Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Immune Checkpoint Inhibitors: Recent Clinical Advances and Future Prospects

Author(s): Abid H. Banday* and Mohnad Abdalla*

Volume 30, Issue 28, 2023

Published on: 14 November, 2022

Page: [3215 - 3237] Pages: 23

DOI: 10.2174/0929867329666220819115849

Price: $65

Abstract

Immune checkpoints are vital molecules and pathways of the immune system with defined roles of controlling immune responses from being destructive to the healthy cells in the body. They include inhibitory receptors and ligands, which check the recognition of most cancers by the immune system. This happens when proteins on the surface of T cells called immune checkpoint proteins identify partner proteins on the cancer cells and bind to them, sending brake signals to the T cells to evade immune attack. However, drugs called immune checkpoint inhibitors block checkpoint proteins from binding to their partner proteins, thereby inhibiting the brake signals from being sent to T cells. This eventually allows the T cells to destroy cancer cells and arbitrate robust tumor regression. Many such inhibitors have already been approved and are in various developmental stages. The well-illustrated inhibitory checkpoints include the cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1 (PD-L1). Though many molecules blocking these checkpoints have shown promise in treating many malignancies, such treatment options have limited success in terms of the immune response in most patients. Against this backdrop, exploring new pathways and next-generation inhibitors becomes imperative for developing more responsive and effective immune checkpoint therapy. Owing to the complex biology and unexplored ambiguities in the mechanistic aspects of immune checkpoint pathways, analysis of the activity profile of new drugs is the subject of strenuous investigation. We herein report the recent progress in developing new inhibitory pathways and potential therapeutics and delineate the developments based on their merit. Further, the ensuing challenges towards developing efficacious checkpoint therapies and the impending opportunities are also discussed.

Keywords: Immune checkpoint pathway, Immunotherapy, tumor microenvironment, Cytotoxic T lymphocytes, CTLA-4, PD-1, PD-L1.

[1]
Toor, S. M.; Sasidharan Nair, V.; Decock, J.; Elkord, E. Immune checkpoints in the tumor microenvironment. Semin. Cancer Biol., 2020, 65, 1-12.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.021]
[2]
Dyck, L.; Mills, K. H. G. Immune checkpoints and their inhibition in cancer and infectious diseases. Eur. J. Immunol., 2017, 47(5), 765-779.
[http://dx.doi.org/10.1002/eji.201646875] [PMID: 28393361]
[3]
Liu, X. J.; Guan, Q. L. Mechanisms of resistance to immune checkpoint inhibitors. World Chinese J. Digestol., 2020, 857-864.
[http://dx.doi.org/10.11569/wcjd.v28.i17.857]
[4]
Hargadon, K. M.; Johnson, C. E.; Williams, C. J. Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors. Int. Immunopharmacol., 2018, 62, 29-39.
[http://dx.doi.org/10.1016/j.intimp.2018.06.001] [PMID: 29990692]
[5]
Dermani, F. K.; Samadi, P.; Rahmani, G.; Kohlan, A. K.; Najafi, R. PD-1/PD-L1 immune checkpoint: Potential target for cancer therapy. J. Cell Physiol., 2019, 234(2), 1313-1325.
[http://dx.doi.org/10.1002/jcp.27172] [PMID: 30191996]
[6]
Kondoh, N.; Mizuno-Kamiya, M.; Takayama, E.; Kawati, H.; Umemura, N.; Yamazaki, Y.; Mitsudo, K.; Tohnai, I. Perspectives of immune suppression in the tumor microenvironment promoting oral malignancy. Open Dent. J., 2018, 12(1), 455-465.
[http://dx.doi.org/10.2174/1874210601812010455] [PMID: 29988281]
[7]
Dougan, M.; Dranoff, G.; Dougan, S.K. Cancer immunotherapy: Beyond checkpoint blockade. Annual Review of Cancer Biology, 2019, 3, 55-75.
[http://dx.doi.org/10.1146/annurev-cancerbio-030518-055552]
[8]
Chen, Q.; Wang, C.; Chen, G.; Hu, Q.; Gu, Z. Delivery strategies for immune checkpoint blockade. Adv. Healthc. Mater., 2018, 7(20), e1800424.
[http://dx.doi.org/10.1002/adhm.201800424] [PMID: 29978565]
[9]
Wei, S. C.; Duffy, C. R.; Allison, J. P. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov., 2018, 8(9), 1069-1086.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0367]
[10]
Pitt, J. M.; Vétizou, M.; Daillère, R.; Roberti, M. P.; Yamazaki, T.; Routy, B.; Lepage, P.; Boneca, I. G.; Chamaillard, M.; Kroemer, G.; Zitvogel, L. Resistance mechanisms to immune-checkpoint blockade in cancer: Tumor-intrinsic and -extrinsic factors. Immunity, 2016, 44(6), 1255-1269.
[http://dx.doi.org/10.1016/j.immuni.2016.06.001]
[11]
NobelPrize.org. The 2018 Nobel Prize in Physiology or Medicine - Press release. 2018. Available from: https://www.nobelprize.org/prizes/medicine/2018/press-release/ (Accessed on: 2022 -01-28).
[12]
Rotte, A.; D’Orazi, G.; Bhandaru, M. Nobel committee honors tumor immunologists. J. Exp. Clin. Cancer Res., 2018, 37(1), 262.
[http://dx.doi.org/10.1186/s13046-018-0937-6]
[13]
Teillaud, J.L. Cancer immunotherapy crowned with Nobel Prize in Physiology or Medicine awarded to James Allison and Tasuku Honjo. Med. Sci. (Paris), 2019, 35(4), 365-366.
[http://dx.doi.org/10.1051/medsci/2019073] [PMID: 31038115]
[14]
Huang, P.W.; Chang, J.W.C. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed. J., 2019, 42(5), 299-306.
[http://dx.doi.org/10.1016/j.bj.2019.09.002] [PMID: 31783990]
[15]
Ledford, H.; Else, H.; Warren, M. Cancer immunologists scoop medicine Nobel prize. Nature, 2018, 562(7725), 20-21.
[http://dx.doi.org/10.1038/d41586-018-06751-0] [PMID: 30279600]
[16]
Bernadic, M., Jr; Duchon, R.; Aziri, R.; Mladosievicova, B. New principles of cancer therapy give new hope for oncological patients. Bratisl. Lek Listy, 2019, 120(1), 15-18.
[http://dx.doi.org/10.4149/BLL_2019_002] [PMID: 30685987]
[17]
Wolchok, J. Putting the immunologic brakes on cancer. Cell, 2018, 175(6), 1452-1454.
[http://dx.doi.org/10.1016/j.cell.2018.11.006] [PMID: 30500529]
[18]
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 255.
[http://dx.doi.org/10.1186/s13046-019-1259-z]
[19]
Mahoney, K.M.; Freeman, G.J.; McDermott, D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther., 2015, 37(4), 764-782.
[http://dx.doi.org/10.1016/j.clinthera.2015.02.018] [PMID: 25823918]
[20]
Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; Lanoy, E.; Texier, M.; Libenciuc, C.; Eggermont, A.M.M.; Soria, J.C.; Mateus, C.; Robert, C. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol., 2016, 13(8), 473-486.
[http://dx.doi.org/10.1038/nrclinonc.2016.58] [PMID: 27141885]
[21]
La-Beck, N.M.; Jean, G.W.; Huynh, C.; Alzghari, S.K.; Lowe, D.B. Immune checkpoint inhibitors: New insights and current place in cancer therapy. Pharmacotherapy, 2015, 35(10), 963-976.
[http://dx.doi.org/10.1002/phar.1643] [PMID: 26497482]
[22]
Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways: Similarities, differences, and implications of their inhibition. Am. J. Clin. Oncol., 2016, 39(1), 98-106.
[http://dx.doi.org/10.1097/COC.0000000000000239] [PMID: 26558876]
[23]
Jin, K. T.; Chen, B.; Liu, Y. Y.; Lan, H. Monoclonal antibodies and chimeric antigen receptor (CAR) T cells in the treatment of colorectal cancer. Cancer Cell Int., 2021, 21(1), 83.
[http://dx.doi.org/10.1186/s12935-021-01763-9]
[24]
Reinherz, E.L.; Hussey, R.E.; Schlossman, S.F. A monoclonal antibody blocking human T cell function. Eur. J. Immunol., 1980, 10(10), 758-762.
[http://dx.doi.org/10.1002/eji.1830101006] [PMID: 6448746]
[25]
Woods, M.; Guy, R.; Waldmann, H.; Glennie, M.; Alexander, D.R. A humanised therapeutic CD4 mAb inhibits TCR-induced IL-2, IL-4, and IL-10 secretion and expression of CD25, CD40L, and CD69. Cell. Immunol., 1998, 185(2), 101-113.
[http://dx.doi.org/10.1006/cimm.1998.1287] [PMID: 9636688]
[26]
Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R-A.; Reed, K.; Burke, M.M.; Caldwell, A.; Kronenberg, S.A.; Agunwamba, B.U.; Zhang, X.; Lowy, I.; Inzunza, H.D.; Feely, W.; Horak, C.E.; Hong, Q.; Korman, A.J.; Wigginton, J.M.; Gupta, A.; Sznol, M. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med., 2013, 369(2), 122-133.
[http://dx.doi.org/10.1056/NEJMoa1302369] [PMID: 23724867]
[27]
Coiffier, B.; Lepretre, S.; Pedersen, L.M.; Gadeberg, O.; Fredriksen, H.; van Oers, M.H.J.; Wooldridge, J.; Kloczko, J.; Holowiecki, J.; Hellmann, A.; Walewski, J.; Flensburg, M.; Petersen, J.; Robak, T. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: A phase 1-2 study. Blood, 2008, 111(3), 1094-1100.
[http://dx.doi.org/10.1182/blood-2007-09-111781] [PMID: 18003886]
[28]
Lu, R. M.; Hwang, Y. C.; Liu, I. J.; Lee, C. C.; Tsai, H. Z.; Li, H. J.; Wu, H. C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci., 2020, 27(1), 1.
[http://dx.doi.org/10.1186/s12929-019-0592-z]
[29]
Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs, 2015, 7(1), 9-14.
[http://dx.doi.org/10.4161/19420862.2015.989042] [PMID: 25529996]
[30]
Reddy, G.K.; Nadler, E.; Jain, V.K. Denosumab (AMG 162), a fully human monoclonal antibody against RANK ligand activity. Support. Cancer Ther., 2005, 3(1), 14-15.
[http://dx.doi.org/10.1016/S1543-2912(13)60114-9] [PMID: 18632429]
[31]
Lozano, A.X.; Chaudhuri, A.A.; Nene, A.; Bacchiocchi, A.; Earland, N.; Vesely, M.D.; Usmani, A.; Turner, B.E.; Steen, C.B.; Luca, B.A.; Badri, T.; Gulati, G.S.; Vahid, M.R.; Khameneh, F.; Harris, P.K.; Chen, D.Y.; Dhodapkar, K.; Sznol, M.; Halaban, R.; Newman, A.M. T cell characteristics associated with toxicity to immune checkpoint blockade in patients with melanoma. Nat. Med., 2022, 28(2), 353-362.
[http://dx.doi.org/10.1038/s41591-021-01623-z] [PMID: 35027754]
[32]
Morad, G.; Helmink, B.A.; Sharma, P.; Wargo, J.A. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade. Cell, 2021, 184(21), 5309-5337.
[http://dx.doi.org/10.1016/j.cell.2021.09.020] [PMID: 34624224]
[33]
Jing, Y.; Liu, J.; Ye, Y.; Pan, L.; Deng, H.; Wang, Y.; Yang, Y.; Diao, L.; Lin, S.H.; Mills, G.B.; Zhuang, G.; Xue, X.; Han, L. Multi-omics prediction of immune-related adverse events during checkpoint immunotherapy. Nat. Commun., 2020, 11(1), 4946.
[http://dx.doi.org/10.1038/s41467-020-18742-9] [PMID: 33009409]
[34]
Marin-Acevedo, J.A.; Kimbrough, E.M.O.; Lou, Y. Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol., 2021, 14(1), 45.
[http://dx.doi.org/10.1186/s13045-021-01056-8]
[35]
Kavecansky, J.; Pavlick, A.C. Beyond checkpoint inhibitors: The next generation of immunotherapy in oncology. Am. J. Haem. Oncol., 2017, 13(2), 9-20.
[36]
Mazzarella, L.; Duso, B. A.; Trapani, D.; Belli, C.; D’Amico, P.; Ferraro, E.; Viale, G.; Curigliano, G. The evolving landscape of 'next-generation' immune checkpoint inhibitors: A review. Eur. J. Cancer, 2019, 117, 14-31.
[http://dx.doi.org/10.1016/j.ejca.2019.04.035]
[37]
Lee, J.B.; Ha, S.J.; Kim, H.R. Clinical insights into novel immune checkpoint inhibitors. Front. Pharmacol., 2021, 12, 681320.
[http://dx.doi.org/10.3389/fphar.2021.681320] [PMID: 34025438]
[38]
Chen, S.; Zhang, Z.; Zheng, X.; Tao, H.; Zhang, S.; Ma, J.; Liu, Z.; Wang, J.; Qian, Y.; Cui, P.; Huang, D.; Huang, Z.; Wu, Z.; Hu, Y. Response efficacy of PD-1 and PD-L1 inhibitors in clinical trials: A systematic review and meta-analysis. Front. Oncol., 2021, 11, 562315.
[http://dx.doi.org/10.3389/fonc.2021.562315] [PMID: 33937012]
[39]
Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 2015, 27(4), 450-461.
[http://dx.doi.org/10.1016/j.ccell.2015.03.001] [PMID: 25858804]
[40]
Egen, J.G.; Kuhns, M.S.; Allison, J.P. CTLA-4: New insights into its biological function and use in tumor immunotherapy. Nat. Immunol., 2002, 3(7), 611-618.
[http://dx.doi.org/10.1038/ni0702-611] [PMID: 12087419]
[41]
Sharma, P.; Allison, J. P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61.
[http://dx.doi.org/10.1126/science.aaa8172]
[42]
Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer, 2012, 12(4), 252-264.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[43]
Ribas, A.; Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science, 2018, 359(6382), 1350-1355.
[http://dx.doi.org/10.1126/science.aar4060]
[44]
Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol., 2015, 33(17), 1974-1982.
[http://dx.doi.org/10.1200/JCO.2014.59.4358] [PMID: 25605845]
[45]
Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol., 2018, 29(1), 71-83.
[http://dx.doi.org/10.1093/annonc/mdx686] [PMID: 29069302]
[46]
De Sousa Linhares, A.; Leitner, J.; Grabmeier-Pfistershammer, K.; Steinberger, P. Not all immune checkpoints are created equal. Front. Immunol., 2018, 9, 1909.
[http://dx.doi.org/10.3389/fimmu.2018.01909]
[47]
Hugo, W.; Zaretsky, J.M.; Sun, L.; Song, C.; Moreno, B.H.; Hu-Lieskovan, S.; Berent-Maoz, B.; Pang, J.; Chmielowski, B.; Cherry, G.; Seja, E.; Lomeli, S.; Kong, X.; Kelley, M.C.; Sosman, J.A.; Johnson, D.B.; Ribas, A.; Lo, R.S. Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell, 2016, 165(1), 35-44.
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[48]
Shields, B. D.; Mahmoud, F.; Taylor, E. M.; Byrum, S. D.; Sengupta, D.; Koss, B.; Baldini, G.; Ransom, S.; Cline, K.; Mackintosh, S. G.; Edmondson, R. D.; Shalin, S.; Tackett, A. J. Indicators of responsiveness to immune checkpoint inhibitors. Sci. Rep., 2017, 7(1), 807.
[http://dx.doi.org/10.1038/s41598-017-01000-2]
[49]
Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V.; West, A.N.; Carmona, M.; Kivork, C.; Seja, E.; Cherry, G.; Gutierrez, A.J.; Grogan, T.R.; Mateus, C.; Tomasic, G.; Glaspy, J.A.; Emerson, R.O.; Robins, H.; Pierce, R.H.; Elashoff, D.A.; Robert, C.; Ribas, A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 2014, 515(7528), 568-571.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[50]
Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer, 2016, 16(5), 275-287.
[http://dx.doi.org/10.1038/nrc.2016.36] [PMID: 27079802]
[51]
Liu, Y.; Zheng, P. Preserving the CTLA-4 checkpoint for safer and more effective cancer immunotherapy. Trends Pharmacol. Sci., 2020, 41(1), 4-12.
[http://dx.doi.org/10.1016/j.tips.2019.11.003] [PMID: 31836191]
[52]
Rowshanravan, B.; Halliday, N.; Sansom, D. M. CTLA-4: A moving target in immunotherapy. Blood, 2018, 131(1), 58-67.
[http://dx.doi.org/10.1182/blood-2017-06-741033]
[53]
Chambers, C. A.; Kuhns, M. S.; Egen, J. G.; Allison, J. P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol., 2003, 19, 565-594.
[http://dx.doi.org/10.1146/annurev.immunol.19.1.565]
[54]
Rudd, C.E.; Taylor, A.; Schneider, H. CD-28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev., 2009, 229(1), 12-26.
[http://dx.doi.org/10.1111/j.1600-065X.2009.00770.x] [PMID: 19426212]
[55]
Parry, R.V.; Chemnitz, J.M.; Frauwirth, K.A.; Lanfranco, A.R.; Braunstein, I.; Kobayashi, S.V.; Linsley, P.S.; Thompson, C.B.; Riley, J.L. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol. Cell. Biol., 2005, 25(21), 9543-9553.
[http://dx.doi.org/10.1128/MCB.25.21.9543-9553.2005] [PMID: 16227604]
[56]
Wolchok, J.D.; Neyns, B.; Linette, G.; Negrier, S.; Lutzky, J.; Thomas, L.; Waterfield, W.; Schadendorf, D.; Smylie, M.; Guthrie, T., Jr.; Grob, J.J.; Chesney, J.; Chin, K.; Chen, K.; Hoos, A.; O’Day, S.J.; Lebbé, C. Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol., 2010, 11(2), 155-164.
[http://dx.doi.org/10.1016/S1470-2045(09)70334-1] [PMID: 20004617]
[57]
Kirkwood, J.M.; Lorigan, P.; Hersey, P.; Hauschild, A.; Robert, C.; McDermott, D.; Marshall, M.A.; Gomez-Navarro, J.; Liang, J.Q.; Bulanhagui, C.A.; Phase, I.I. Phase II trial of tremelimumab (CP-675,206) in patients with advanced refractory or relapsed melanoma. Clin. Cancer Res., 2010, 16(3), 1042-1048.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2033] [PMID: 20086001]
[58]
Ascierto, P.A.; Marincola, F.M.; Ribas, A. Anti-CTLA-4 monoclonal antibodies: The past and the future in clinical application. J. Transl. Med., 2011, 9(1), 196.
[http://dx.doi.org/10.1186/1479-5876-9-196] [PMID: 22077981]
[59]
Quezada, S.A.; Peggs, K.S. Lost in Translation: Deciphering the mechanism of action of anti-human CTLA-4. Clin. Cancer Res., 2019, 25(4), 1130-1132.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2509] [PMID: 30291135]
[60]
Tarhini, A.A.; Iqbal, F. CTLA-4 blockade: Therapeutic potential in cancer treatments. Onco Targets Ther., 2010, 3, 15-25.
[http://dx.doi.org/10.2147/OTT.S4833]
[61]
Abunasser, A.A.A.; Xue, J.; Balawi, E.J.A.; Zhu, Y. Combination of the EP and anti-PD-1 pathway or anti-CTLA-4 for the phase III trial of small-cell lung cancer: A meta-analysis. J. Oncol., 2021, 2021, 6662344.
[http://dx.doi.org/10.1155/2021/6662344] [PMID: 34122547]
[62]
Zuazo, M.; Gato-Cañas, M.; Llorente, N.; Ibañez-Vea, M.; Arasanz, H.; Kochan, G.; Escors, D. Molecular mechanisms of programmed cell death-1 dependent T cell suppression: Relevance for immunotherapy. Ann. Transl. Med., 2017, 5(19), 385.
[http://dx.doi.org/10.21037/atm.2017.06.11] [PMID: 29114543]
[63]
Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The diverse function of PD-1/PD-L pathway beyond cancer. Front Immunol., 2019, 10, 2298.
[http://dx.doi.org/10.3389/fimmu.2019.02298]
[64]
Freeman, G.J.; Long, A.J.; Iwai, Y.; Bourque, K.; Chernova, T.; Nishimura, H.; Fitz, L.J.; Malenkovich, N.; Okazaki, T.; Byrne, M.C.; Horton, H.F.; Fouser, L.; Carter, L.; Ling, V.; Bowman, M.R.; Carreno, B.M.; Collins, M.; Wood, C.R.; Honjo, T. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med., 2000, 192(7), 1027-1034.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[65]
Sun, C.; Mezzadra, R.; Schumacher, T. N. Regulation and function of the PD-L1 checkpoint. Immunity, 2018, 48(3), 434-452.
[http://dx.doi.org/10.1016/j.immuni.2018.03.014]
[66]
Diskin, B.; Adam, S.; Cassini, M.F.; Sanchez, G.; Liria, M.; Aykut, B.; Buttar, C.; Li, E.; Sundberg, B.; Salas, R.D.; Chen, R.; Wang, J.; Kim, M.; Farooq, M.S.; Nguy, S.; Fedele, C.; Tang, K.H.; Chen, T.; Wang, W.; Hundeyin, M.; Rossi, J.A.K.; Kurz, E.; Haq, M.I.U.; Karlen, J.; Kruger, E.; Sekendiz, Z.; Wu, D.; Shadaloey, S.A.A.; Baptiste, G.; Werba, G.; Selvaraj, S.; Loomis, C.; Wong, K.K.; Leinwand, J.; Miller, G. PD-L1 engagement on T cells promotes self-tolerance and suppression of neighboring macrophages and effector T cells in cancer. Nat. Immunol., 2020, 21(4), 442-454.
[http://dx.doi.org/10.1038/s41590-020-0620-x] [PMID: 32152508]
[67]
Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubata, T.; Yagita, H.; Honjo, T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int. Immunol., 1996, 8(5), 765-772.
[http://dx.doi.org/10.1093/intimm/8.5.765] [PMID: 8671665]
[68]
Antonangeli, F.; Natalini, A.; Garassino, M. C.; Sica, A.; Santoni, A.; Di Rosa, F. Regulation of PD-L1 expression by NF-κB in cancer. Front Immunol., 2020, 11, 584626.
[http://dx.doi.org/10.3389/fimmu.2020.584626]
[69]
Han, Y.; Liu, D.; Li, L. PD-1/PD-L1 pathway: current researches in cancer. Am. J. Cancer Res., 2020, 10(3), 727-742.
[PMID: 32266087]
[70]
Brunner-Weinzierl, M.C.; Rudd, C.E. CTLA-4 and PD-1 control of T-cell motility and migration: Implications for tumor immunotherapy. Front. Immunol., 2018, 9, 2737.
[http://dx.doi.org/10.3389/fimmu.2018.02737] [PMID: 30542345]
[71]
Francisco, L. M.; Sage, P. T.; Sharpe, A. H. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev, 2010, 236, 219-242.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x]
[72]
Ahn, E.; Araki, K.; Hashimoto, M.; Li, W.; Riley, J.L.; Cheung, J.; Sharpe, A.H.; Freeman, G.J.; Irving, B.A.; Ahmed, R. Role of PD-1 during effector CD8 T cell differentiation. Proc. Natl. Acad. Sci. USA, 2018, 115(18), 4749-4754.
[http://dx.doi.org/10.1073/pnas.1718217115] [PMID: 29654146]
[73]
Blank, C.; Brown, I.; Peterson, A.C.; Spiotto, M.; Iwai, Y.; Honjo, T.; Gajewski, T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res., 2004, 64(3), 1140-1145.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3259] [PMID: 14871849]
[74]
Verhagen, J.; Sabatos, C. A.; Wraith, D. C. The role of CTLA-4 in immune regulation. Immunol Lett, 2008, 115(1), 73-74.
[http://dx.doi.org/10.1016/j.imlet.2007.10.010]
[75]
Hojati, Z.; Kay, M.; Dehghanian, F. Mechanism of action of interferon beta in treatment of multiple sclerosis. In: Multiple Sclerosis; Minagar, A., Ed.; Academic Press: FL, USA, 2016; pp. 365-392.
[http://dx.doi.org/10.1016/B978-0-12-800763-1.00015-4]
[76]
Linsley, P.S.; Golstein, P. Lymphocyte activation: T-cell regulation by CTLA-4. Curr. Biol., 1996, 6(4), 398-400.
[http://dx.doi.org/10.1016/S0960-9822(02)00506-7] [PMID: 8723343]
[77]
Linsley, P. Different roles for CD-28 and CTLA-4 during T-Cell activation? J. Exp. Med., 1995, 182, 289.
[http://dx.doi.org/10.1084/jem.182.2.289] [PMID: 7543133]
[78]
Pesce, S.; Greppi, M.; Grossi, F.; Del Zotto, G.; Moretta, L.; Sivori, S.; Genova, C.; Marcenaro, E. PD/1-PD-Ls checkpoint: Insight on the potential role of NK cells. Front Immunol., 2019, 10, 1242.
[http://dx.doi.org/10.3389/fimmu.2019.01242]
[79]
Youn, J.I.; Park, S.M.; Park, S.; Kim, G.; Lee, H.J.; Son, J.; Hong, M.H.; Ghaderpour, A.; Baik, B.; Islam, J.; Choi, J.W.; Lee, E.Y.; Kim, H.R.; Seo, S.U.; Paik, S.; Yoon, H.I.; Jung, I.; Xin, C.F.; Jin, H.T.; Cho, B.C.; Seong, S.Y.; Ha, S.J.; Kim, H.R. Peripheral natural killer cells and myeloid-derived suppressor cells correlate with anti-PD-1 responses in non-small cell lung cancer. Sci. Rep., 2020, 10(1), 9050.
[http://dx.doi.org/10.1038/s41598-020-65666-x] [PMID: 32493990]
[80]
Quatrini, L.; Mariotti, F. R.; Munari, E.; Tumino, N.; Vacca, P.; Moretta, L. The immune checkpoint PD-1 in natural killer cells: Expression, function and targeting in tumour immunotherapy. Cancers (Basel), 2020, 12(11), 3285.
[http://dx.doi.org/10.3390/cancers12113285]
[81]
Yoshida, K.; Okamoto, M.; Sasaki, J.; Kuroda, C.; Ishida, H.; Ueda, K.; Ideta, H.; Kamanaka, T.; Sobajima, A.; Takizawa, T.; Tanaka, M.; Aoki, K.; Uemura, T.; Kato, H.; Haniu, H.; Saito, N. Anti-PD-1 antibody decreases tumour-infiltrating regulatory T cells. BMC Cancer, 2020, 20(1), 25.
[http://dx.doi.org/10.1186/s12885-019-6499-y] [PMID: 31914969]
[82]
Kamada, T.; Togashi, Y.; Tay, C.; Ha, D.; Sasaki, A.; Nakamura, Y.; Sato, E.; Fukuoka, S.; Tada, Y.; Tanaka, A.; Morikawa, H.; Kawazoe, A.; Kinoshita, T.; Shitara, K.; Sakaguchi, S.; Nishikawa, H. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl. Acad. Sci. USA, 2019, 116(20), 9999-10008.
[http://dx.doi.org/10.1073/pnas.1822001116] [PMID: 31028147]
[83]
Polesso, F.; Munks, M.W.; Rott, K.H.; Smart, S.; Hill, A.B.; Moran, A.E. PD-1-specific “Blocking” antibodies that deplete PD-1+ T cells present an inconvenient variable in preclinical immunotherapy experiments. Eur. J. Immunol., 2021, 51(6), 1473-1481.
[http://dx.doi.org/10.1002/eji.202048960] [PMID: 33684223]
[84]
Dong, H.; Zhu, G.; Tamada, K.; Chen, L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med., 1999, 5(12), 1365-1369.
[http://dx.doi.org/10.1038/70932] [PMID: 10581077]
[85]
Latchman, Y.; Wood, C.R.; Chernova, T.; Chaudhary, D.; Borde, M.; Chernova, I.; Iwai, Y.; Long, A.J.; Brown, J.A.; Nunes, R.; Greenfield, E.A.; Bourque, K.; Boussiotis, V.A.; Carter, L.L.; Carreno, B.M.; Malenkovich, N.; Nishimura, H.; Okazaki, T.; Honjo, T.; Sharpe, A.H.; Freeman, G.J. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol., 2001, 2(3), 261-268.
[http://dx.doi.org/10.1038/85330] [PMID: 11224527]
[86]
Keir, M.E.; Liang, S.C.; Guleria, I.; Latchman, Y.E.; Qipo, A.; Albacker, L.A.; Koulmanda, M.; Freeman, G.J.; Sayegh, M.H.; Sharpe, A.H. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J. Exp. Med., 2006, 203(4), 883-895.
[http://dx.doi.org/10.1084/jem.20051776] [PMID: 16606670]
[87]
Yokosuka, T.; Takamatsu, M.; Kobayashi-Imanishi, W.; Hashimoto-Tane, A.; Azuma, M.; Saito, T. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J. Exp. Med., 2012, 209(6), 1201-1217.
[http://dx.doi.org/10.1084/jem.20112741] [PMID: 22641383]
[88]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell costimulatory receptor CD-28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[89]
Rota, G.; Niogret, C.; Dang, A.T.; Barros, C.R.; Fonta, N.P.; Alfei, F.; Morgado, L.; Zehn, D.; Birchmeier, W.; Vivier, E.; Guarda, G. Shp-2 is dispensable for establishing T Cell exhaustion and for PD-1 signaling in vivo. Cell Rep., 2018, 23(1), 39-49.
[http://dx.doi.org/10.1016/j.celrep.2018.03.026] [PMID: 29617671]
[90]
Ratain M. Comparing dosing intervals of nivolumab or pembrolizumab in locally advanced or metastatic cancers. NCT042958620201 (2020)
[91]
Mitsogianni, M.; Vassos, D.; Kotteas, I.; Patriarcheas, V.; Vassias, A.; Stournara, L.; Tourkantonis, I.; Stefanou, D.; Charpidou, A.; Syrigos, K. Pembrolizumab versus Nivolumab as second and further line treatment in non-small cell lung cancer; A Retrospective Single-Centre Study. Eur. Respir. J., 2020, 56, 1692.
[http://dx.doi.org/10.1183/13993003.congress-2020.1692]
[92]
Ivashko, I.N.; Kolesar, J.M. Pembrolizumab and nivolumab: PD-1 inhibitors for advanced melanoma. Am. J. Heal. Pharm., 2016, 73(4), 193-201.
[http://dx.doi.org/10.2146/ajhp140768] [PMID: 26843495]
[93]
Faghfuri, E.; Faramarzi, M.A.; Nikfar, S.; Abdollahi, M. Nivolumab and pembrolizumab as immune-modulating monoclonal antibodies targeting the PD-1 receptor to treat melanoma. Expert Rev. Anticancer Ther., 2015, 15(9), 981-993.
[http://dx.doi.org/10.1586/14737140.2015.1074862] [PMID: 26313415]
[94]
Lepir, T.; Zaghouani, M.; Roche, S.P.; Li, Y.Y.; Suarez, M.; Irias, M.J.; Savaraj, N. Nivolumab to pembrolizumab switch induced a durable melanoma response: A case report. Medicine (Baltimore), 2019, 98(2), e13804.
[http://dx.doi.org/10.1097/MD.0000000000013804] [PMID: 30633154]
[95]
Choi, E.; Yang, J.W. Updates to clinical information on anticancer immunotherapy. Korean J. Clin. Pharm., 2018, 28(1), 65-75.
[http://dx.doi.org/10.24304/kjcp.2017.28.1.65]
[96]
Pennock, G.K.; Chow, L.Q.M. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist, 2015, 20(7), 812-822.
[http://dx.doi.org/10.1634/theoncologist.2014-0422] [PMID: 26069281]
[97]
Robert, C.; Thomas, L.; Bondarenko, I.; O’Day, S.; Weber, J.; Garbe, C.; Lebbe, C.; Baurain, J-F.; Testori, A.; Grob, J-J.; Davidson, N.; Richards, J.; Maio, M.; Hauschild, A.; Miller, W.H., Jr; Gascon, P.; Lotem, M.; Harmankaya, K.; Ibrahim, R.; Francis, S.; Chen, T-T.; Humphrey, R.; Hoos, A.; Wolchok, J.D. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med., 2011, 364(26), 2517-2526.
[http://dx.doi.org/10.1056/NEJMoa1104621] [PMID: 21639810]
[98]
Yun, S.; Vincelette, N.D.; Green, M.R.; Wahner Hendrickson, A.E.; Abraham, I. Targeting immune checkpoints in unresectable metastatic cutaneous melanoma: A systematic review and meta-analysis of anti-CTLA-4 and anti-PD-1 agents trials. Cancer Med., 2016, 5(7), 1481-1491.
[http://dx.doi.org/10.1002/cam4.732] [PMID: 27167347]
[99]
Hodi, F.S.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.J.; Rutkowski, P.; Cowey, C.L.; Lao, C.D.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; Ferrucci, P.F.; Smylie, M.; Hill, A.; Hogg, D.; Marquez-Rodas, I.; Jiang, J.; Rizzo, J.; Larkin, J.; Wolchok, J.D. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol., 2018, 19(11), 1480-1492.
[http://dx.doi.org/10.1016/S1470-2045(18)30700-9] [PMID: 30361170]
[100]
Ascierto, P.A.; Del Vecchio, M.; Mackiewicz, A.; Robert, C.; Chiarion-Sileni, V.; Arance, A.; Lebbé, C.; Svane, I.M.; McNeil, C.; Rutkowski, P.; Loquai, C.; Mortier, L.; Hamid, O.; Bastholt, L.; Dreno, B.; Schadendorf, D.; Garbe, C.; Nyakas, M.; Grob, J.J.; Thomas, L.; Liszkay, G.; Smylie, M.; Hoeller, C.; Ferraresi, V.; Grange, F.; Gutzmer, R.; Pikiel, J.; Hosein, F.; Simsek, B.; Maio, M. Overall survival at 5 years of follow-up in a phase III trial comparing ipilimumab 10 mg/kg with 3 mg/kg in patients with advanced melanoma. J. Immunother. Cancer, 2020, 8(1), e000391.
[http://dx.doi.org/10.1136/jitc-2019-000391] [PMID: 32503946]
[101]
Weber, J.S.; Minor, D.R.; D’Angelo, S.P.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H.; Grob, J-J.; Lao, C.; Linette, G.; Grossmann, K.; Hassel, J.C.; Lorigan, P.; Maio, M.; Sznol, M.; Lambert, A.; Yang, A.; Larkin, J. A Phase 3 Randomized, Open-Label Study of Nivolumab (Anti-Pd-1; Bms-936558; Ono-4538) versus Investigator’S Choice Chemotherapy (ICC) in patients with advanced melanoma after prior Anti-Ctla-4 therapy. Ann. Oncol., 2014, 25, v1.
[http://dx.doi.org/10.1093/annonc/mdu438.34]
[102]
Larkin, J.; Minor, D.; D’Angelo, S.; Neyns, B.; Smylie, M.; Miller, W.H., Jr; Gutzmer, R.; Linette, G.; Chmielowski, B.; Lao, C.D.; Lorigan, P.; Grossmann, K.; Hassel, J.C.; Sznol, M.; Daud, A.; Sosman, J.; Khushalani, N.; Schadendorf, D.; Hoeller, C.; Walker, D.; Kong, G.; Horak, C.; Weber, J. Overall survival in patients with advanced melanoma who received nivolumab versus investigator’s choice chemotherapy in checkmate 037: A randomized, controlled, open-label phase III trial. J. Clin. Oncol., 2018, 36(4), 383-390.
[http://dx.doi.org/10.1200/JCO.2016.71.8023] [PMID: 28671856]
[103]
Chuk, M.K.; Chang, J.T.; Theoret, M.R.; Sampene, E.; He, K.; Weis, S.L.; Helms, W.S.; Jin, R.; Li, H.; Yu, J.; Zhao, H.; Zhao, L.; Paciga, M.; Schmiel, D.; Rawat, R.; Keegan, P.; Pazdur, R. FDA approval summary: Accelerated approval of pembrolizumab for second-line treatment of metastatic melanoma. Clin. Cancer Res., 2017, 23(19), 5666-5670.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0663] [PMID: 28235882]
[104]
Barone, A.; Hazarika, M.; Theoret, M.R.; Mishra-Kalyani, P.; Chen, H.; He, K.; Sridhara, R.; Subramaniam, S.; Pfuma, E.; Wang, Y.; Li, H.; Zhao, H.; Zirkelbach, J.F.; Keegan, P.; Pazdur, R. FDA approval summary: Pembrolizumab for the treatment of patients with unresectable or metastatic melanoma. Clin. Cancer Res., 2017, 23(19), 5661-5665.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0664] [PMID: 28179454]
[105]
FDA. FDA approves pembrolizumab for adjuvant treatment of melanoma. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adjuvant-treatment-melanoma (Accessed on: January 28 2022).
[106]
Jelinek, T.; Mihalyova, J.; Kascak, M.; Duras, J.; Hajek, R. PD-1/PD-L1 inhibitors in haematological malignancies: update 2017. Immunology, 2017, 152(3), 357-371.
[http://dx.doi.org/10.1111/imm.12788]
[107]
Gupta, M.; Latcha, S. Hematologic malignancies. Onco-Nephrol., 2019, 2019, 219-224.e3.
[http://dx.doi.org/10.1016/B978-0-323-54945-5.00032-1]
[108]
Merryman, R.; Armand, P. Immune checkpoint blockade in hematologic malignancies. In: Hematology: Basic Principles and Practice; Elsevier Inc., 2018; pp. 1583-1587.
[http://dx.doi.org/10.1016/B978-0-323-35762-3.00102-5]
[109]
Bryan, L.J.; Gordon, L.I. Pidilizumab in the treatment of diffuse large B-cell lymphoma. Expert Opin. Biol. Ther., 2014, 14(9), 1361-1368.
[http://dx.doi.org/10.1517/14712598.2014.942637] [PMID: 25056108]
[110]
Xu-Monette, Z. Y.; Zhang, M.; Li, J.; Young, K. H. PD-1/PD-L1 blockade: Have we found the key to unleash the antitumor immune response? Front Immunol., 2017, 8, 1597.
[http://dx.doi.org/10.3389/fimmu.2017.01597]
[111]
Ostrand-Rosenberg, S.; Horn, L.A.; Haile, S.T. The programmed death-1 immune-suppressive pathway: barrier to antitumor immunity. J. Immunol., 2014, 193(8), 3835-3841.
[http://dx.doi.org/10.4049/jimmunol.1401572] [PMID: 25281753]
[112]
Simon, S.; Labarriere, N. PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy? Oncoimmunology, 2018, 7(1), e1364828.
[http://dx.doi.org/10.1080/2162402X.2017.1364828]
[113]
Liu, C.; Seeram, N. P.; Ma, H. Small molecule inhibitors against PD-1/PD-L1 immune checkpoints and current methodologies for their development: A review. Cancer Cell Int., 2021, 21(1), 239.
[http://dx.doi.org/10.1186/s12935-021-01946-4]
[114]
Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol., 2008, 26, 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[115]
Akinleye, A.; Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol., 2019, 12(1), 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[116]
Heery, C. R.; Coyne, G. H. O.; Madan, R. A.; Schlom, J.; Heydebreck, A.; von; Cuillerot, J.-M.; Sabzevari, H.; Gulley, J. L. Phase I open-label, multiple ascending dose trial of MSB0010718C, an anti-PD-L1 monoclonal antibody, in advanced solid malignancies. J. Clin. Oncol., 2014, 32(Suppl. 15), 3064.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.3064]
[117]
Herbst, R. S.; Gordon, M. S.; Fine, G. D.; Sosman, J. A.; Soria, J.-C.; Hamid, O.; Powderly, J. D.; Burris, H. A.; Mokatrin, A.; Kowanetz, M.; Leabman, M.; Anderson, M.; Chen, D. S.; Hodi, F. S. A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J. Clin. Oncol., 2013, 31(Suppl. 15), 3000.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.3000]
[118]
Segal, N. H.; Antonia, S. J.; Brahmer, J. R.; Maio, M.; Blake-Haskins, A.; Li, X.; Vasselli, J.; Ibrahim, R. A.; Lutzky, J.; Khleif, S. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J. Clin. Oncol., 2014, 32(Suppl. 15), 3002.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.3002]
[119]
Powles, T.; Vogelzang, N. J.; Fine, G. D.; Eder, J. P.; Braiteh, F. S.; Loriot, Y.; Zambrano, C. C.; Bellmunt, J.; Burris, H. A.; Teng, S. M.; Shen, X.; Koeppen, H.; Hegde, P. S.; Chen, D. S.; Petrylak, D. P. Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). J. Clin. Oncol., 2014, 32(Suppl. 15), 5011.
[http://dx.doi.org/10.1200/jco.2014.32.15_suppl.5011]
[120]
Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668.
[http://dx.doi.org/10.1038/s41577-020-0306-5]
[121]
He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res, 2020, 30(8), 660-669.
[http://dx.doi.org/10.1038/s41422-020-0343-4]
[122]
Jeong, S.; Park, S. H. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw., 2020, 20(1), e3.
[http://dx.doi.org/10.4110/in.2020.20.e3]
[123]
Qin, S.; Xu, L.; Yi, M.; Yu, S.; Wu, K.; Luo, S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol. Cancer, 2019, 18(1), 155.
[http://dx.doi.org/10.1186/s12943-019-1091-2]
[124]
Graydon, C. G.; Mohideen, S.; Fowke, K. R. LAG3's enigmatic mechanism of action. Front Immunol., 2021, 11, 615317.
[http://dx.doi.org/10.3389/fimmu.2020.615317]
[125]
Zahm, C.D.; Moseman, J.E.; Delmastro, L.E.; G Mcneel, D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. OncoImmunology, 2021, 10(1), 1912892.
[http://dx.doi.org/10.1080/2162402X.2021.1912892] [PMID: 33996265]
[126]
Harjunpää, H.; Guillerey, C. TIGIT as an emerging immune checkpoint. Clin. Exp. Immunol., 2020, 200(2), 108-119.
[http://dx.doi.org/10.1111/cei.13407] [PMID: 31828774]
[127]
Chauvin, J.M.; Zarour, H.M. TIGIT in cancer immunotherapy. J. Immunother. Cancer, 2020, 8(2), e000957.
[http://dx.doi.org/10.1136/jitc-2020-000957] [PMID: 32900861]
[128]
Hung, A.L.; Maxwell, R.; Theodros, D.; Belcaid, Z.; Mathios, D.; Luksik, A.S.; Kim, E.; Wu, A.; Xia, Y.; Garzon-Muvdi, T.; Jackson, C.; Ye, X.; Tyler, B.; Selby, M.; Korman, A.; Barnhart, B.; Park, S.M.; Youn, J.I.; Chowdhury, T.; Park, C.K.; Brem, H.; Pardoll, D.M.; Lim, M. TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. OncoImmunology, 2018, 7(8), e1466769.
[http://dx.doi.org/10.1080/2162402X.2018.1466769] [PMID: 30221069]
[129]
Wolf, Y.; Anderson, A. C.; Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol., 2019, 20(3), 173-185.
[http://dx.doi.org/10.1038/s41577-019-0224-6]
[130]
Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med., 2010, 207(10), 2175-2186.
[http://dx.doi.org/10.1084/jem.20100637] [PMID: 20819923]
[131]
Ni, L.; Dong, C. New B7 Family checkpoints in human cancers. Mol. Cancer Ther., 2017, 16(7), 1203-1211.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0761] [PMID: 28679835]
[132]
Zhou, W.T.; Jin, W.L. B7-H3/CD276: An emerging cancer immunotherapy. Front. Immunol., 2021, 12, 701006.
[http://dx.doi.org/10.3389/fimmu.2021.701006] [PMID: 34349762]
[133]
Wikenheiser, D.J.; Stumhofer, J.S. ICOS Co-Stimulation: Friend or Foe? Front. Immunol., 2016, 7(AUG), 304.
[http://dx.doi.org/10.3389/FIMMU.2016.00304/BIBTEX] [PMID: 27559335]
[134]
Khayyamian, S.; Hutloff, A.; Büchner, K.; Gräfe, M.; Henn, V.; Kroczek, R.A.; Mages, H.W. ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 6198-6203.
[http://dx.doi.org/10.1073/pnas.092576699] [PMID: 11983910]
[135]
Huang, X.; Zhang, X.; Li, E.; Zhang, G.; Wang, X.; Tang, T.; Bai, X.; Liang, T. VISTA: An immune regulatory protein checking tumor and immune cells in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 83.
[http://dx.doi.org/10.1186/s13045-020-00917-y] [PMID: 32600443]
[136]
Yum, J.I.; Hong, Y.K. Terminating cancer by blocking VISTA as a novel immunotherapy: Hasta la vista, baby. Front. Oncol., 2021, 11, 658488.
[http://dx.doi.org/10.3389/fonc.2021.658488] [PMID: 33937071]
[137]
Hosseinkhani, N.; Derakhshani, A.; Shadbad, M. A.; Argentiero, A.; Racanelli, V.; Kazemi, T.; Mokhtarzadeh, A.; Brunetti, O.; Silvestris, N.; Baradaran, B. The role of V-domain Ig suppressor of T cell activation (VISTA) in cancer therapy: Lessons learned and the road ahead. Front Immunol., 2021, 12, 676181.
[http://dx.doi.org/10.3389/fimmu.2021.676181]
[138]
Huard, B.; Prigent, P.; Tournier, M.; Bruniquel, D.; Triebel, F. CD4/major histocompatibility complex class II interaction analyzed with CD4- and lymphocyte activation gene-3 (LAG-3)-Ig fusion proteins. Eur. J. Immunol., 1995, 25(9), 2718-2721.
[http://dx.doi.org/10.1002/eji.1830250949] [PMID: 7589152]
[139]
Xu, F.; Liu, J.; Liu, D.; Liu, B.; Wang, M.; Hu, Z.; Du, X.; Tang, L.; He, F. LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res., 2014, 74(13), 3418-3428.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-2690] [PMID: 24769443]
[140]
Das, M.; Zhu, C.; Kuchroo, V. K. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev., 2017, 276(1), 97-111.
[http://dx.doi.org/10.1111/imr.12520]
[141]
Ganjalikhani Hakemi, M.; Jafarinia, M.; Azizi, M.; Rezaeepoor, M.; Isayev, O.; Bazhin, A. V. The role of TIM-3 in hepatocellular carcinoma: A promising target for immunotherapy? Front Oncol., 2020, 10, 601661.
[http://dx.doi.org/10.3389/fonc.2020.601661]
[142]
Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; Eaton, D.L.; Grogan, J.L. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell, 2014, 26(6), 923-937.
[http://dx.doi.org/10.1016/j.ccell.2014.10.018] [PMID: 25465800]
[143]
Chauvin, J.M.; Pagliano, O.; Fourcade, J.; Sun, Z.; Wang, H.; Sander, C.; Kirkwood, J.M.; Chen, T.H.; Maurer, M.; Korman, A.J.; Zarour, H.M.; Maurer, M.; Korman, A.J.; Zarour, H.M. TIGIT and PD-1 impair tumor antigen-specific CD8+> T cells in melanoma patients. J. Clin. Invest., 2015, 125(5), 2046-2058.
[http://dx.doi.org/10.1172/JCI80445] [PMID: 25866972]
[144]
Joller, N.; Hafler, J.P.; Brynedal, B.; Kassam, N.; Spoerl, S.; Levin, S.D.; Sharpe, A.H.; Kuchroo, V.K. Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J. Immunol., 2011, 186(3), 1338-1342.
[http://dx.doi.org/10.4049/jimmunol.1003081] [PMID: 21199897]
[145]
Vonderheide, R.H.; Glennie, M.J. Agonistic CD40 antibodies and cancer therapy. Clin. Cancer Res., 2013, 19(5), 1035-1043.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2064] [PMID: 23460534]
[146]
Byrne, K.T.; Vonderheide, R.H. CD40 stimulation obviates innate sensors and drives T cell immunity in cancer. Cell Rep., 2016, 15(12), 2719-2732.
[http://dx.doi.org/10.1016/j.celrep.2016.05.058] [PMID: 27292635]
[147]
Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’Byrne, K.; Kulasinghe, A. Immune checkpoint inhibitor based cancer immunotherapy: Timeline of progress. Curr. Oncol., 2022, 29, 3044-3060.
[148]
FDA. FDA approves cemiplimab-rwlc for locally advanced and metastatic basal cell carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-cemiplimab-rwlc-locally-advanced-and-metastatic-basal-cell-carcinoma (Accessed on: January 28 2022).
[149]
EPR. First immunotherapy for advanced basal cell carcinoma approved in US. Available from: https://www.europeanpharmaceuticalreview.com/news/142524/libtayo-first-immunotherapy-for-advanced-basal-cell-carcinoma-approved-in-us/ (Accessed on: January 28 2022).
[150]
FDA. FDA grants accelerated approval to pembrolizumab for locally recurrent unresectable or metastatic triple negative breast cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-locally-recurrent-unresectable-or-metastatic-triple (Accessed on: January 28 2022).
[151]
FDA. FDA approves nivolumab and ipilimumab for unresectable malignant pleural mesothelioma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-and-ipilimumab-unresectable-malignant-pleural-mesothelioma
[152]
Nakajima, E. C.; Vellanki, P. J.; Larkins, E.; Chatterjee, S.; Mishra-Kalyani, P. S.; Bi, Y.; Qosa, H.; Liu, J.; Zhao, H.; Biable, M.; Hotaki, L. T.; Shen, Y. L.; Pazdur, R.; Beaver, J. A.; Singh, H.; Donoghue, M. FDA approval summary: Nivolumab in combination with ipilimumab for the treatment of unresectable malignant pleural mesothelioma. Clin. Cancer Res., 2021, 28(3), 446-451.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1466]
[153]
FDA. FDA approves atezolizumab for BRAF V600 unresectable or metastatic melanoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-braf-v600-unresectable-or-metastatic-melanoma (Accessed on: January 28 2022).
[154]
FDA. FDA approves avelumab for urothelial carcinoma maintenance treatment. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-avelumab-urothelial-carcinoma-maintenance-treatment (Accessed on: January 28 2022).
[155]
FDA. FDA Approves Pembrolizumab for the First-Line Treatment of MSI-H/dMMR Colorectal Cancer - The ASCO Post. Available from: https://ascopost.com/issues/july-10-2020/fda-approves-pembrolizumab-for-the-first-line-treatment-of-msi-hdmmr-colorectal-cancer/ (Accessed on: January 28 2022).
[156]
Casak, S.J.; Marcus, L.; Fashoyin-Aje, L.; Mushti, S.L.; Cheng, J.; Shen, Y.L.; Pierce, W.F.; Her, L.; Goldberg, K.B.; Theoret, M.R.; Kluetz, P.G.; Pazdur, R.; Lemery, S.J. FDA Approval Summary: Pembrolizumab for the first-line treatment of patients with MSI-H/dMMR advanced unresectable or metastatic colorectal carcinoma. Clin. Cancer Res., 2021, 27(17), 4680-4684.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0557] [PMID: 33846198]
[157]
FDA. FDA approves pembrolizumab for cutaneous squamous cell carcinoma. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-cutaneous-squamous-cell-carcinoma (Accessed on: January 28 2022).
[158]
Bristol Myers Squibb. U.S. Food and Drug Administration Approves Opdivo® (nivolumab) for the Treatment of Patients with Advanced Esophageal Squamous Cell Carcinoma (ESCC) After Prior Fluoropyrimidine- and Platinum-based Chemotherapy. Available from: https://news. bms.com/news/corporate-financial/2020/US- Food-and- Drug-Administration-Approves-Opdivo-nivolumab-for- the-Treatment-of-Patients-with-Advanced-Esophageal- Squamous-Cell-Carcinoma-ESCC-After-Prior-Fluoropyrimidine--and-Platinum-based-Chemotherapy/default.aspx (Accessed on: January 28 2022).
[159]
FDA. FDA approves nivolumab for esophageal squamous cell carcinoma. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-nivolumab-esophageal-squamous-cell-carcinoma (Accessed on: January 28 2022).
[160]
Castet, F.; Willoughby, C.E.; Haber, P.K.; Llovet, J.M. Atezolizumab plus bevacizumab: A novel breakthrough in hepatocellular carcinoma. Clin. Cancer Res., 2021, 27(7), 1827-1829.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-4706] [PMID: 33472912]
[161]
Casak, S.J.; Donoghue, M.; Fashoyin-Aje, L.; Jiang, X.; Rodriguez, L.; Shen, Y.L.; Xu, Y.; Jiang, X.; Liu, J.; Zhao, H.; Pierce, W.F.; Mehta, S.; Goldberg, K.B.; Theoret, M.R.; Kluetz, P.G.; Pazdur, R.; Lemery, S.J. FDA Approval Summary: Atezolizumab Plus Bevacizumab for the treatment of patients with advanced unresectable or metastatic hepatocellular carcinoma. Clin. Cancer Res., 2021, 27(7), 1836-1841.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3407] [PMID: 33139264]
[162]
FDA. FDA approves durvalumab for extensive-stage small cell lung cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-durvalumab-extensive-stage-small-cell-lung-cancer (Accessed on: January 28 2022).
[163]
National Cancer Institute. Pembrolizumab approved for esophageal cancer. 2019. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2019/pembrolizumab-esophageal-fda-approval (Accessed on: January 28 2022).
[164]
FDA. FDA approves pembrolizumab for first-line treatment of head and neck squamous cell carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first- line-treatment-head-and-neck-squamous-cell-carcinoma (Accessed on: January 28 2022).
[165]
Stenger, M. Pembrolizumab in First-Line Treatment of Head/Neck Squamous Cell Carcinoma - The ASCO Post. Available from: https://ascopost.com/issues/september-10-2019/pembrolizumab-in-first-line-treatment-of- headneck-squamous-cell-carcinoma/ (Accessed on: January 28 2022).
[166]
FDA. FDA approves avelumab plus axitinib for renal cell carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-avelumab-plus-axitinib-renal-cell-carcinoma (Accessed on: January 28 2022).
[167]
Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui, S.Y.; Funke, R.; Husain, A.; Winer, E.P.; Loi, S.; Emens, L.A. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N. Engl. J. Med., 2018, 379(22), 2108-2121.
[http://dx.doi.org/10.1056/NEJMoa1809615] [PMID: 30345906]
[168]
FDA. FDA approves atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple-negative breast cancer. Available from: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negative (Accessed on: January 28 2022).
[169]
Franzoi, M.A.; De Azambuja, E. Atezolizumab in metastatic triple-negative breast cancer: IMpassion130 and 131 trials - how to explain different results? ESMO Open, 2020, 5(6), e001112.
[http://dx.doi.org/10.1136/esmoopen-2020-001112]
[170]
FDA. FDA Approves Nivolumab With Ipilimumab for Renal Cell Carcinoma. Cancer Therapy Advisor, Available from: https://www.cancertherapyadvisor.com/home/cancer-topics/renal-cell-carcinoma/fda-approves-nivolumab-with-ipilimumab-for-renal-cell-carcinoma/ (Accessed on: January 28 2022).
[171]
FDA. FDA approves nivolumab plus ipilimumab combination for intermediate or poor-risk advanced renal cell carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-plus-ipilimumab-combination-intermediate-or-poor-risk-advanced-renal-cell (Accessed on: January 28 2022).
[172]
FDA. FDA approves durvalumab after chemoradiation for unresectable stage III NSCLC. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-durvalumab-after-chemoradiation-unresectable-stage-iii-nsclc (Accessed on: January 28 2022).
[173]
FDA. FDA grants accelerated approval to pembrolizumab for advanced gastric cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer (Accessed on: January 28 2022).
[174]
FDA. FDA grants accelerated approval to nivolumab for HCC previously treated with sorafenib. FDA, Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-nivolumab-hcc-previously-treated-sorafenib (Accessed on: January 28 2022).
[175]
FDA. Nivolumab approved for hepatocellular carcinoma. Oncol. Times, 2017, 39(21), 38-38.
[http://dx.doi.org/10.1097/01.COT.0000527191.27807.ab]
[176]
Bristol Myers Squibb. U.S. Food and Drug Administration Expands Approval of Yervoy® (ipilimumab) to Include Pediatric Patients 12 Years and Older with Unresectable or Metastatic Melanoma. Available from: https://news.bms.com/news/details/2017/US-Food-and-Drug-Administration-Expands-Approval-of-Yervoy-ipilimumab-to-Include- Pediatric-Patients-12-Years-and-Older-with-Unresectable-or-Metastatic-Melanoma/default.aspx (Accessed on: January 28 2022).
[177]
FDA. FDA Expands Approval of Ipilimumab to Pediatric Patients 12 Years and Older - The ASCO Post. Available from: https://ascopost.com/issues/october-10-2017/fda-expands-approval-of-ipilimumab-to-pediatric-patients-12-years-and-older/ (Accessed on: January 28 2022).
[178]
FDA. FDA grants nivolumab accelerated approval for MSI-H or dMMR colorectal cancer. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approval-msi-h-or-dmmr-colorectal-cancer (Accessed on: January 28 2022).
[179]
Grössmann, N. HASH(0x559f42fe78d8). 2017.
[180]
FDA. FDA grants accelerated approval to pembrolizumab for first tissue/site agnostic indication. Available from: https://www.fda.gov/drugs/resources-information-approved- drugs/fda-grants-accelerated-approval-pembrolizumab- first-tissuesite-agnostic-indication (Accessed on: January 28 2022).
[181]
Marcus, L.; Lemery, S.J.; Keegan, P.; Pazdur, R. FDA Approval Summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin. Cancer Res., 2019, 25(13), 3753-3758.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-4070] [PMID: 30787022]
[182]
FDA. Pembrolizumab (Keytruda): Advanced or Metastatic Urothelial Carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda-advanced-or-metastatic-urothelial-carcinoma (Accessed on: January 28 2022).
[183]
Suzman, D.L.; Agrawal, S.; Ning, Y.M.; Maher, V.E.; Fernandes, L.L.; Karuri, S.; Tang, S.; Sridhara, R.; Schroeder, J.; Goldberg, K.B.; Ibrahim, A.; McKee, A.E.; Pazdur, R.; Beaver, J.A. FDA Approval Summary: Atezolizumab or Pembrolizumab for the treatment of patients with advanced urothelial carcinoma ineligible for Cisplatin-containing chemotherapy. Oncologist, 2019, 24(4), 563-569.
[http://dx.doi.org/10.1634/theoncologist.2018-0084] [PMID: 30541754]
[184]
FDA. FDA approves nivolumab for adjuvant treatment of urothelial carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-nivolumab-adjuvant-treatment-urothelial-carcinoma (Accessed on: January 28 2022).
[185]
National Cancer Institute. FDA approves nivolumab for bladder cancer. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/fda-nivolumab-bladder (Accessed on: January 28 2022).
[186]
FDA. Durvalumab (Imfinzi). Available from: https://www.fda.gov/drugs/resources-information-approved- drugs/durvalumab-imfinzi (Accessed on: January 28 2022).
[187]
FDA. FDA grants accelerated approval to avelumab for urothelial carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-avelumab-urothelial-carcinoma (Accessed on: January 28 2022).
[188]
National Cancer Institute. Avelumab first approved drug for merkel cell carcinoma. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/avelumab-fda-merkel-cell (Accessed on: January 28 2022).
[189]
FDA. Avelumab (BAVENCIO). Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/avelumab-bavencio (Accessed on: January 28 2022).
[190]
National Cancer Institute. Pembrolizumab Approved for Hodgkin Lymphoma. National Cancer Institute, Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2017/fda-pembrolizumab-hodgkin-lymphoma (Accessed on: January 28 2022).
[191]
FDA. Pembrolizumab (KEYTRUDA) for classical Hodgkin lymphoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda-classical-hodgkin-lymphoma (Accessed on: January 28 2022).
[192]
FDA. Atezolizumab (TECENTRIQ). Available from: https://www.fda.gov/drugs/resources-information-approved- drugs/atezolizumab-tecentriq (Accessed on: January 28 2022).
[193]
Bristol Myers Squibb. Bristol-Myers Squibb’s Opdivo (nivolumab) + Yervoy (ipilimumab) Regimen Receives Expanded FDA Approval in Unresectable or Metastatic Melanoma Across BRAF Status. Available from: https://news.bms.com/news/details/2016/Bristol-Myers-Squibbs-Opdivo-nivolumab--Yervoy-ipilimumab-Regimen-Receives-Expanded-FDA-Approval-in-Unresectable-or-Metastatic-Melanoma-Across-BRAF-Status1/default.aspx (Accessed on: January 28 2022).
[194]
FDA. Pembrolizumab (Keytruda). Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/pembrolizumab-keytruda (Accessed on: January 28 2022).
[195]
National Cancer Institute. FDA Approves Nivolumab for Head and Neck Cancer. Available from: https://www.cancer.gov/news-events/cancer-currents-blog/2016/fda-nivolumab-scchn (Accessed on: January 28 2022).
[196]
FDA. Atezolizumab for Urothelial Carcinoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/atezolizumab-urothelial-carcinoma (Accessed on: January 28 2022).
[197]
Kasamon, Y.L.; de Claro, R.A.; Wang, Y.; Shen, Y.L.; Farrell, A.T.; Pazdur, R. FDA approval summary: Nivolumab for the treatment of relapsed or progressive classical Hodgkin Lymphoma. Oncologist, 2017, 22(5), 585-591.
[http://dx.doi.org/10.1634/theoncologist.2017-0004] [PMID: 28438889]
[198]
FDA. Nivolumab (Opdivo) for Hodgkin Lymphoma. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/nivolumab-opdivo-hodgkin-lymphoma (Accessed on: January 28 2022).
[199]
Xu, J.X.; Maher, V.E.; Zhang, L.; Tang, S.; Sridhara, R.; Ibrahim, A.; Kim, G.; Pazdur, R. FDA Approval Summary: Nivolumab in Advanced Renal Cell Carcinoma After Anti-Angiogenic Therapy and Exploratory Predictive Biomarker Analysis. Oncologist, 2017, 22(3), 311-317.
[http://dx.doi.org/10.1634/theoncologist.2016-0476] [PMID: 28232599]
[200]
FDA. FDA Approves Ipilimumab in Adjuvant Treatment of Stage III Melanoma - The ASCO Post. Available from: https://ascopost.com/issues/november-10-2015/fda-approves-ipilimumab-in-adjuvant-treatment-of-stage-iii-melanoma/ (Accessed on: January 28 2022).
[201]
Postow, M.A.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.; McDermott, D.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; Shaheen, M.; Ernstoff, M.S.; Minor, D.; Salama, A.K.; Taylor, M.; Ott, P.A.; Rollin, L.M.; Horak, C.; Gagnier, P.; Wolchok, J.D.; Hodi, F.S. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med., 2015, 372(21), 2006-2017.
[http://dx.doi.org/10.1056/NEJMoa1414428] [PMID: 25891304]
[202]
Bristol Myers Squibb. Bristol-Myers Squibb Receives Approval from the U.S. Food and Drug Administration for the Opdivo (nivolumab) + Yervoy (ipilimumab) Regimen in BRAF V600 Wild-Type Unresectable or Metastatic Melanoma. Available from: https://news.bms.com/news/details/2015/Bristol-Myers-Squibb-Receives-Approval-from-the-US-Food-and-Drug-Administration-for-the-Opdivo-nivolumab--Yervoy-ipilimumab-Regimen-in-BRAF-V600-Wild-Type-Unresectable-or-Metastatic-Melanoma/default.aspx (Accessed on: January 28 2022).
[203]
The ASCO Post. FDA Grants Accelerated Approval to Nivolumab in Combination With Ipilimumab in BRAF V600 Wild-Type, Unresectable, or Metastatic Melanoma - The ASCO Post. Available from: https://ascopost.com/News/33900 (Accessed on: 2022 -01 -28).
[204]
FDA. FDA approves Merck’s Keytruda for advanced lung cancer. Available from: https://www.biospectrumasia.com/news/34/3593/fda-approves-mercks-keytruda-for-advanced-lung-cancer.html (Accessed on: January 28 2022).
[205]
Patil, P.D.; Burotto, M.; Velcheti, V. Biomarkers for immune-related toxicities of checkpoint inhibitors: current progress and the road ahead. Expert Rev. Mol. Diagn., 2018, 18(3), 297-305.
[http://dx.doi.org/10.1080/14737159.2018.1440209] [PMID: 29430978]
[206]
Jia, X.H.; Geng, L.Y.; Jiang, P.P.; Xu, H.; Nan, K.J.; Yao, Y.; Jiang, L.L.; Sun, H.; Qin, T.J.; Guo, H. The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. J. Exp. Clin. Cancer Res., 2020, 39(1), 284.
[http://dx.doi.org/10.1186/s13046-020-01749-x]
[207]
Hommes, J.W.; Verheijden, R.J.; Suijkerbuijk, K.P.M.; Hamann, D. Biomarkers of checkpoint inhibitor induced immune-related adverse events-A comprehensive review. Front Oncol., 2021, 10, 585311.
[http://dx.doi.org/10.3389/fonc.2020.585311]
[208]
Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168.
[http://dx.doi.org/10.1056/NEJMra1703481] [PMID: 29320654]
[209]
Haanen, J.; Ernstoff, M.S.; Wang, Y.; Menzies, A.M.; Puzanov, I.; Grivas, P.; Larkin, J.; Peters, S.; Thompson, J.A.; Obeid, M. Autoimmune diseases and immune-checkpoint inhibitors for cancer therapy: Review of the literature and personalized risk-based prevention strategy. Ann. Oncol., 2020, 31(6), 724-744.
[http://dx.doi.org/10.1016/j.annonc.2020.03.285] [PMID: 32194150]
[210]
Dougan, M. Checkpoint blockade toxicity and immune homeostasis in the gastrointestinal tract. Front Immunol., 2017, 8, 1547.
[http://dx.doi.org/10.3389/fimmu.2017.01547]
[211]
Zhang, Y.; Yang, W.; Li, W.; Zhao, Y. NLRP3 inflammasome: Checkpoint connecting innate and adaptive immunity in autoimmune diseases. Front Immunol., 2021, 12, 732933.
[http://dx.doi.org/10.3389/fimmu.2021.732933]
[212]
Heydari, Z.; Moeinvaziri, F.; Agarwal, T.; Pooyan, P.; Shpichka, A.; Maiti, T. K.; Timashev, P.; Baharvand, H.; Vosough, M. Organoids: A novel modality in disease modeling. Biodes Manuf., 2021, 4(4), 689-716.
[http://dx.doi.org/10.1007/s42242-021-00150-7]
[213]
Yin, X.; Mead, B. E.; Safaee, H.; Langer, R.; Karp, J. M.; Levy, O. Engineering stem cell organoids. Cell Stem Cell, 2016, 18(1), 25-38.
[http://dx.doi.org/10.1016/j.stem.2015.12.005]
[214]
Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell, 2007, 1(1), 39-49.
[http://dx.doi.org/10.1016/j.stem.2007.05.012] [PMID: 18371333]
[215]
Ho, B. X.; Pek, N. M. Q.; Soh, B. S. Disease modeling using 3D organoids derived from human induced pluripotent stem cells. Int. J. Mol. Sci., 2018, 19(4), 936.
[http://dx.doi.org/10.3390/ijms19040936]
[216]
Rossi, G.; Manfrin, A.; Lutolf, M.P. Progress and potential in organoid research. Nat. Rev. Genet., 2018, 19(11), 671-687.
[http://dx.doi.org/10.1038/s41576-018-0051-9] [PMID: 30228295]
[217]
Kim, J.; Koo, B.K.; Knoblich, J.A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol., 2020, 21(10), 571-584.
[http://dx.doi.org/10.1038/s41580-020-0259-3]
[218]
Kumar, V.; Patel, S.; Tcyganov, E.; Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol., 2016, 37(3), 208-220.
[http://dx.doi.org/10.1016/j.it.2016.01.004]
[219]
Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; Vonderheide, R.H.; Pittet, M.J.; Jain, R.K.; Zou, W.; Howcroft, T.K.; Woodhouse, E.C.; Weinberg, R.A.; Krummel, M.F. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med., 2018, 24(5), 541-550.
[http://dx.doi.org/10.1038/s41591-018-0014-x] [PMID: 29686425]
[220]
Labani-Motlagh, A.; Ashja-Mahdavi, M.; Loskog, A. The tumor microenvironment: A milieu hindering and obstructing antitumor immune responses. Front Immunol., 2020, 11, 940.
[http://dx.doi.org/10.3389/fimmu.2020.00940]
[221]
Marvel, D.; Gabrilovich, D.I. Myeloid-derived suppressor cells in the tumor microenvironment: Expect the unexpected. J. Clin. Invest., 2015, 125(9), 3356-3364.
[http://dx.doi.org/10.1172/JCI80005] [PMID: 26168215]
[222]
Jain, K.K. Personalized Immuno-Oncology. Med. Princ. Pract., 2021, 30(1), 1-16.
[http://dx.doi.org/10.1159/000319928] [PMID: 32841942]
[223]
Nakajima, H.; Nakatsura, T. Towards the era of immune checkpoint inhibitors and personalized cancer immunotherapy. Immunol. Med., 2021, 44(1), 10-15.
[http://dx.doi.org/10.1080/25785826.2020.1785654] [PMID: 32643578]
[224]
Joshi, S.; Durden, D. L. Combinatorial approach to improve cancer immunotherapy: Rational drug design strategy to simultaneously hit multiple targets to kill tumor cells and to activate the immune system. J. Oncol., 2019, 2019, 5245034.
[http://dx.doi.org/10.1155/2019/5245034]
[225]
Hellmann, M.D.; Friedman, C.F.; Wolchok, J.D. Combinatorial Cancer Immunotherapies. In: Advances in Immunology; Academic Press Inc., 2016; Vol. 130, pp. 251-277.
[http://dx.doi.org/10.1016/bs.ai.2015.12.005]
[226]
Bashir, B.; Wilson, M.A. Novel immunotherapy combinations. Curr. Oncol. Rep., 2019, 21(11), 96.
[http://dx.doi.org/10.1007/s11912-019-0851-x] [PMID: 31696332]
[227]
Vilgelm, A.E.; Johnson, D.B.; Richmond, A. Combinatorial approach to cancer immunotherapy: Strength in numbers. J. Leukoc. Biol., 2016, 100(2), 275-290.
[http://dx.doi.org/10.1189/jlb.5RI0116-013RR] [PMID: 27256570]
[228]
Seliger, B. Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity. Front Immunol., 2019, 10, 999.
[http://dx.doi.org/10.3389/fimmu.2019.00999]
[229]
Zarour, H.M. Reversing T-cell dysfunction and exhaustion in cancer. Clin. Cancer Res., 2016, 22(8), 1856-1864.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1849] [PMID: 27084739]
[230]
Jiang, Y.; Li, Y.; Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis., 2015, 6(6), e1792.
[http://dx.doi.org/10.1038/cddis.2015.162]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy