Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Looking for SARS-CoV-2 Therapeutics Through Computational Approaches

Author(s): Marian Vincenzi, Flavia Anna Mercurio and Marilisa Leone*

Volume 30, Issue 28, 2023

Published on: 21 November, 2022

Page: [3158 - 3214] Pages: 57

DOI: 10.2174/0929867329666221004104430

Price: $65

Abstract

Background: In the last few years, in silico tools, including drug repurposing coupled with structure-based virtual screening, have been extensively employed to look for anti-COVID-19 agents.

Objective: The present review aims to provide readers with a portrayal of computational approaches that could be conducted more quickly and cheaply to novel anti-viral agents. Particular attention is given to docking-based virtual screening.

Methods: The World Health Organization website was consulted to gain the latest information on SARS-CoV-2, its novel variants and their interplay with COVID-19 severity and treatment options. The Protein Data Bank was explored to look for 3D coordinates of SARS-CoV-2 proteins in their free and bound states, in the wild-types and mutated forms. Recent literature related to in silico studies focused on SARS-CoV-2 proteins was searched through PubMed.

Results: A large amount of work has been devoted thus far to computationally targeting viral entry and searching for inhibitors of the S-protein/ACE2 receptor complex. Another large area of investigation is linked to in silico identification of molecules able to block viral proteases -including Mpro- thus avoiding maturation of proteins crucial for virus life cycle. Such computational studies have explored the inhibitory potential of the most diverse molecule databases (including plant extracts, dietary compounds, FDA approved drugs).

Conclusion: More efforts need to be dedicated in the close future to experimentally validate the therapeutic power of in silico identified compounds in order to catch, among the wide ensemble of computational hits, novel therapeutics to prevent and/or treat COVID- 19.

Keywords: SARS-CoV-2, COVID-19, structure-based drug design, virtual screening, drug repurposing, molecular modelling, drug-discovery

[1]
Alsobaie, S. Understanding the molecular biology of SARS-CoV-2 and the COVID-19 pandemic: A review. Infect. Drug Resist., 2021, 14, 2259-2268.
[http://dx.doi.org/10.2147/IDR.S306441] [PMID: 34163190]
[2]
Kannan, S.; Shaik Syed Ali, P.; Sheeza, A.; Hemalatha, K. COVID-19 (Novel Coronavirus 2019)-recent trends. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(4), 2006-2011.
[http://dx.doi.org/10.26355/eurrev_202002_20378] [PMID: 32141569]
[3]
Zhao, N.; Zhou, Z.L.; Wu, L.; Zhang, X.D.; Han, S.B.; Bao, H.J.; Shu, Y.; Shu, X.G. An update on the status of COVID-19: A comprehensive review. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4597-4606.
[http://dx.doi.org/10.26355/eurrev_202004_21046] [PMID: 32374000]
[4]
Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus disease 2019–COVID-19. Clin. Microbiol. Rev., 2020, 33(4), e00028-e20.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[5]
Zhu, Z.; Lian, X.; Su, X.; Wu, W.; Marraro, G.A.; Zeng, Y. From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir. Res., 2020, 21(1), 224.
[http://dx.doi.org/10.1186/s12931-020-01479-w] [PMID: 32854739]
[6]
Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet, 2021, 397(10278), 952-954.
[http://dx.doi.org/10.1016/S0140-6736(21)00370-6] [PMID: 33581803]
[7]
Gralinski, L.E.; Menachery, V.D. Return of the coronavirus: 2019-nCoV. Viruses, 2020, 12(2), 135.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[8]
Xie, P.; Ma, W.; Tang, H.; Liu, D. Severe COVID-19: A review of recent progress with a look toward the future. Front. Public Health, 2020, 8, 189.
[http://dx.doi.org/10.3389/fpubh.2020.00189] [PMID: 32574292]
[9]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[10]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[11]
Song, Z.; Xu, Y.; Bao, L.; Zhang, L.; Yu, P.; Qu, Y.; Zhu, H.; Zhao, W.; Han, Y.; Qin, C. From SARS to MERS, thrusting corona-viruses into the spotlight. Viruses, 2019, 11(1), 59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[12]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[13]
Hassan, S.S.; Ghosh, S.; Attrish, D.; Choudhury, P.P.; Aljabali, A.A.A.; Uhal, B.D.; Lundstrom, K.; Rezaei, N.; Uversky, V.N.; Sey-ran, M.; Pizzol, D.; Adadi, P.; Soares, A.; El-Aziz, T.M.A.; Kandimalla, R.; Tambuwala, M.M.; Azad, G.K.; Sherchan, S.P.; Baetas-da-Cruz, W.; Takayama, K.; Serrano-Aroca, Á.; Chauhan, G.; Palu, G.; Brufsky, A.M. Possible transmission flow of SARS-CoV-2 based on ACE2 features. Molecules, 2020, 25(24), 5906.
[http://dx.doi.org/10.3390/molecules25245906] [PMID: 33322198]
[14]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowl-ing, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[15]
Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; Seil-maier, M.; Drosten, C.; Vollmar, P.; Zwirglmaier, K.; Zange, S.; Wölfel, R.; Hoelscher, M. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N. Engl. J. Med., 2020, 382(10), 970-971.
[http://dx.doi.org/10.1056/NEJMc2001468] [PMID: 32003551]
[16]
Trougakos, I.P.; Stamatelopoulos, K.; Terpos, E.; Tsitsilonis, O.E.; Aivalioti, E.; Paraskevis, D.; Kastritis, E.; Pavlakis, G.N.; Dimopou-los, M.A. Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications. J. Biomed. Sci., 2021, 28(1), 9.
[http://dx.doi.org/10.1186/s12929-020-00703-5] [PMID: 33435929]
[17]
Hoffmann, M.; Kleine-Weber, H.; Pöhlmann, S. A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell, 2020, 78(4), 779-784.e5.
[http://dx.doi.org/10.1016/j.molcel.2020.04.022] [PMID: 32362314]
[18]
Jiang, S.; Du, L.; Shi, Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerg. Microbes Infect., 2020, 9(1), 275-277.
[http://dx.doi.org/10.1080/22221751.2020.1723441] [PMID: 32005086]
[19]
Ren, L.L.; Wang, Y.M.; Wu, Z.Q.; Xiang, Z.C.; Guo, L.; Xu, T.; Jiang, Y.Z.; Xiong, Y.; Li, Y.J.; Li, X.W.; Li, H.; Fan, G.H.; Gu, X.Y.; Xiao, Y.; Gao, H.; Xu, J.Y.; Yang, F.; Wang, X.M.; Wu, C.; Chen, L.; Liu, Y.W.; Liu, B.; Yang, J.; Wang, X.R.; Dong, J.; Li, L.; Huang, C.L.; Zhao, J.P.; Hu, Y.; Cheng, Z.S.; Liu, L.L.; Qian, Z.H.; Qin, C.; Jin, Q.; Cao, B.; Wang, J.W. Identification of a novel coronavirus causing severe pneumonia in human: A descriptive study. Chin. Med. J. (Engl.), 2020, 133(9), 1015-1024.
[http://dx.doi.org/10.1097/CM9.0000000000000722] [PMID: 32004165]
[20]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[21]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[22]
Cheng, Z.J.; Shan, J. 2019 Novel coronavirus: Where we are and what we know. Infection, 2020, 48(2), 155-163.
[http://dx.doi.org/10.1007/s15010-020-01401-y] [PMID: 32072569]
[23]
Ali, M.A.M.; Spinler, S.A. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc. Med., 2021, 31(3), 143-160.
[http://dx.doi.org/10.1016/j.tcm.2020.12.004] [PMID: 33338635]
[24]
Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 324(8), 782-793.
[http://dx.doi.org/10.1001/jama.2020.12839] [PMID: 32648899]
[25]
Chen, H.; Guo, J.; Wang, C.; Luo, F.; Yu, X.; Zhang, W.; Li, J.; Zhao, D.; Xu, D.; Gong, Q.; Liao, J.; Yang, H.; Hou, W.; Zhang, Y. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: A retrospective review of medical records. Lancet, 2020, 395(10226), 809-815.
[http://dx.doi.org/10.1016/S0140-6736(20)30360-3] [PMID: 32151335]
[26]
[27]
Burki, T. Understanding variants of SARS-CoV-2. Lancet, 2021, 397(10273), 462.
[http://dx.doi.org/10.1016/S0140-6736(21)00298-1] [PMID: 33549181]
[28]
Yadav, R.; Chaudhary, J.K.; Jain, N.; Chaudhary, P.K.; Khanra, S.; Dhamija, P.; Sharma, A.; Kumar, A.; Handu, S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, 10(4), 821.
[http://dx.doi.org/10.3390/cells10040821] [PMID: 33917481]
[29]
Brant, A.C.; Tian, W.; Majerciak, V.; Yang, W.; Zheng, Z.M. SARS-CoV-2: from its discovery to genome structure, transcription, and replication. Cell Biosci., 2021, 11(1), 136.
[http://dx.doi.org/10.1186/s13578-021-00643-z] [PMID: 34281608]
[30]
Arya, R.; Kumari, S.; Pandey, B.; Mistry, H.; Bihani, S.C.; Das, A.; Prashar, V.; Gupta, G.D.; Panicker, L.; Kumar, M. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol., 2021, 433(2), 166725.
[http://dx.doi.org/10.1016/j.jmb.2020.11.024] [PMID: 33245961]
[31]
Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sin., 2020, 41(9), 1141-1149.
[http://dx.doi.org/10.1038/s41401-020-0485-4] [PMID: 32747721]
[32]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[33]
Schubert, K.; Karousis, E.D.; Jomaa, A.; Scaiola, A.; Echeverria, B.; Gurzeler, L.A.; Leibundgut, M.; Thiel, V.; Mühlemann, O.; Ban, N. SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation. Nat. Struct. Mol. Biol., 2020, 27(10), 959-966.
[http://dx.doi.org/10.1038/s41594-020-0511-8] [PMID: 32908316]
[34]
Cornillez-Ty, C.T.; Liao, L.; Yates, J.R., III; Kuhn, P.; Buchmeier, M.J. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol., 2009, 83(19), 10314-10318.
[http://dx.doi.org/10.1128/JVI.00842-09] [PMID: 19640993]
[35]
Yoshimoto, F.K. The proteins of severe acute respiratory syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J., 2020, 39(3), 198-216.
[http://dx.doi.org/10.1007/s10930-020-09901-4] [PMID: 32447571]
[36]
Armstrong, L.A.; Lange, S.M.; Dee Cesare, V.; Matthews, S.P.; Nirujogi, R.S.; Cole, I.; Hope, A.; Cunningham, F.; Toth, R.; Mukher-jee, R.; Bojkova, D.; Gruber, F.; Gray, D.; Wyatt, P.G.; Cinatl, J.; Dikic, I.; Davies, P.; Kulathu, Y. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS One, 2021, 16(7), e0253364.
[http://dx.doi.org/10.1371/journal.pone.0253364] [PMID: 34270554]
[37]
Kim, Y.; Wower, J.; Maltseva, N.; Chang, C.; Jedrzejczak, R.; Wilamowski, M.; Kang, S.; Nicolaescu, V.; Randall, G.; Michalska, K.; Joachimiak, A. Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Commun. Biol., 2021, 4(1), 193.
[http://dx.doi.org/10.1038/s42003-021-01735-9] [PMID: 33564093]
[38]
Vithani, N.; Ward, M.D.; Zimmerman, M.I.; Novak, B.; Borowsky, J.H.; Singh, S.; Bowman, G.R. SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. Biophys. J., 2021, 120(14), 2880-2889.
[http://dx.doi.org/10.1016/j.bpj.2021.03.024] [PMID: 33794150]
[39]
Redondo, N.; Zaldívar-López, S.; Garrido, J.J.; Montoya, M. SARS-CoV-2 accessory proteins in viral pathogenesis: Knowns and unknowns. Front. Immunol., 2021, 12, 708264.
[http://dx.doi.org/10.3389/fimmu.2021.708264] [PMID: 34305949]
[40]
Castaño-Rodriguez, C.; Honrubia, J.M.; Gutiérrez-Álvarez, J.; DeDiego, M.L.; Nieto-Torres, J.L.; Jimenez-Guardeño, J.M.; Regla-Nava, J.A.; Fernandez-Delgado, R.; Verdia-Báguena, C.; Queralt-Martín, M.; Kochan, G.; Perlman, S.; Aguilella, V.M.; Sola, I.; Enjuanes, L. Role of severe acute respiratory syndrome coronavirus Viroporins E, 3a, and 8a in replication and pathogenesis. MBio, 2018, 9(3), e02325-e17.
[http://dx.doi.org/10.1128/mBio.02325-17] [PMID: 29789363]
[41]
Miorin, L.; Kehrer, T.; Sanchez-Aparicio, M.T.; Zhang, K.; Cohen, P.; Patel, R.S.; Cupic, A.; Makio, T.; Mei, M.; Moreno, E.; Dan-ziger, O.; White, K.M.; Rathnasinghe, R.; Uccellini, M.; Gao, S.; Aydillo, T.; Mena, I.; Yin, X.; Martin-Sancho, L.; Krogan, N.J.; Chan-da, S.K.; Schotsaert, M.; Wozniak, R.W.; Ren, Y.; Rosenberg, B.R.; Fontoura, B.M.A.; García-Sastre, A. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 28344-28354.
[http://dx.doi.org/10.1073/pnas.2016650117] [PMID: 33097660]
[42]
Zhao, X.; Chen, H.; Wang, H. Glycans of SARS-CoV-2 spike protein in virus infection and antibody production. Front. Mol. Biosci., 2021, 8, 629873.
[http://dx.doi.org/10.3389/fmolb.2021.629873] [PMID: 33928117]
[43]
Shajahan, A.; Pepi, L.E.; Rouhani, D.S.; Heiss, C.; Azadi, P. Glycosylation of SARS-CoV-2: Structural and functional insights. Anal. Bioanal. Chem., 2021, 413(29), 7179-7193.
[http://dx.doi.org/10.1007/s00216-021-03499-x] [PMID: 34235568]
[44]
Örd, M.; Faustova, I.; Loog, M. The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Sci. Rep., 2020, 10(1), 16944.
[http://dx.doi.org/10.1038/s41598-020-74101-0] [PMID: 33037310]
[45]
Johnson, B.A.; Xie, X.; Bailey, A.L.; Kalveram, B.; Lokugamage, K.G.; Muruato, A.; Zou, J.; Zhang, X.; Juelich, T.; Smith, J.K.; Zhang, L.; Bopp, N.; Schindewolf, C.; Vu, M.; Vanderheiden, A.; Winkler, E.S.; Swetnam, D.; Plante, J.A.; Aguilar, P.; Plante, K.S.; Popov, V.; Lee, B.; Weaver, S.C.; Suthar, M.S.; Routh, A.L.; Ren, P.; Ku, Z.; An, Z.; Debbink, K.; Diamond, M.S.; Shi, P.Y.; Freiberg, A.N.; Menachery, V.D. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591(7849), 293-299.
[http://dx.doi.org/10.1038/s41586-021-03237-4] [PMID: 33494095]
[46]
Wrobel, A.G.; Benton, D.J.; Xu, P.; Roustan, C.; Martin, S.R.; Rosenthal, P.B.; Skehel, J.J.; Gamblin, S.J. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol., 2020, 27(8), 763-767.
[http://dx.doi.org/10.1038/s41594-020-0468-7] [PMID: 32647346]
[47]
Gao, T.; Gao, Y.; Liu, X.; Nie, Z.; Sun, H.; Lin, K.; Peng, H.; Wang, S. Identification and functional analysis of the SARS-COV-2 nucleocapsid protein. BMC Microbiol., 2021, 21(1), 58.
[http://dx.doi.org/10.1186/s12866-021-02107-3] [PMID: 33618668]
[48]
Kang, S.; Yang, M.; Hong, Z.; Zhang, L.; Huang, Z.; Chen, X.; He, S.; Zhou, Z.; Zhou, Z.; Chen, Q.; Yan, Y.; Zhang, C.; Shan, H.; Chen, S. Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B, 2020, 10(7), 1228-1238.
[http://dx.doi.org/10.1016/j.apsb.2020.04.009] [PMID: 32363136]
[49]
Ujike, M.; Taguchi, F. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses, 2015, 7(4), 1700-1725.
[http://dx.doi.org/10.3390/v7041700] [PMID: 25855243]
[50]
Gorkhali, R.; Koirala, P.; Rijal, S.; Mainali, A.; Baral, A.; Bhattarai, H.K. Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform. Biol. Insights, 2021, 15.
[http://dx.doi.org/10.1177/11779322211025876] [PMID: 34220199]
[51]
Duart, G.; García-Murria, M.J.; Grau, B.; Acosta-Cáceres, J.M.; Martínez-Gil, L.; Mingarro, I. SARS-CoV-2 envelope protein topology in eukaryotic membranes. Open Biol., 2020, 10(9), 200209.
[http://dx.doi.org/10.1098/rsob.200209] [PMID: 32898469]
[52]
Sarkar, M.; Saha, S. Structural insight into the role of novel SARS-CoV-2 E protein: A potential target for vaccine development and other therapeutic strategies. PLoS One, 2020, 15(8), e0237300.
[http://dx.doi.org/10.1371/journal.pone.0237300] [PMID: 32785274]
[53]
Li, E.; Yan, F.; Huang, P.; Chi, H.; Xu, S.; Li, G.; Liu, C.; Feng, N.; Wang, H.; Zhao, Y.; Yang, S.; Xia, X. Characterization of the immune response of merscov vaccine candidates derived from two different vectors in mice. Viruses, 2020, 12(1), 125.
[http://dx.doi.org/10.3390/v12010125] [PMID: 31968702]
[54]
Brüssow, H. Clinical trials with antiviral drugs against COVID ‐19: Some progress and many shattered hopes. Environ. Microbiol., 2021, 23(11), 6364-6376.
[http://dx.doi.org/10.1111/1462-2920.15769] [PMID: 34519154]
[55]
Pomplun, S. Targeting the SARS-CoV-2-spike protein: from antibodies to miniproteins and peptides. RSC Med. Chem., 2021, 12(2), 197-202.
[http://dx.doi.org/10.1039/D0MD00385A] [PMID: 34041482]
[56]
Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. JAMA, 2021, 325(13), 1318-1320.
[http://dx.doi.org/10.1001/jama.2021.3199] [PMID: 33635317]
[57]
Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infect. Drug Resist., 2021, 14, 3459-3476.
[http://dx.doi.org/10.2147/IDR.S315727] [PMID: 34511939]
[58]
Alderson, J.; Batchelor, V.; O'Hanlon, M.; Cifuentes, L.; Richter, F.C.; Kopycinski, J.; Oxford-Cardiff, C.-L.C. Overview of approved and upcoming vaccines for SARSCoV-2: A living review. Oxf. Open Immunol., 2021, 2(1), iqab010.
[http://dx.doi.org/10.1093/oxfimm/iqab010] [PMID: 34522886]
[59]
Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[60]
Panchal, D.; Kataria, J.; Patel, K.; Crowe, K.; Pai, V.; Azizogli, A.R.; Kadian, N.; Sanyal, S.; Roy, A.; Dodd-o, J.; Acevedo-Jake, A.M.; Kumar, V.A. Peptide‐based inhibitors for SARS‐CoV‐2 and SARS‐CoV. Adv. Ther. (Weinh.), 2021, 4(10), 2100104.
[http://dx.doi.org/10.1002/adtp.202100104] [PMID: 34514085]
[61]
Shahcheraghi, S.H.; Ayatollahi, J.; Aljabali, A.A.A.; Shastri, M.D.; Shukla, S.D.; Chellappan, D.K.; Jha, N.K.; Anand, K.; Katari, N.K.; Mehta, M.; Satija, S.; Dureja, H.; Mishra, V.; Almutary, A.G.; Alnuqaydan, A.M.; Charbe, N.; Prasher, P.; Gupta, G.; Dua, K.; Lotfi, M.; Bakshi, H.A.; Tambuwala, M.M. An overview of vaccine development for COVID-19. Ther. Deliv., 2021, 12(3), 235-244.
[http://dx.doi.org/10.4155/tde-2020-0129] [PMID: 33624533]
[62]
Sun, T.; Han, H.; Hudalla, G.A.; Wen, Y.; Pompano, R.R.; Collier, J.H. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater., 2016, 30, 62-71.
[http://dx.doi.org/10.1016/j.actbio.2015.11.019] [PMID: 26584836]
[63]
Jaimes, J.A.; André, N.M.; Chappie, J.S.; Millet, J.K.; Whittaker, G.R. Phylogenetic analysis and structural modeling of SARS-CoV-2 spike protein reveals an evolutionary distinct and proteolytically sensitive activation loop. J. Mol. Biol., 2020, 432(10), 3309-3325.
[http://dx.doi.org/10.1016/j.jmb.2020.04.009] [PMID: 32320687]
[64]
Callaway, E. The race for coronavirus vaccines: A graphical guide. Nature, 2020, 580(7805), 576-577.
[http://dx.doi.org/10.1038/d41586-020-01221-y] [PMID: 32346146]
[65]
Pollet, J.; Chen, W.H.; Strych, U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv. Drug Deliv. Rev., 2021, 170, 71-82.
[http://dx.doi.org/10.1016/j.addr.2021.01.001] [PMID: 33421475]
[66]
Dong, Y.; Dai, T.; Wei, Y.; Zhang, L.; Zheng, M.; Zhou, F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct. Target. Ther., 2020, 5(1), 237.
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[67]
Biswas, P.; Hasan, M.M.; Dey, D.; dos Santos Costa, A.C.; Polash, S.A.; Bibi, S.; Ferdous, N.; Kaium, M.A.; Rahman, M.D.H.; Jeet, F.K.; Papadakos, S.; Islam, K.; Uddin, M.S. Candidate antiviral drugs for COVID-19 and their environmental implications: A comprehensive analysis. Environ. Sci. Pollut. Res. Int., 2021, 28(42), 59570-59593.
[http://dx.doi.org/10.1007/s11356-021-16096-3] [PMID: 34510341]
[68]
Ebob, O.T.; Babiaka, S.B.; Ntie-Kang, F. Natural products as potential lead compounds for drug discovery against SARS-CoV-2. Nat. Prod. Bioprospect., 2021, 11(6), 611-628.
[http://dx.doi.org/10.1007/s13659-021-00317-w] [PMID: 34515981]
[69]
Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707.
[http://dx.doi.org/10.1016/j.bmc.2017.06.052] [PMID: 28720325]
[70]
Gorr, S.U.; Flory, C.M.; Schumacher, R.J. In vivo activity and low toxicity of the second-generation antimicrobial peptide DGL13K. PLoS One, 2019, 14(5), e0216669.
[http://dx.doi.org/10.1371/journal.pone.0216669] [PMID: 31071184]
[71]
Covid19 vaccine Tracker. Approved Vaccines. 2022. Available from: https://covid19.trackvaccines.org/vaccines/approved/
[73]
Senger, M.R.; Evangelista, T.C.S.; Dantas, R.F.; Santana, M.V.S.; Gonçalves, L.C.S.; de Souza Neto, L.R.; Ferreira, S.B.; Silva-Junior, F.P. COVID-19: molecular targets, drug repurposing and new avenues for drug discovery. Mem. Inst. Oswaldo Cruz, 2020, 115, e200254.
[http://dx.doi.org/10.1590/0074-02760200254] [PMID: 33027420]
[74]
Hufsky, F.; Lamkiewicz, K.; Almeida, A.; Aouacheria, A.; Arighi, C.; Bateman, A.; Baumbach, J.; Beerenwinkel, N.; Brandt, C.; Cac-ciabue, M.; Chuguransky, S.; Drechsel, O.; Finn, R.D.; Fritz, A.; Fuchs, S.; Hattab, G.; Hauschild, A.C.; Heider, D.; Hoffmann, M.; Hölzer, M.; Hoops, S.; Kaderali, L.; Kalvari, I.; von Kleist, M.; Kmiecinski, R.; Kühnert, D.; Lasso, G.; Libin, P.; List, M.; Löchel, H.F.; Martin, M.J.; Martin, R.; Matschinske, J.; McHardy, A.C.; Mendes, P.; Mistry, J.; Navratil, V.; Nawrocki, E.P.; O’Toole, Á.N.; Onti-veros-Palacios, N.; Petrov, A.I.; Rangel-Pineros, G.; Redaschi, N.; Reimering, S.; Reinert, K.; Reyes, A.; Richardson, L.; Robertson, D.L.; Sadegh, S.; Singer, J.B.; Theys, K.; Upton, C.; Welzel, M.; Williams, L.; Marz, M. Computational strategies to combat COVID-19: useful tools to accelerate SARS-CoV-2 and coronavirus research. Brief. Bioinform., 2021, 22(2), 642-663.
[http://dx.doi.org/10.1093/bib/bbaa232] [PMID: 33147627]
[75]
Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.; Fan, J.; Castro, L.G.; Garmiri, P.; Geor-ghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M.C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jun-go, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Lai-ho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L.S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[76]
Watkins, X.; Garcia, L.J.; Pundir, S.; Martin, M.J.; Consortium, U. ProtVista: Visualization of protein sequence annotations. Bioinformatics, 2017, 33(13), 2040-2041.
[http://dx.doi.org/10.1093/bioinformatics/btx120] [PMID: 28334231]
[77]
Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Rich-ardson, L.J.; Finn, R.D.; Bateman, A. Pfam: The protein families database in 2021. Nucleic Acids Res., 2021, 49(D1), D412-D419.
[http://dx.doi.org/10.1093/nar/gkaa913] [PMID: 33125078]
[78]
Singer, J.; Gifford, R.; Cotten, M.; Robertson, D. CoVGLUE: A web application for tracking SARS-CoV-2 genomic variation. Preprints 2020. Available from: https://cov-glue.cvr.gla.ac.uk/
[http://dx.doi.org/10.20944/preprints202006.0225.v1]
[79]
Pikalyova, K.; Orlov, A.; Lin, A.; Tarasova, O.; Marcou, M.G.; Horvath, D.; Poroikov, V.; Varnek, A. HIV-1 drug resistance profiling using amino acid sequence space cartography. Bioinformatics, 2022, 38(8), 2307-2314.
[http://dx.doi.org/10.1093/bioinformatics/btac090] [PMID: 35157024]
[80]
Guirimand, T.; Delmotte, S.; Navratil, V. VirHostNet 2.0: Surfing on the web of virus/host molecular interactions data. Nucleic Acids Res., 2015, 43(D1), D583-D587.
[http://dx.doi.org/10.1093/nar/gku1121] [PMID: 25392406]
[81]
Martin, R.; Löchel, H.F.; Welzel, M.; Hattab, G.; Hauschild, A.C.; Heider, D. CORDITE: The curated corona drug interactions database for SARS-CoV-2. iScience, 2020, 23(7), 101297.
[http://dx.doi.org/10.1016/j.isci.2020.101297] [PMID: 32619700]
[82]
Sadegh, S.; Matschinske, J.; Blumenthal, D.B.; Galindez, G.; Kacprowski, T.; List, M.; Nasirigerdeh, R.; Oubounyt, M.; Pichlmair, A.; Rose, T.D.; Salgado-Albarrán, M.; Späth, J.; Stukalov, A.; Wenke, N.K.; Yuan, K.; Pauling, J.K.; Baumbach, J. Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing. Nat. Commun., 2020, 11(1), 3518.
[http://dx.doi.org/10.1038/s41467-020-17189-2] [PMID: 32665542]
[83]
Lasso, G.; Mayer, S.V.; Winkelmann, E.R.; Chu, T.; Elliot, O.; Patino-Galindo, J.A.; Park, K.; Rabadan, R.; Honig, B.; Shapira, S.D. A structure-informed atlas of human-virus interactions. Cell, 2019, 178(6), 1526-1541.e1516.
[http://dx.doi.org/10.1016/j.cell.2019.08.005]
[84]
Chen, T.F.; Chang, Y.C.; Hsiao, Y.; Lee, K.H.; Hsiao, Y.C.; Lin, Y.H.; Tu, Y.C.E.; Huang, H.C.; Chen, C.Y.; Juan, H.F. DockCoV2: A drug database against SARS-CoV-2. Nucleic Acids Res., 2021, 49(D1), D1152-D1159.
[http://dx.doi.org/10.1093/nar/gkaa861] [PMID: 33035337]
[85]
Khan, M.A.A.K.; Islam, A.B.M.M.K. SARS-CoV-2 proteins exploit host’s genetic and epigenetic mediators for the annexation of key host signaling pathways. Front. Mol. Biosci., 2021, 7, 598583.
[http://dx.doi.org/10.3389/fmolb.2020.598583] [PMID: 33585554]
[86]
Sanami, S.; Alizadeh, M.; Nosrati, M.; Dehkordi, K.A.; Azadegan-Dehkordi, F.; Tahmasebian, S.; Nosrati, H.; Arjmand, M.H.; Ghasemi-Dehnoo, M.; Rafiei, A.; Bagheri, N. Exploring SARS-COV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Comput. Biol. Med., 2021, 133, 104390.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104390] [PMID: 33895459]
[87]
Kumar, A.; Kumar, P.; Saumya, K.U.; Kapuganti, S.K.; Bhardwaj, T.; Giri, R. Exploring the SARS-CoV-2 structural proteins for multi-epitope vaccine development: An in-silico approach. Expert Rev. Vaccines, 2020, 19(9), 887-898.
[http://dx.doi.org/10.1080/14760584.2020.1813576] [PMID: 32815406]
[88]
Li, Q.; Peng, W.; Ou, Y. Prediction and analysis of key protein structures of 2019-nCoV. Future Virol., 2020, 15(6), 349-357.
[http://dx.doi.org/10.2217/fvl-2020-0020]
[89]
Dong, S.; Sun, J.; Mao, Z.; Wang, L.; Lu, Y.L.; Li, J. A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019‐nCoV). J. Med. Virol., 2020, 92(9), 1542-1548.
[http://dx.doi.org/10.1002/jmv.25768] [PMID: 32181901]
[90]
Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.; Jones, D.T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, 577(7792), 706-710.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]
[91]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Pe-tersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[92]
Yang, J.; Anishchenko, I.; Park, H.; Peng, Z.; Ovchinnikov, S.; Baker, D. Improved protein structure prediction using predicted interres-idue orientations. Proc. Natl. Acad. Sci. USA, 2020, 117(3), 1496-1503.
[http://dx.doi.org/10.1073/pnas.1914677117] [PMID: 31896580]
[93]
Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Op-perman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876.
[http://dx.doi.org/10.1126/science.abj8754] [PMID: 34282049]
[94]
Kryshtafovych, A.; Moult, J.; Billings, W.M.; Della Corte, D.; Fidelis, K.; Kwon, S.; Olechnovič, K.; Seok, C.; Venclovas, Č.; Won, J. Modeling SARS‐CoV‐2 proteins in the CASP‐commons experiment. Proteins, 2021, 89(12), 1987-1996.
[http://dx.doi.org/10.1002/prot.26231] [PMID: 34462960]
[95]
O’Donoghue, S.I.; Schafferhans, A.; Sikta, N.; Stolte, C.; Kaur, S.; Ho, B.K.; Anderson, S.; Procter, J.; Dallago, C.; Bordin, N.; Ad-cock, M.; Rost, B. SARS-CoV-2 structural coverage map reveals state changes that disrupt host immunity. bioRxiv, 2020, 2020, 207308.
[http://dx.doi.org/10.1101/2020.07.16.207308]
[96]
Aquaria-covid resource. Available from: https://aquaria.ws/covid19
[97]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004, 32, W526-W531.
[http://dx.doi.org/10.1093/nar/gkh468] [PMID: 15215442]
[98]
Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate protein structure prediction. Nat. Protoc., 2021, 16(12), 5634-5651.
[http://dx.doi.org/10.1038/s41596-021-00628-9] [PMID: 34759384]
[99]
Mahtarin, R.; Islam, S.; Islam, M.J.; Ullah, M.O.; Ali, M.A.; Halim, M.A. Structure and dynamics of membrane protein in SARS-CoV-2. J. Biomol. Struct. Dyn., 2022, 40(10), 4725-4738.
[http://dx.doi.org/10.1080/07391102.2020.1861983] [PMID: 33353499]
[100]
Somboon, T.; Mahalapbutr, P.; Sanachai, K.; Maitarad, P.; Lee, V.S.; Hannongbua, S.; Rungrotmongkol, T. Computational study on peptidomimetic inhibitors against SARS-CoV-2 main protease. J. Mol. Liq., 2021, 322, 114999.
[http://dx.doi.org/10.1016/j.molliq.2020.114999] [PMID: 33518853]
[101]
Suárez, D.; Díaz, N. SARS-CoV-2 main protease: A molecular dynamics study. J. Chem. Inf. Model., 2020, 60(12), 5815-5831.
[http://dx.doi.org/10.1021/acs.jcim.0c00575] [PMID: 32678588]
[102]
Mohamed, N.M.; Ali, E.M.H. AboulMagd, A.M. Ligand-based design, molecular dynamics and ADMET studies of suggested SARS-CoV-2 M pro inhibitors. RSC Advances, 2021, 11(8), 4523-4538.
[http://dx.doi.org/10.1039/D0RA10141A] [PMID: 35747608]
[103]
Irwin, J.J.; Shoichet, B.K. ZINC-a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[http://dx.doi.org/10.1021/ci049714+] [PMID: 15667143]
[104]
Razzaghi-Asl, N.; Ebadi, A.; Shahabipour, S.; Gholamin, D. Identification of a potential SARS-CoV2 inhibitor via molecular dynamics simulations and amino acid decomposition analysis. J. Biomol. Struct. Dyn., 2021, 39(17), 6633-6648.
[http://dx.doi.org/10.1080/07391102.2020.1797536] [PMID: 32705953]
[105]
Bzówka, M.; Mitusińska, K.; Raczyńska, A.; Samol, A.; Tuszyński, J.A.; Góra, A. Structural and evolutionary analysis indicate that the SARS-CoV-2 Mpro is a challenging target for small-molecule inhibitor design. Int. J. Mol. Sci., 2020, 21(9), 3099.
[http://dx.doi.org/10.3390/ijms21093099] [PMID: 32353978]
[106]
Arantes, P.R.; Saha, A.; Palermo, G. Fighting COVID-19 using molecular dynamics simulations. ACS Cent. Sci., 2020, 6(10), 1654-1656.
[http://dx.doi.org/10.1021/acscentsci.0c01236] [PMID: 33140032]
[107]
Casalino, L.; Gaieb, Z.; Goldsmith, J.A.; Hjorth, C.K.; Dommer, A.C.; Harbison, A.M.; Fogarty, C.A.; Barros, E.P.; Taylor, B.C.; McLellan, J.S.; Fadda, E.; Amaro, R.E. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci., 2020, 6(10), 1722-1734.
[http://dx.doi.org/10.1021/acscentsci.0c01056] [PMID: 33140034]
[108]
Raghuvamsi, P.V.; Tulsian, N.K.; Samsudin, F.; Qian, X.; Purushotorman, K.; Yue, G.; Kozma, M.M.; Hwa, W.Y.; Lescar, J.; Bond, P.J.; MacAry, P.A.; Anand, G.S. SARS-CoV-2 S protein: ACE2 interaction reveals novel allosteric targets. eLife, 2021, 10, e63646.
[http://dx.doi.org/10.7554/eLife.63646] [PMID: 33554856]
[109]
Rath, S.L.; Kumar, K. Investigation of the effect of temperature on the structure of SARS-CoV-2 spike protein by molecular dynamics simulations. Front. Mol. Biosci., 2020, 7, 583523.
[http://dx.doi.org/10.3389/fmolb.2020.583523] [PMID: 33195427]
[110]
Sk, M.F.; Jonniya, N.A.; Roy, R.; Poddar, S.; Kar, P. Computational investigation of structural dynamics of SARS-CoV-2 Methyltrans-ferase-stimulatory factor heterodimer nsp16/nsp10 bound to the cofactor SAM. Front. Mol. Biosci., 2020, 7, 590165.
[http://dx.doi.org/10.3389/fmolb.2020.590165] [PMID: 33330626]
[111]
The Protein Data Bank2022. Available from: https://www.rcsb.org/
[112]
Vincenzi, M.; Leone, M. The Fight against human viruses: How NMR can help? Curr. Med. Chem., 2021, 28(22), 4380-4453.
[http://dx.doi.org/10.2174/0929867328666201228123748] [PMID: 33371830]
[113]
Naik, B.; Gupta, N.; Ojha, R.; Singh, S.; Prajapati, V.K.; Prusty, D. High throughput virtual screening reveals SARS-CoV-2 multi-target binding natural compounds to lead instant therapy for COVID-19 treatment. Int. J. Biol. Macromol., 2020, 160, 1-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.184] [PMID: 32470577]
[114]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[115]
Chen, Z.; Li, H.; Zhang, Q.; Bao, X.; Yu, K.; Luo, X.; Zhu, W.; Jiang, H. Pharmacophore-based virtual screening versus docking-based virtual screening: A benchmark comparison against eight targets. Acta Pharmacol. Sin., 2009, 30(12), 1694-1708.
[http://dx.doi.org/10.1038/aps.2009.159] [PMID: 19935678]
[116]
Berenger, F.; Vu, O.; Meiler, J. Consensus queries in ligand-based virtual screening experiments. J. Cheminform., 2017, 9(1), 60.
[http://dx.doi.org/10.1186/s13321-017-0248-5] [PMID: 29185065]
[117]
Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol., 2012, 9(3), e219-e225.
[http://dx.doi.org/10.1016/j.ddtec.2012.07.009] [PMID: 24990575]
[118]
Tömöri, T.; Hajdú, I.; Barna, L.; Lőrincz, Z.; Cseh, S.; Dormán, G. Combining 2D and 3D in silico methods for rapid selection of potential PDE5 inhibitors from multimillion compounds’ repositories: Biological evaluation. Mol. Divers., 2012, 16(1), 59-72.
[http://dx.doi.org/10.1007/s11030-011-9335-0] [PMID: 21947759]
[119]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput-aided. Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[120]
Wójcikowski, M.; Siedlecki, P.; Ballester, P.J. Building machine-learning scoring functions for structure-based prediction of intermolecular binding affinity. Methods Mol. Biol., 2019, 2053, 1-12.
[http://dx.doi.org/10.1007/978-1-4939-9752-7_1] [PMID: 31452095]
[121]
da Silva, A.D.; Bitencourt-Ferreira, G.; Azevedo, W.F. Jr Taba: A tool to analyze the binding affinity. J. Comput. Chem., 2020, 41(1), 69-73.
[http://dx.doi.org/10.1002/jcc.26048] [PMID: 31410856]
[122]
Schaller, D.; Šribar, D.; Noonan, T.; Deng, L.; Nguyen, T.N.; Pach, S.; Machalz, D.; Bermudez, M.; Wolber, G. Next generation 3D pharmacophore modeling. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2020, 10(4), e1468.
[http://dx.doi.org/10.1002/wcms.1468]
[123]
Koes, D.R.; Camacho, C.J. Shape-based virtual screening with volumetric aligned molecular shapes. J. Comput. Chem., 2014, 35(25), 1824-1834.
[http://dx.doi.org/10.1002/jcc.23690] [PMID: 25049193]
[124]
Egieyeh, S.; Egieyeh, E.; Malan, S.; Christofells, A.; Fielding, B. Computational drug repurposing strategy predicted peptide-based drugs that can potentially inhibit the interaction of SARS-CoV-2 spike protein with its target (humanACE2). PLoS One, 2021, 16(1), e0245258.
[http://dx.doi.org/10.1371/journal.pone.0245258] [PMID: 33417604]
[125]
Franco, L.S.; Maia, R.C.; Barreiro, E.J. Identification of LASSBio-1945 as an inhibitor of SARS-CoV-2 main protease (M PRO) through in silico screening supported by molecular docking and a fragment-based pharmacophore model. RSC Med. Chem., 2021, 12(1), 110-119.
[http://dx.doi.org/10.1039/D0MD00282H] [PMID: 34046603]
[126]
Chen, Y.W.; Yiu, C.P.B.; Wong, K.Y. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CLpro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000 Res., 2020, 9, 129.
[http://dx.doi.org/10.12688/f1000research.22457.2] [PMID: 32194944]
[127]
White, M.A.; Lin, W.; Cheng, X. Discovery of COVID-19 inhibitors targeting the SARS-CoV-2 Nsp13 helicase. J. Phys. Chem. Lett., 2020, 11(21), 9144-9151.
[http://dx.doi.org/10.1021/acs.jpclett.0c02421] [PMID: 33052685]
[128]
Zhang, H.; Yang, Y.; Li, J.; Wang, M.; Saravanan, K.M.; Wei, J.; Tze-Yang Ng, J.; Tofazzal Hossain, M.; Liu, M.; Zhang, H.; Ren, X.; Pan, Y.; Peng, Y.; Shi, Y.; Wan, X.; Liu, Y.; Wei, Y. A novel virtual screening procedure identifies Pralatrexate as inhibitor of SARS-CoV-2 RdRp and it reduces viral replication in vitro. PLOS Comput. Biol., 2020, 16(12), e1008489.
[http://dx.doi.org/10.1371/journal.pcbi.1008489] [PMID: 33382685]
[129]
Azeez, S.; Ghalib Alhashim, Z.; Al Otaibi, W.M.; Alsuwat, H.S.; Ibrahim, A.M.; Almandil, N.B.; Borgio, J.F. State-of-the-art tools to identify druggable protein ligand of SARS-CoV-2. Arch. Med. Sci., 2020, 16(3), 497-507.
[http://dx.doi.org/10.5114/aoms.2020.94046] [PMID: 32399095]
[130]
Maffucci, I.; Contini, A. In silico drug repurposing for SARS-CoV-2 main proteinase and spike proteins. J. Proteome Res., 2020, 19(11), 4637-4648.
[http://dx.doi.org/10.1021/acs.jproteome.0c00383] [PMID: 32893632]
[131]
Zhang, J.; Xiao, T.; Cai, Y.; Chen, B. Structure of SARS-CoV-2 spike protein. Curr. Opin. Virol., 2021, 50, 173-182.
[http://dx.doi.org/10.1016/j.coviro.2021.08.010] [PMID: 34534731]
[132]
Cai, Y.; Zhang, J.; Xiao, T.; Peng, H.; Sterling, S.M.; Walsh, R.M., Jr; Rawson, S.; Rits-Volloch, S.; Chen, B. Distinct conformational states of SARS-CoV-2 spike protein. Science, 2020, 369(6511), 1586-1592.
[http://dx.doi.org/10.1126/science.abd4251] [PMID: 32694201]
[133]
Xue, Q.; Liu, X.; Pan, W.; Zhang, A.; Fu, J.; Jiang, G. Computational insights into the allosteric effect and dynamic structural features of the SARS‐COV‐2 spike protein. Chem. Eur. J., 2022, 28(6), e202200158.
[http://dx.doi.org/10.1002/chem.202104215] [PMID: 35072298]
[134]
Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020, 367(6485), 1444-1448.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[135]
Donoghue, M.; Hsieh, F.; Baronas, E.; Godbout, K.; Gosselin, M.; Stagliano, N.; Donovan, M.; Woolf, B.; Robison, K.; Jeyaseelan, R.; Breitbart, R.E.; Acton, S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res., 2000, 87(5), E1-E9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[136]
Kuba, K.; Imai, Y.; Ohto-Nakanishi, T.; Penninger, J.M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS recep-tor, and a partner for amino acid transporters. Pharmacol. Ther., 2010, 128(1), 119-128.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[137]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[138]
Carino, A.; Moraca, F.; Fiorillo, B.; Marchianò, S.; Sepe, V.; Biagioli, M.; Finamore, C.; Bozza, S.; Francisci, D.; Distrutti, E.; Cata-lanotti, B.; Zampella, A.; Fiorucci, S. Hijacking SARS-CoV-2/ACE2 receptor interaction by natural and semi-synthetic steroidal agents acting on functional pockets on the receptor binding domain. Front Chem., 2020, 8, 572885.
[http://dx.doi.org/10.3389/fchem.2020.572885] [PMID: 33195060]
[139]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[140]
Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David, R.Y.; Braga, L.; Williamson, M.K.; Hassard, J.A.; Staller, E.; Hanley, B.; Osborn, M.; Giacca, M.; Davidson, A.D.; Matthews, D.A.; Barclay, W.S. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat. Microbiol., 2021, 6(7), 899-909.
[http://dx.doi.org/10.1038/s41564-021-00908-w] [PMID: 33907312]
[141]
Xia, S.; Zhu, Y.; Liu, M.; Lan, Q.; Xu, W.; Wu, Y.; Ying, T.; Liu, S.; Shi, Z.; Jiang, S.; Lu, L. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol., 2020, 17(7), 765-767.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[142]
World Health Organization. Tracking SARS-CoV-2 variants., Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
[143]
Araf, Y.; Akter, F.; Tang, Y.; Fatemi, R.; Parvez, M.S.A.; Zheng, C.; Hossain, M.G. Omicron variant of SARS‐CoV‐2: Genomics, transmissibility, and responses to current COVID‐19 vaccines. J. Med. Virol., 2022, 94(5), 1825-1832.
[http://dx.doi.org/10.1002/jmv.27588] [PMID: 35023191]
[144]
Mehra, R.; Kepp, K.P. Structure and mutations of SARS-CoV-2 spike protein: A focused overview. ACS Infect. Dis., 2022, 8(1), 29-58.
[http://dx.doi.org/10.1021/acsinfecdis.1c00433] [PMID: 34856799]
[145]
European Centre for Disease Prevention and Control. SARS-CoV-2 variants of concern; , 2022. Available from: https://www.ecdc.europa.eu/en/covid-19/variants-concern
[146]
Coronavirus antiviral & resistance database. SARS-CoV-2 variants.. Available from: https://covdb.stanford.edu/page/mutation-viewer
[147]
Zhang, Y.; He, X.; Zhai, J.; Ji, B.; Man, V.H.; Wang, J. In silico binding profile characterization of SARS-CoV-2 spike protein and its mutants bound to human ACE2 receptor. Brief. Bioinform., 2021, 22(6), bbab188.
[http://dx.doi.org/10.1093/bib/bbab188] [PMID: 34013346]
[148]
Oliveira, A.S.F.; Ibarra, A.A.; Bermudez, I.; Casalino, L.; Gaieb, Z.; Shoemark, D.K.; Gallagher, T.; Sessions, R.B.; Amaro, R.E.; Mul-holland, A.J. Simulations support the interaction of the SARS-CoV-2 spike protein with nicotinic acetylcholine receptors and suggest subtype specificity. bioRxiv, 2020, 2020, 3.
[http://dx.doi.org/10.1101/2020.07.16.206680]
[149]
Hoffmann, M.; Pöhlmann, S. Novel SARS-CoV-2 receptors: ASGR1 and KREMEN1. Cell Res., 2022, 32(1), 1-2.
[http://dx.doi.org/10.1038/s41422-021-00603-9] [PMID: 34903854]
[150]
Gadanec, L.K.; McSweeney, K.R.; Qaradakhi, T.; Ali, B.; Zulli, A.; Apostolopoulos, V. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int. J. Mol. Sci., 2021, 22(3), 992.
[http://dx.doi.org/10.3390/ijms22030992] [PMID: 33498183]
[151]
Gu, Y.; Cao, J.; Zhang, X.; Gao, H.; Wang, Y.; Wang, J.; He, J.; Jiang, X.; Zhang, J.; Shen, G.; Yang, J.; Zheng, X.; Hu, G.; Zhu, Y.; Du, S.; Zhu, Y.; Zhang, R.; Xu, J.; Lan, F.; Qu, D.; Xu, G.; Zhao, Y.; Gao, D.; Xie, Y.; Luo, M.; Lu, Z. Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res., 2022, 32(1), 24-37.
[http://dx.doi.org/10.1038/s41422-021-00595-6] [PMID: 34837059]
[152]
Holms, R.D.; Ataullakhanov, R.I. Ezrin peptide therapy from HIV to COVID: Inhibition of inflammation and amplification of adaptive anti-viral immunity. Int. J. Mol. Sci., 2021, 22(21), 11688.
[http://dx.doi.org/10.3390/ijms222111688] [PMID: 34769119]
[153]
Arpin, M.; Chirivino, D.; Naba, A.; Zwaenepoel, I. Emerging role for ERM proteins in cell adhesion and migration. Cell Adhes. Migr., 2011, 5(2), 199-206.
[http://dx.doi.org/10.4161/cam.5.2.15081] [PMID: 21343695]
[154]
Stravalaci, M.; Pagani, I.; Paraboschi, E.M.; Pedotti, M.; Doni, A.; Scavello, F.; Mapelli, S.N.; Sironi, M.; Perucchini, C.; Varani, L.; Matkovic, M.; Cavalli, A.; Cesana, D.; Gallina, P.; Pedemonte, N.; Capurro, V.; Clementi, N.; Mancini, N.; Invernizzi, P.; Bayarri-Olmos, R.; Garred, P.; Rappuoli, R.; Duga, S.; Bottazzi, B.; Uguccioni, M.; Asselta, R.; Vicenzi, E.; Mantovani, A.; Garlanda, C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat. Immunol., 2022, 23(2), 275-286.
[http://dx.doi.org/10.1038/s41590-021-01114-w] [PMID: 35102342]
[155]
Sztain, T.; Ahn, S.H.; Bogetti, A.T.; Casalino, L.; Goldsmith, J.A.; Seitz, E.; McCool, R.S.; Kearns, F.L.; Acosta-Reyes, F.; Maji, S.; Mashayekhi, G.; McCammon, J.A.; Ourmazd, A.; Frank, J.; McLellan, J.S.; Chong, L.T.; Amaro, R.E. A glycan gate controls opening of the SARS-CoV-2 spike protein. Nat. Chem., 2021, 13(10), 963-968.
[http://dx.doi.org/10.1038/s41557-021-00758-3] [PMID: 34413500]
[156]
Zhao, Y.; Kuang, M.; Li, J.; Zhu, L.; Jia, Z.; Guo, X.; Hu, Y.; Kong, J.; Yin, H.; Wang, X.; You, F. SARS-CoV-2 spike protein inter-acts with and activates TLR41. Cell Res., 2021, 31(7), 818-820.
[http://dx.doi.org/10.1038/s41422-021-00495-9] [PMID: 33742149]
[157]
Ibrahim, I.M.; Abdelmalek, D.H.; Elshahat, M.E.; Elfiky, A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect., 2020, 80(5), 554-562.
[http://dx.doi.org/10.1016/j.jinf.2020.02.026] [PMID: 32169481]
[158]
Huang, R.; Xu, M.; Zhu, H.; Chen, C.Z.; Zhu, W.; Lee, E.M.; He, S.; Zhang, L.; Zhao, J.; Shamim, K.; Bougie, D.; Huang, W.; Xia, M.; Hall, M.D.; Lo, D.; Simeonov, A.; Austin, C.P.; Qiu, X.; Tang, H.; Zheng, W. Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nat. Biotechnol., 2021, 39(6), 747-753.
[http://dx.doi.org/10.1038/s41587-021-00839-1] [PMID: 33623157]
[159]
National Center for Advancing Translational Sciences. Assessing a compound’s activity, not just its structure, could deepen the pool of promising drug therapies; , 2021. Available from: https://ncats.nih.gov/news/releases/2021/assessing-a-compounds-activity-not-just-its-structure-coulddeepen-the-pool-of-promising-drug-therapies
[160]
Kc, G.B.; Bocci, G.; Verma, S.; Hassan, M.M.; Holmes, J.; Yang, J.J.; Sirimulla, S.; Oprea, T.I. A machine learning platform to estimate anti-SARS-CoV-2 activities. Nat. Mach. Intell., 2021, 3(6), 527-535.
[http://dx.doi.org/10.1038/s42256-021-00335-w]
[161]
Allam, L.; Ghrifi, F.; Mohammed, H.; El Hafidi, N.; El Jaoudi, R.; El Harti, J.; Lmimouni, B.; Belyamani, L.; Ibrahimi, A. Targeting the GRP78-Dependant SARS-CoV-2 cell entry by peptides and small molecules. Bioinform. Biol. Insights, 2020, 14, 1177932220965505.
[http://dx.doi.org/10.1177/1177932220965505] [PMID: 33149560]
[162]
Power, H.; Wu, J.; Turville, S.; Aggarwal, A.; Valtchev, P.; Schindeler, A.; Dehghani, F. Virtual screening and in vitro validation of natural compound inhibitors against SARS-CoV-2 spike protein. Bioorg. Chem., 2022, 119, 105574.
[http://dx.doi.org/10.1016/j.bioorg.2021.105574] [PMID: 34971947]
[163]
Chen, G.Y.; Pan, Y.C.; Wu, T.Y.; Yao, T.Y.; Wang, W.J.; Shen, W.J.; Ahmed, A.; Chan, S.T.; Tang, C.H.; Huang, W.C.; Hung, M.C.; Yang, J.C.; Wu, Y.C. Potential natural products that target the SARS-CoV-2 spike protein identified by structure-based virtual screening, isothermal titration calorimetry and lentivirus particles pseudotyped (Vpp) infection assay. J. Tradit. Complement. Med., 2022, 12(1), 73-89.
[http://dx.doi.org/10.1016/j.jtcme.2021.09.002] [PMID: 34549024]
[164]
Zhai, J.; He, X.; Man, V.H.; Sun, Y.; Ji, B.; Cai, L.; Wang, J. A multiple-step in silico screening protocol to identify allosteric inhibitors of Spike–hACE2 binding. Phys. Chem. Chem. Phys., 2022, 24(7), 4305-4316.
[http://dx.doi.org/10.1039/D1CP04736A] [PMID: 35107459]
[165]
Seth, S.; Batra, J.; Srinivasan, S. COVID-19: Targeting proteases in viral invasion and host immune response. Front. Mol. Biosci., 2020, 7, 215.
[http://dx.doi.org/10.3389/fmolb.2020.00215] [PMID: 33195400]
[166]
Cheng, Y.W.; Chao, T.L.; Li, C.L.; Chiu, M.F.; Kao, H.C.; Wang, S.H.; Pang, Y.H.; Lin, C.H.; Tsai, Y.M.; Lee, W.H.; Tao, M.H.; Ho, T.C.; Wu, P.Y.; Jang, L.T.; Chen, P.J.; Chang, S.Y.; Yeh, S.H. Furin inhibitors Block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep., 2020, 33(2), 108254.
[http://dx.doi.org/10.1016/j.celrep.2020.108254] [PMID: 33007239]
[167]
Padmanabhan, P.; Desikan, R.; Dixit, N.M. Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection. PLOS Comput. Biol., 2020, 16(12), e1008461.
[http://dx.doi.org/10.1371/journal.pcbi.1008461] [PMID: 33290397]
[168]
Haque, S.K.M.; Ashwaq, O.; Sarief, A.; Azad John Mohamed, A.K. A comprehensive review about SARS-CoV-2. Future Virol., 2020, 15(9), 625-648.
[http://dx.doi.org/10.2217/fvl-2020-0124] [PMID: 33224265]
[169]
Anirudhan, V.; Lee, H.; Cheng, H.; Cooper, L.; Rong, L. Targeting SARS‐CoV‐2 viral proteases as a therapeutic strategy to treat COVID‐19. J. Med. Virol., 2021, 93(5), 2722-2734.
[http://dx.doi.org/10.1002/jmv.26814] [PMID: 33475167]
[170]
Costanzi, E.; Kuzikov, M.; Esposito, F.; Albani, S.; Demitri, N.; Giabbai, B.; Camasta, M.; Tramontano, E.; Rossetti, G.; Zaliani, A.; Storici, P. Structural and biochemical analysis of the dual inhibition of MG-132 against SARS-CoV-2 main protease (Mpro/3CLpro) and human cathepsin-L. Int. J. Mol. Sci., 2021, 22(21), 11779.
[http://dx.doi.org/10.3390/ijms222111779] [PMID: 34769210]
[171]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[172]
Amporndanai, K.; Meng, X.; Shang, W.; Jin, Z.; Rogers, M.; Zhao, Y.; Rao, Z.; Liu, Z.J.; Yang, H.; Zhang, L.; O’Neill, P.M.; Samar Hasnain, S. Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nat. Commun., 2021, 12(1), 3061.
[http://dx.doi.org/10.1038/s41467-021-23313-7] [PMID: 34031399]
[173]
Kneller, D.W.; Phillips, G.; Weiss, K.L.; Pant, S.; Zhang, Q.; O’Neill, H.M.; Coates, L.; Kovalevsky, A. Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem., 2020, 295(50), 17365-17373.
[http://dx.doi.org/10.1074/jbc.AC120.016154] [PMID: 33060199]
[174]
Ramos-Guzmán, C.A.; Ruiz-Pernía, J.J.; Tuñón, I. Unraveling the SARS-CoV-2 main protease mechanism using multiscale methods. ACS Catal., 2020, 10(21), 12544-12554.
[http://dx.doi.org/10.1021/acscatal.0c03420] [PMID: 34192089]
[175]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[176]
Pitsillou, E.; Liang, J.; Karagiannis, C.; Ververis, K.; Darmawan, K.K.; Ng, K.; Hung, A.; Karagiannis, T.C. Interaction of small molecules with the SARS-CoV-2 main protease in silico and in vitro validation of potential lead compounds using an enzyme-linked immunosorbent assay. Comput. Biol. Chem., 2020, 89, 107408.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107408] [PMID: 33137690]
[177]
Soulère, L.; Barbier, T.; Queneau, Y. Docking-based virtual screening studies aiming at the covalent inhibition of SARS-CoV-2 MPro by targeting the cysteine 145. Comput. Biol. Chem., 2021, 92, 107463.
[http://dx.doi.org/10.1016/j.compbiolchem.2021.107463] [PMID: 33677227]
[178]
Jiménez-Alberto, A.; Ribas-Aparicio, R.M.; Aparicio-Ozores, G.; Castelán-Vega, J.A. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem., 2020, 88, 107325.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107325] [PMID: 32623357]
[179]
Nand, M.; Maiti, P.; Joshi, T.; Chandra, S.; Pande, V.; Kuniyal, J.C.; Ramakrishnan, M.A. Virtual screening of anti-HIV1 compounds against SARS-CoV-2: Machine learning modeling, chemoinformatics and molecular dynamics simulation based analysis. Sci. Rep., 2020, 10(1), 20397.
[http://dx.doi.org/10.1038/s41598-020-77524-x] [PMID: 33230180]
[180]
Gahlawat, A.; Kumar, N.; Kumar, R.; Sandhu, H.; Singh, I.P.; Singh, S.; Sjöstedt, A.; Garg, P. Structure-based virtual screening to discover potential lead molecules for the SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5781-5793.
[http://dx.doi.org/10.1021/acs.jcim.0c00546] [PMID: 32687345]
[181]
Kanhed, A.M.; Patel, D.V.; Teli, D.M.; Patel, N.R.; Chhabria, M.T.; Yadav, M.R. Identification of potential Mpro inhibitors for the treatment of COVID-19 by using systematic virtual screening approach. Mol. Divers., 2021, 25(1), 383-401.
[http://dx.doi.org/10.1007/s11030-020-10130-1] [PMID: 32737681]
[182]
Wang, J. Fast identification of possible drug treatment of Coronavirus Disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[183]
Leveridge, M.; Collier, L.; Edge, C.; Hardwicke, P.; Leavens, B.; Ratcliffe, S.; Rees, M.; Stasi, L.P.; Nadin, A.; Reith, A.D. A high-throughput screen to identify LRRK2 Kinase inhibitors for the treatment of Parkinson’s disease using rapidfire mass spectrometry. J. Biomol. Screen., 2016, 21(2), 145-155.
[http://dx.doi.org/10.1177/1087057115606707] [PMID: 26403521]
[184]
Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep., 2020, 10(1), 17716.
[http://dx.doi.org/10.1038/s41598-020-74468-0] [PMID: 33077821]
[185]
Macchiagodena, M.; Pagliai, M.; Procacci, P. Identification of potential binders of the main protease 3CLpro of the COVID-19 via structure-based ligand design and molecular modeling. Chem. Phys. Lett., 2020, 750, 137489.
[http://dx.doi.org/10.1016/j.cplett.2020.137489] [PMID: 32313296]
[186]
Acellera. Computable drug discovery-Developing the algorithms to automate drug discovery. Available from: https://www.acellera.com/
[187]
Santibáñez-Morán, M.G.; López-López, E.; Prieto-Martínez, F.D.; Sánchez-Cruz, N.; Medina-Franco, J.L. Consensus virtual screening of dark chemical matter and food chemicals uncover potential inhibitors of SARS-CoV-2 main protease. RSC Advances, 2020, 10(42), 25089-25099.
[http://dx.doi.org/10.1039/D0RA04922K] [PMID: 35517466]
[188]
Abel, R.; Paredes Ramos, M.; Chen, Q.; Pérez-Sánchez, H.; Coluzzi, F.; Rocco, M.; Marchetti, P.; Mura, C.; Simmaco, M.; Bourne, P.E.; Preissner, R.; Banerjee, P. Computational prediction of potential inhibitors of the main protease of SARS-CoV-2. Front Chem., 2020, 8, 590263.
[http://dx.doi.org/10.3389/fchem.2020.590263] [PMID: 33425850]
[189]
Mahmud, S.; Uddin, M.A.R.; Paul, G.K.; Shimu, M.S.S.; Islam, S.; Rahman, E.; Islam, A.; Islam, M.S.; Promi, M.M.; Emran, T.B.; Saleh, M.A. Virtual screening and molecular dynamics simulation study of plant-derived compounds to identify potential inhibitors of main protease from SARS-CoV-2. Brief. Bioinform., 2021, 22(2), 1402-1414.
[http://dx.doi.org/10.1093/bib/bbaa428] [PMID: 33517367]
[190]
Ogidigo, J.O.; Iwuchukwu, E.A.; Ibeji, C.U.; Okpalefe, O.; Soliman, M.E.S. Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: Computational approach. J. Biomol. Struct. Dyn., 2022, 40(5), 2284-2301.
[http://dx.doi.org/10.1080/07391102.2020.1837681] [PMID: 33103616]
[191]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational study of hydroxychloroquine in hospitalized patients with COVID-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[192]
Hoffmann, M.; Mösbauer, K.; Hofmann-Winkler, H.; Kaul, A.; Kleine-Weber, H.; Krüger, N.; Gassen, N.C.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2. Nature, 2020, 585(7826), 588-590.
[http://dx.doi.org/10.1038/s41586-020-2575-3] [PMID: 32698190]
[193]
Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem., 2020, 295(20), 6785-6797.
[http://dx.doi.org/10.1074/jbc.RA120.013679] [PMID: 32284326]
[194]
Menéndez, C.A.; Byléhn, F.; Perez-Lemus, G.R.; Alvarado, W.; de Pablo, J.J. Molecular characterization of ebselen binding activity to SARS-CoV-2 main protease. Sci. Adv., 2020, 6(37), eabd0345.
[http://dx.doi.org/10.1126/sciadv.abd0345] [PMID: 32917717]
[195]
Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joa-chimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[196]
Rut, W.; Lv, Z.; Zmudzinski, M.; Patchett, S.; Nayak, D.; Snipas, S.J.; El Oualid, F.; Huang, T.T.; Bekes, M.; Drag, M.; Olsen, S.K. Activity profiling and crystal structures of inhibitor-bound SARS-CoV-2 papain-like protease: A framework for anti–COVID-19 drug design. Sci. Adv., 2020, 6(42), eabd4596.
[http://dx.doi.org/10.1126/sciadv.abd4596] [PMID: 33067239]
[197]
Weglarz-Tomczak, E.; Tomczak, J.M.; Talma, M.; Burda-Grabowska, M.; Giurg, M.; Brul, S. Identification of ebselen and its analogues as potent covalent inhibitors of papain-like protease from SARS-CoV-2. Sci. Rep., 2021, 11(1), 3640.
[http://dx.doi.org/10.1038/s41598-021-83229-6] [PMID: 33574416]
[198]
Ma, C.; Hu, Y.; Townsend, J.A.; Lagarias, P.I.; Marty, M.T.; Kolocouris, A.; Wang, J. Ebselen, Disulfiram, carmofur, PX-12, tide-glusib, and shikonin are nonspecific promiscuous SARS-CoV-2 main protease inhibitors. ACS Pharmacol. Transl. Sci., 2020, 3(6), 1265-1277.
[http://dx.doi.org/10.1021/acsptsci.0c00130] [PMID: 33330841]
[199]
Mirza, M.U.; Ahmad, S.; Abdullah, I.; Froeyen, M. Identification of novel human USP2 inhibitor and its putative role in treatment of COVID-19 by inhibiting SARS-CoV-2 papain-like (PLpro) protease. Comput. Biol. Chem., 2020, 89, 107376.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107376] [PMID: 32979815]
[200]
Contreras-Puentes, N.; Alvíz-Amador, A. Virtual screening of natural metabolites and antiviral drugs with potential inhibitory activity against 3CL-PRO and PL-PRO. Biomed. Pharmacol. J., 2020, 13(2), 933-941.
[http://dx.doi.org/10.13005/bpj/1962]
[201]
Jochheim, F.A.; Tegunov, D.; Hillen, H.S.; Schmitzová, J.; Kokic, G.; Dienemann, C.; Cramer, P. The structure of a dimeric form of SARS-CoV-2 polymerase. Commun. Biol., 2021, 4(1), 999.
[http://dx.doi.org/10.1038/s42003-021-02529-9] [PMID: 34429502]
[202]
Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y.C.; Tian, G.; Jiang, H.W.; Tao, S.C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504.
[http://dx.doi.org/10.1126/science.abc1560] [PMID: 32358203]
[203]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[204]
Aftab, S.O.; Ghouri, M.Z.; Masood, M.U.; Haider, Z.; Khan, Z.; Ahmad, A.; Munawar, N. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med., 2020, 18(1), 275.
[http://dx.doi.org/10.1186/s12967-020-02439-0] [PMID: 32635935]
[205]
Kumar, D.T.; Shaikh, N.; Kumar, S.U.; Doss, C.G.P.; Zayed, H. Structure-based virtual screening to identify novel potential compound as an alternative to remdesivir to overcome the RdRp protein mutations in SARS-CoV-2. Front. Mol. Biosci., 2021, 8, 645216.
[http://dx.doi.org/10.3389/fmolb.2021.645216] [PMID: 33898520]
[206]
Pokhrel, R.; Chapagain, P.; Siltberg-Liberles, J. Potential RNA-dependent RNA polymerase inhibitors as prospective therapeutics against SARS-CoV-2. J. Med. Microbiol., 2020, 69(6), 864-873.
[http://dx.doi.org/10.1099/jmm.0.001203] [PMID: 32469301]
[207]
Jukič, M.; Janežič, D.; Bren, U. Potential novel thioetheramide or guanidine-linker class of SARS-CoV-2 virus RNA-dependent RNA polymerase inhibitors identified by high-throughput virtual screening coupled to free-energy calculations. Int. J. Mol. Sci., 2021, 22(20), 11143.
[http://dx.doi.org/10.3390/ijms222011143] [PMID: 34681802]
[208]
Newman, J.A.; Douangamath, A.; Yadzani, S.; Yosaatmadja, Y.; Aimon, A.; Brandão-Neto, J.; Dunnett, L.; Gorrie-stone, T.; Skyner, R.; Fearon, D.; Schapira, M.; von Delft, F.; Gileadi, O. Structure, mechanism and crystallographic fragment screening of the SARS-CoV-2 NSP13 helicase. Nat. Commun., 2021, 12(1), 4848.
[http://dx.doi.org/10.1038/s41467-021-25166-6] [PMID: 34381037]
[209]
Zhao, Y.; Hongdu, B.; Ma, D.; Chen, Y. Really interesting new gene finger protein 121 is a novel Golgi-localized membrane protein that regulates apoptosis. Acta Biochim. Biophys. Sin. (Shanghai), 2014, 46(8), 668-674.
[http://dx.doi.org/10.1093/abbs/gmu047] [PMID: 24928685]
[210]
Grishin, N.V. Treble clef finger-a functionally diverse zinc-binding structural motif. Nucleic Acids Res., 2001, 29(8), 1703-1714.
[http://dx.doi.org/10.1093/nar/29.8.1703] [PMID: 11292843]
[211]
Chen, J.; Malone, B.; Llewellyn, E.; Grasso, M.; Shelton, P.M.M.; Olinares, P.D.B.; Maruthi, K.; Eng, E.T.; Vatandaslar, H.; Chait, B.T.; Kapoor, T.M.; Darst, S.A.; Campbell, E.A. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell, 2020, 182(6), 1560-1573.e13.
[http://dx.doi.org/10.1016/j.cell.2020.07.033] [PMID: 32783916]
[212]
Mésinèle, J.; Ruffin, M.; Guillot, L.; Boëlle, P.Y.; Corvol, H. Factors predisposing the response to lumacaftor/ivacaftor in people with cystic fibrosis. J. Pers. Med., 2022, 12(2), 252.
[http://dx.doi.org/10.3390/jpm12020252] [PMID: 35207740]
[213]
Bailly, C. Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine, 2019, 62, 152956.
[http://dx.doi.org/10.1016/j.phymed.2019.152956] [PMID: 31132753]
[214]
Ahmad, S.; Waheed, Y.; Ismail, S.; Bhatti, S.; Abbasi, S.W.; Muhammad, K. Structure-based virtual screening identifies multiple stable binding sites at the RecA domains of SARS-CoV-2 helicase enzyme. Molecules, 2021, 26(5), 1446.
[http://dx.doi.org/10.3390/molecules26051446] [PMID: 33800013]
[215]
Mirza, M.U.; Froeyen, M. Structural elucidation of SARS-CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 2020, 10(4), 320-328.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[216]
El Hassab, M.A.; Eldehna, W.M.; Al-Rashood, S.T.; Alharbi, A.; Eskandrani, R.O.; Alkahtani, H.M.; Elkaeed, E.B.; Abou-Seri, S.M. Multi-stage structure-based virtual screening approach towards identification of potential SARS-CoV-2 NSP13 helicase inhibitors. J. Enzyme Inhib. Med. Chem., 2022, 37(1), 563-572.
[http://dx.doi.org/10.1080/14756366.2021.2022659] [PMID: 35012384]
[217]
Vivek-Ananth, R.P.; Krishnaswamy, S.; Samal, A. Potential phytochemical inhibitors of SARS-CoV-2 helicase Nsp13: A molecular docking and dynamic simulation study. Mol. Divers., 2022, 26(1), 429-442.
[http://dx.doi.org/10.1007/s11030-021-10251-1] [PMID: 34117992]
[218]
Liu, C.; Zhu, X.; Lu, Y.; Zhang, X.; Jia, X.; Yang, T. Potential treatment with Chinese and Western medicine targeting NSP14 of SARS-CoV-2. J. Pharm. Anal., 2021, 11(3), 272-277.
[http://dx.doi.org/10.1016/j.jpha.2020.08.002] [PMID: 32923004]
[219]
Selvaraj, C.; Dinesh, D.C.; Panwar, U.; Abhirami, R.; Boura, E.; Singh, S.K. Structure-based virtual screening and molecular dynamics simulation of SARS-CoV-2 Guanine-N7 methyltransferase (NSP14) for identifying antiviral inhibitors against COVID-19. J. Biomol. Struct. Dyn., 2021, 39(13), 4582-4593.
[http://dx.doi.org/10.1080/07391102.2020.1778535] [PMID: 32567979]
[220]
Liu, C.; Shi, W.; Becker, S.T.; Schatz, D.G.; Liu, B.; Yang, Y. Structural basis of mismatch recognition by a SARS-CoV-2 proofread-ing enzyme. Science, 2021, 373(6559), 1142-1146.
[http://dx.doi.org/10.1126/science.abi9310] [PMID: 34315827]
[221]
Frazier, M.N.; Dillard, L.B.; Krahn, J.M.; Perera, L.; Williams, J.G.; Wilson, I.M.; Stewart, Z.D.; Pillon, M.C.; Deterding, L.J.; Borgnia, M.J.; Stanley, R.E. Characterization of SARS2 Nsp15 nuclease activity reveals it’s mad about U. Nucleic Acids Res., 2021, 49(17), 10136-10149.
[http://dx.doi.org/10.1093/nar/gkab719] [PMID: 34403466]
[222]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of NSP15 endoribonuclease NENDOU from SARS‐COV ‐2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[223]
Savale, R.U.; Bhowmick, S.; Osman, S.M.; Alasmary, F.A.; Almutairi, T.M.; Abdullah, D.S.; Patil, P.C.; Islam, M.A. Pharmacoinformatics approach based identification of potential NSP15 endoribonuclease modulators for SARS-CoV-2 inhibition. Arch. Biochem. Biophys., 2021, 700, 108771.
[http://dx.doi.org/10.1016/j.abb.2021.108771] [PMID: 33485847]
[224]
Al-Rashedi, N.A.M.; Munahi, M.G. AH ALObaidi, L. Prediction of potential inhibitors against SARS-CoV-2 endoribonuclease: RNA immunity sensing. J. Biomol. Struct. Dyn., 2022, 40(11), 4879-4892.
[http://dx.doi.org/10.1080/07391102.2020.1863265] [PMID: 33357040]
[225]
Vijayan, R.; Gourinath, S. Structure-based inhibitor screening of natural products against NSP15 of SARS-CoV-2 revealed thymopentin and oleuropein as potent inhibitors. J. Protein Proteom., 2021, 12(2), 71-80.
[http://dx.doi.org/10.1007/s42485-021-00059-w] [PMID: 33776343]
[226]
Motwalli, O.; Alazmi, M. Analysis of natural compounds against the activity of SARS-CoV-2 NSP15 protein towards an effective treatment against COVID-19: A theoretical and computational biology approach. J. Mol. Model., 2021, 27(6), 160.
[http://dx.doi.org/10.1007/s00894-021-04750-z] [PMID: 33963942]
[227]
Saeed, M.; Saeed, A.; Alam, M.J.; Alreshidi, M. Identification of persuasive antiviral natural compounds for COVID-19 by targeting endoribonuclease NSP15: A structural-bioinformatics approach. Molecules, 2020, 25(23), 5657.
[http://dx.doi.org/10.3390/molecules25235657] [PMID: 33271751]
[228]
Murugan, N.A.; Kumar, S.; Jeyakanthan, J.; Srivastava, V. Searching for target-specific and multi-targeting organics for COVID-19 in the Drugbank database with a double scoring approach. Sci. Rep., 2020, 10(1), 19125.
[http://dx.doi.org/10.1038/s41598-020-75762-7] [PMID: 33154404]
[229]
Dotolo, S.; Marabotti, A.; Facchiano, A.; Tagliaferri, R. A review on drug repurposing applicable to COVID-19. Brief. Bioinform., 2021, 22(2), 726-741.
[http://dx.doi.org/10.1093/bib/bbaa288] [PMID: 33147623]
[230]
Ojha, P.K.; Kar, S.; Krishna, J.G.; Roy, K.; Leszczynski, J. Therapeutics for COVID-19: From computation to practices—where we are, where we are heading to. Mol. Divers., 2021, 25(1), 625-659.
[http://dx.doi.org/10.1007/s11030-020-10134-x] [PMID: 32880078]
[231]
Ng, Y.L.; Salim, C.K.; Chu, J.J.H. Drug repurposing for COVID-19: Approaches, challenges and promising candidates. Pharmacol. Ther., 2021, 228, 107930.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107930] [PMID: 34174275]
[232]
Oprea, T.I.; Mestres, J. Drug repurposing: Far beyond new targets for old drugs. AAPS J., 2012, 14(4), 759-763.
[http://dx.doi.org/10.1208/s12248-012-9390-1] [PMID: 22826034]
[233]
Tazeen, A.; Deeba, F.; Alam, A.; Ali, R.; Ishrat, R.; Ahmed, A.; Ali, S.; Parveen, S. Virtual screening of potential therapeutic inhibitors against spike, helicase, and polymerase of SARS-CoV-2 (COVID-19). Coronaviruses, 2021, 2(1), 89-105.
[http://dx.doi.org/10.2174/2666796701999200826114306]
[234]
Ginex, T.; Garaigorta, U.; Ramírez, D.; Castro, V.; Nozal, V.; Maestro, I.; García-Cárceles, J.; Campillo, N.E.; Martinez, A.; Gastamin-za, P.; Gil, C. Host-Directed FDA-approved drugs with antiviral activity against SARS-CoV-2 identified by hierarchical in silico/in vitro screening methods. Pharmaceuticals (Basel), 2021, 14(4), 332.
[http://dx.doi.org/10.3390/ph14040332] [PMID: 33917313]
[235]
Mishra, D.; Maurya, R.R.; Kumar, K.; Munjal, N.S.; Bahadur, V.; Sharma, S.; Singh, P.; Bahadur, I. Structurally modified compounds of hydroxychloroquine, remdesivir and tetrahydrocannabinol against main protease of SARS-CoV-2, a possible hope for COVID-19: Docking and molecular dynamics simulation studies. J. Mol. Liq., 2021, 335, 116185.
[http://dx.doi.org/10.1016/j.molliq.2021.116185] [PMID: 33879934]
[236]
Nunes, V.S.; Paschoal, D.F.S.; Costa, L.A.S.; Santos, H.F.D. Antivirals virtual screening to SARS-CoV-2 non-structural proteins. J. Biomol. Struct. Dyn., 2021, 2021, 1921033.
[http://dx.doi.org/10.1080/07391102.2021.1921033] [PMID: 33949279]
[237]
Barros, R.O.; Junior, F.L.C.C.; Pereira, W.S.; Oliveira, N.M.N.; Ramos, R.M. Interaction of drug candidates with various SARS-CoV-2 receptors: An in silico study to combat COVID-19. J. Proteome Res., 2020, 19(11), 4567-4575.
[http://dx.doi.org/10.1021/acs.jproteome.0c00327] [PMID: 32786890]
[238]
Gupta, Y.; Maciorowski, D.; Zak, S.E.; Jones, K.A.; Kathayat, R.S.; Azizi, S.A.; Mathur, R.; Pearce, C.M.; Ilc, D.J.; Husein, H.; Her-bert, A.S.; Bharti, A.; Rathi, B.; Durvasula, R.; Becker, D.P.; Dickinson, B.C.; Dye, J.M.; Kempaiah, P.; Bisindolylmaleimide, I.X. Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays. Methods, 2021, 195, 57-71.
[http://dx.doi.org/10.1016/j.ymeth.2021.01.003] [PMID: 33453392]
[239]
Kumar, S.; Sharma, P.P.; Upadhyay, C.; Kempaiah, P.; Rathi, B. Poonam, Multi-targeting approach for nsp3, nsp9, nsp12 and nsp15 proteins of SARS-CoV-2 by Diosmin as illustrated by molecular docking and molecular dynamics simulation methodologies. Methods, 2021, 195, 44-56.
[http://dx.doi.org/10.1016/j.ymeth.2021.02.017] [PMID: 33639316]
[240]
Grahl, M.V.C.; Alcará, A.M.; Perin, A.P.A.; Moro, C.F.; Pinto, É.S.M.; Feltes, B.C.; Ghilardi, I.M.; Rodrigues, F.V.F.; Dorn, M.; da Costa, J.C.; Norberto de Souza, O.; Ligabue-Braun, R. Evaluation of drug repositioning by molecular docking of pharmaceutical resources available in the Brazilian healthcare system against SARS-CoV-2. Inform. Med. Unlocked, 2021, 23, 100539.
[http://dx.doi.org/10.1016/j.imu.2021.100539] [PMID: 33623816]
[241]
Kadioglu, O.; Saeed, M.; Greten, H.J.; Efferth, T. Identification of novel compounds against three targets of SARS CoV-2 coronavirus by combined virtual screening and supervised machine learning. Comput. Biol. Med., 2021, 133, 104359.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104359] [PMID: 33845270]
[242]
Naik, B.; Mattaparthi, V.S.K.; Gupta, N.; Ojha, R.; Das, P.; Singh, S.; Prajapati, V.K.; Prusty, D. Chemical system biology approach to identify multi-targeting FDA inhibitors for treating COVID-19 and associated health complications. J. Biomol. Struct. Dyn., 2021, 1-25.
[http://dx.doi.org/10.1080/07391102.2021.1931451] [PMID: 34062110]
[243]
Almeida, J.S.F.D.; Botelho, F.D.; de Souza, F.R.; dos Santos, M.C.; Goncalves, A.S.; Rodrigues, R.L.B.; Cardozo, M.; Kitagawa, D.A.S.; Vieira, L.A.; Silva, R.S.F.; Cavalcante, S.F.A.; Bastos, L.C.; Nogueira, M.O.T.; de Santana, P.I.R.; Brum, J.O.C.; Nepo-vimova, E.; Kuca, K.; LaPlante, S.R.; Galante, E.B.F.; Franca, T.C.C. Searching for potential drugs against SARS-CoV-2 through virtual screening on several molecular targets. J. Biomol. Struct. Dyn., 2022, 40(11), 5229-5242.
[http://dx.doi.org/10.1080/07391102.2020.1869096] [PMID: 33416020]
[244]
Singh, J.; Malik, D.; Raina, A. Computational investigation for identification of potential phytochemicals and antiviral drugs as potential inhibitors for RNA-dependent RNA polymerase of COVID-19. J. Biomol. Struct. Dyn., 2022, 40(8), 3492-3507.
[http://dx.doi.org/10.1080/07391102.2020.1847688] [PMID: 33200678]
[245]
Rabie, A.M. CoViTris2020 and ChloViD2020: A striking new hope in COVID-19 therapy. Mol. Divers., 2021, 25(3), 1839-1854.
[http://dx.doi.org/10.1007/s11030-020-10169-0] [PMID: 33389560]
[246]
Thurakkal, L.; Singh, S.; Roy, R.; Kar, P.; Sadhukhan, S.; Porel, M. An in-silico study on selected organosulfur compounds as potential drugs for SARS-CoV-2 infection via binding multiple drug targets. Chem. Phys. Lett., 2021, 763, 138193.
[http://dx.doi.org/10.1016/j.cplett.2020.138193] [PMID: 33223560]
[247]
Fayyazi, N.; Mostashari-Rad, T.; Ghasemi, J.B.; Ardakani, M.M.; Kobarfard, F. Molecular dynamics simulation, 3D-pharmacophore and scaffold hopping analysis in the design of multi-target drugs to inhibit potential targets of COVID-19. J. Biomol. Struct. Dyn., 2021, 2021, 1-22.
[http://dx.doi.org/10.1080/07391102.2021.1965914] [PMID: 34405765]
[248]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, ac-curate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[249]
SwissADME. Available from: http://www.swissadme.ch/
[250]
Pharmacokinetic properties. Available from: http://biosig. unimelb.edu.au/pkcsm/prediction
[251]
Esam, Z.; Akhavan, M. lotfi, M.; Bekhradnia, A. Molecular docking and dynamics studies of Nicotinamide Riboside as a potential multi-target nutraceutical against SARS-CoV-2 entry, replication, and transcription: A new insight. J. Mol. Struct., 2022, 1247, 131394.
[http://dx.doi.org/10.1016/j.molstruc.2021.131394] [PMID: 34483364]
[252]
Ayipo, Y.O.; Ahmad, I.; Najib, Y.S.; Sheu, S.K.; Patel, H.; Mordi, M.N. Molecular modelling and structure-activity relationship of a natural derivative of o-hydroxybenzoate as a potent inhibitor of dual NSP3 and NSP12 of SARS-CoV-2: in silico study. J. Biomol. Struct. Dyn., 2022, 1-19.
[http://dx.doi.org/10.1080/07391102.2022.2026818] [PMID: 35037841]
[253]
Fan, L.; Feng, S.; Wang, T.; Ding, X.; An, X.; Wang, Z.; Zhou, K.; Wang, M.; Zhai, X.; Li, Y. Chemical composition and therapeutic mechanism of Xuanbai Chengqi Decoction in the treatment of COVID-19 by network pharmacology, molecular docking and molecular dynamic analysis. Mol. Divers., 2022, 1-22.
[http://dx.doi.org/10.1007/s11030-022-10415-7] [PMID: 35258759]
[254]
Kumar, R.P.; Siddique, S. 22-Hydroxyhopane, a novel multitargeted phytocompound against SARS-CoV-2 from Adiantum latifolium Lam. Nat. Prod. Res., 2021, 1976177.
[http://dx.doi.org/10.1080/14786419.2021.1976177] [PMID: 34544287]
[255]
Azim, K.F.; Ahmed, S.R.; Banik, A.; Khan, M.M.R.; Deb, A.; Somana, S.R. Screening and druggability analysis of some plant metabolites against SARS-CoV-2: An integrative computational approach. Inform. Med. Unlocked, 2020, 20, 100367.
[http://dx.doi.org/10.1016/j.imu.2020.100367] [PMID: 32537482]
[256]
Gupta, S.; Singh, V.; Varadwaj, P.K.; Chakravartty, N.; Katta, A.V.S.K.M.; Lekkala, S.P.; Thomas, G.; Narasimhan, S.; Reddy, A.R.; Reddy Lachagari, V.B. Secondary metabolites from spice and herbs as potential multitarget inhibitors of SARS-CoV-2 proteins. J. Biomol. Struct. Dyn., 2022, 40(5), 2264-2283.
[http://dx.doi.org/10.1080/07391102.2020.1837679] [PMID: 33107812]
[257]
Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn., 2021, 39(13), 4618-4632.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[258]
Wong, F.C.; Ong, J.H.; Kumar, D.T.; Chai, T.T. In Silico identification of multi-target anti-SARS-CoV-2 peptides from quinoa seed proteins. Int. J. Pept. Res. Ther., 2021, 27(3), 1837-1847.
[http://dx.doi.org/10.1007/s10989-021-10214-y] [PMID: 33867899]
[259]
Gao, L.; Xu, J.; Chen, S. In Silico screening of potential chinese herbal medicine against COVID-19 by targeting SARS-CoV-2 3CLpro and angiotensin converting enzyme II using molecular docking. Chin. J. Integr. Med., 2020, 26(7), 527-532.
[http://dx.doi.org/10.1007/s11655-020-3476-x] [PMID: 32632717]
[260]
Saied, E.M.; El-Maradny, Y.A.; Osman, A.A.; Darwish, A.M.G.; Abo Nahas, H.H.; Niedbała, G.; Piekutowska, M.; Abdel-Rahman, M.A.; Balbool, B.A.; Abdel-Azeem, A.M. A comprehensive review about the molecular structure of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Insights into natural products against COVID-19. Pharmaceutics, 2021, 13(11), 1759.
[http://dx.doi.org/10.3390/pharmaceutics13111759] [PMID: 34834174]
[261]
Rampogu, S.; Lee, G.; Kulkarni, A.M.; Kim, D.; Yoon, S.; Kim, M.O.; Lee, K.W. Computational approaches to discover novel natural compounds for SARS‐CoV‐2 therapeutics. ChemistryOpen, 2021, 10(5), 593-599.
[http://dx.doi.org/10.1002/open.202000332] [PMID: 34010501]
[262]
Isidoro, C.; Chiung-Fang Chang, A.; Sheen, L.Y. Natural products as a source of novel drugs for treating SARS-CoV2 infection. J. Tradit. Complement. Med., 2022, 12(1), 1-5.
[http://dx.doi.org/10.1016/j.jtcme.2022.02.001] [PMID: 35155135]
[263]
Ye, M.; Luo, G.; Ye, D.; She, M.; Sun, N.; Lu, Y.J.; Zheng, J. Network pharmacology, molecular docking integrated surface plasmon resonance technology reveals the mechanism of Toujie Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine, 2021, 85, 153401.
[http://dx.doi.org/10.1016/j.phymed.2020.153401] [PMID: 33191068]
[264]
Wang, J.; Ge, W.; Peng, X.; Yuan, L.; He, S.; Fu, X. Investigating the active compounds and mechanism of HuaShi XuanFei formula for prevention and treatment of COVID-19 based on network pharmacology and molecular docking analysis. Mol. Divers., 2022, 26(2), 1175-1190.
[http://dx.doi.org/10.1007/s11030-021-10244-0] [PMID: 34105049]
[265]
Li, Y.; Chu, F.; Li, P.; Johnson, N.; Li, T.; Wang, Y.; An, R.; Wu, D.; Chen, J.; Su, Z.; Gu, X.; Ding, X. Potential effect of Maxing Shigan decoction against coronavirus disease 2019 (COVID-19) revealed by network pharmacology and experimental verification. J. Ethnopharmacol., 2021, 271, 113854.
[http://dx.doi.org/10.1016/j.jep.2021.113854] [PMID: 33513419]
[266]
Li, X.; Lin, H.; Wang, Q.; Cui, L.; Luo, H.; Luo, L. Chemical composition and pharmacological mechanism of shenfu decoction in the treatment of novel coronavirus pneumonia (COVID-19). Drug Dev. Ind. Pharm., 2020, 46(12), 1947-1959.
[http://dx.doi.org/10.1080/03639045.2020.1826510] [PMID: 33054436]
[267]
Dai, Y.J.; Wan, S.Y.; Gong, S.S.; Liu, J.C.; Li, F.; Kou, J.P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19. Chin. J. Nat. Med., 2020, 18(12), 881-889.
[http://dx.doi.org/10.1016/S1875-5364(20)60031-0] [PMID: 33357718]
[268]
Alanazi, K.M.; Farah, M.A.; Hor, Y.Y. Multi-targeted approaches and drug repurposing reveal possible SARS-CoV-2 inhibitors. Vaccines (Basel), 2021, 10(1), 24.
[http://dx.doi.org/10.3390/vaccines10010024] [PMID: 35062685]
[269]
Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res., 2003, 31(13), 3381-3385.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[270]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[271]
de Leon, V.N.O.; Manzano, J.A.H.; Pilapil, D.Y.H., IV; Fernandez, R.A.T.; Ching, J.K.A.R.; Quimque, M.T.J.; Agbay, J.C.M.; No-tarte, K.I.R.; Macabeo, A.P.G. Anti-HIV reverse transcriptase plant polyphenolic natural products with in silico inhibitory properties on seven non-structural proteins vital in SARS-CoV-2 pathogenesis. J. Genet. Eng. Biotechnol., 2021, 19(1), 104.
[http://dx.doi.org/10.1186/s43141-021-00206-2] [PMID: 34272647]
[272]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[273]
Cheminfo. OSIRIS Property explorer-Cheminfo.org.. Available from: http://www.cheminfo.org/Chemistry/Cheminformatics/Property_explorer/index.html
[274]
Chourasia, R.; Padhi, S.; Chiring Phukon, L.; Abedin, M.M.; Singh, S.P.; Rai, A.K. A potential peptide from soy cheese produced using Lactobacillus delbrueckii WS4 for effective inhibition of SARS-CoV-2 main protease and S1 glycoprotein. Front. Mol. Biosci., 2020, 7, 601753.
[http://dx.doi.org/10.3389/fmolb.2020.601753] [PMID: 33363209]
[275]
Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM database of bioactive peptides: Current opportunities. Int. J. Mol. Sci., 2019, 20(23), 5978.
[http://dx.doi.org/10.3390/ijms20235978] [PMID: 31783634]
[276]
ToxinPred-open source drug discovery.. Available from: https://webs.iiitd.edu.in/raghava/toxinpred/
[277]
Allertop. Bioinformatics tool for allergenicity prediction.. 2019. Available from: https://www.ddg-pharmfac.net/AllerTOP/
[278]
Haribabu, J.; Garisetti, V.; Malekshah, R.E.; Srividya, S.; Gayathri, D.; Bhuvanesh, N.; Mangalaraja, R.V.; Echeverria, C.; Karvembu, R. Design and synthesis of heterocyclic azole based bioactive compounds: Molecular structures, quantum simulation, and mechanistic studies through docking as multi-target inhibitors of SARS-CoV-2 and cytotoxicity. J. Mol. Struct., 2022, 1250, 131782.
[http://dx.doi.org/10.1016/j.molstruc.2021.131782] [PMID: 34697505]
[279]
Gorgulla, C.; Padmanabha Das, K.M.; Leigh, K.E.; Cespugli, M.; Fischer, P.D.; Wang, Z.F.; Tesseyre, G.; Pandita, S.; Shnapir, A.; Calderaio, A.; Gechev, M.; Rose, A.; Lewis, N.; Hutcheson, C.; Yaffe, E.; Luxenburg, R.; Herce, H.D.; Durmaz, V.; Halazonetis, T.D.; Fackeldey, K.; Patten, J.J.; Chuprina, A.; Dziuba, I.; Plekhova, A.; Moroz, Y.; Radchenko, D.; Tarkhanova, O.; Yavnyuk, I.; Gruber, C.; Yust, R.; Payne, D.; Näär, A.M.; Namchuk, M.N.; Davey, R.A.; Wagner, G.; Kinney, J.; Arthanari, H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience, 2021, 24(2), 102021.
[http://dx.doi.org/10.1016/j.isci.2020.102021] [PMID: 33426509]
[280]
Choudhary, S.; Silakari, O. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Virus Res., 2020, 289, 198146.
[http://dx.doi.org/10.1016/j.virusres.2020.198146] [PMID: 32866534]
[281]
Freidel, M.R.; Armen, R.S. Mapping major SARS-CoV-2 drug targets and assessment of druggability using computational fragment screening: Identification of an allosteric small-molecule binding site on the Nsp13 helicase. PLoS One, 2021, 16(2), e0246181.
[http://dx.doi.org/10.1371/journal.pone.0246181] [PMID: 33596235]
[282]
Skariyachan, S.; Gopal, D.; Deshpande, D.; Joshi, A.; Uttarkar, A.; Niranjan, V. Carbon fullerene and nanotube are probable binders to multiple targets of SARS-CoV-2: Insights from computational modeling and molecular dynamic simulation studies. Infect. Genet. Evol., 2021, 96, 105155.
[http://dx.doi.org/10.1016/j.meegid.2021.105155] [PMID: 34823028]
[283]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavail-ability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[284]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model., 2012, 52(11), 3099-3105.
[http://dx.doi.org/10.1021/ci300367a] [PMID: 23092397]
[285]
de Azevedo, Junior, W.F.; Bitencourt-Ferreira, G.; Godoy, J.R.; Adriano, H.M.A.; dos Santos Bezerra, W.A.; dos Santos Soares, A.M. Protein-ligand docking simulations with autoDock4 focused on the main protease of SARS-CoV-2. Curr. Med. Chem., 2021, 28(37), 7614-7633.
[http://dx.doi.org/10.2174/0929867328666210329094111] [PMID: 33781188]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy