT.2017.2651165]
[24]
Ali Z, Khan WU, Sidhu GA, et al. Fair power allocation in cooperative cognitive systems under NOMA transmission for future IoT networks. Alex Eng J 2022; 61(1): 575-83.
[http://dx.doi.org/10.1016/j.aej.2021.04.107]
[25]
Moon S, Kim H, Yi Y. BRUTE: Energy-efficient user association in cellular networks from population game perspective. IEEE Trans Wirel Commun 2015; 15(1): 663-75.
[http://dx.doi.org/10.1109/TWC.2015.2477297]
[26]
Zhang H, Huang S, Jiang C, Long K, Leung VC, Poor HV. Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE J Sel Areas Comm 2017; 35(9): 1936-47.
[http://dx.doi.org/10.1109/JSAC.2017.2720898]
[27]
Li Z, Verma S, Jin M. Power allocation in massive MIMO-HWSN based on the water-filling algorithm. Wirel Commun Mob Comput 2021; 2021: 2021.
[http://dx.doi.org/10.1155/2021/8719066]
[28]
Fang F, Wang K, Ding Z, Leung VC. Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Trans Commun 2021; 69(5): 3436-49.
[http://dx.doi.org/10.1109/TCOMM.2021.3058964]
[29]
Pang X, Tang J, Zhao N, Zhang X, Qian Y. Energy-efficient design for mmWave-enabled NOMA-UAV networks. Sci China Inf Sci 2021; 64(4): 1-4.
[http://dx.doi.org/10.1007/s11432-020-2985-8]
[30]
Chen S, Qin F, Hu B, Li X, Chen Z. User-centric ultra-dense networks for 5G: Challenges, methodologies, and directions. IEEE Wirel Commun 2016; 23(2): 78-85.
[http://dx.doi.org/10.1109/MWC.2016.7462488]
[31]
Khan WU, Javed MA, Nguyen TN, Khan S, Elhalawany BM. Energy-efficient resource allocation for 6G backscatter-enabled NOMA IoV networks. IEEE Trans Intell Transp Syst 2021; 1-11.
[http://dx.doi.org/10.1109/TITS.2021.3110942]
[32]
Ihsan A, Chen W, Zhang S, Xu S. Energy-efficient NOMA multicasting system for beyond 5G cellular V2X communications with imperfect CSI. IEEE Trans Intell Transp Syst 2021; 1-15.
[http://dx.doi.org/10.1109/TITS.2021.3095437]
[33]
Zhang L, Zhang G, Zhao X, et al. Resource allocation for energy efficient user association in user-centric ultra-dense networks integrating NOMA and beamforming. AEU Int J Electron Commun 2020; 124: 153270.
[http://dx.doi.org/10.1016/j.aeue.2020.153270]
[34]
Akbar N, Björnson E, Yang N, Larsson EG. Max-min power control in downlink massive MIMO with distributed antenna arrays. IEEE Trans Commun 2020; 69(2): 740-51.
[http://dx.doi.org/10.1109/TCOMM.2020.3033018]
[35]
Chinnadurai S, Yoon D. Energy efficient MIMO-NOMA HCN with IoT for wireless communication systems. 2018 International Conference on Information and Communication Technology Convergence (ICTC). pp. 856-9.
[http://dx.doi.org/10.1109/ICTC.2018.8539610]
[36]
Sheikh TA, Bora J, Hussain MA. Capacity maximizing in massive MIMO with linear precoding for SSF and LSF channel with perfect CSI. Digital Commun Netw 2021; 7(1): 92-9.
[http://dx.doi.org/10.1016/j.dcan.2019.08.002]
[37]
Golub GH, Van Loan CF. Matrix computations. (3rd ed.), 1996.
[38]
Hanif MF, Ding Z, Ratnarajah T, Karagiannidis GK. A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems. IEEE Trans Signal Process 2015; 64(1): 76-88.
[http://dx.doi.org/10.1109/TSP.2015.2480042]
[39]
Tse D, Viswanath P. Fundamentals of wireless communication. Cambridge University Press 2005.
[http://dx.doi.org/10.1017/CBO9780511807213]
[40]
Björnson E, Hoydis J, Sanguinetti L. Massive MIMO networks: Spectral, energy, and hardware efficiency. Found Trends Signal Process 2017; 11(3-4): 154-655.
[http://dx.doi.org/10.1561/2000000093]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy