Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Chemotherapeutic Effects of Boswellic Acid Against Human Glioblastoma Multiform: A Comprehensive Review

Author(s): Soraiya Ebrahimpour-Koujan, Yaser Khajebishak, Kamran Roudini, Nima Baziar, Samaneh Shabani and Laleh Payahoo*

Volume 13, Issue 5, 2023

Published on: 27 October, 2022

Article ID: e031022209466 Pages: 8

DOI: 10.2174/2210315513666221003120940

Price: $65

Abstract

Background: Glioblastoma multiform (GBM) is a malignant subgroup of gliomas. Due to the natural resistance of GBM cells to radio-and chemotherapy usually, recurrence occurs 6-9 months after diagnosis.

Objective: This paper reviewed the beneficial effects of Boswellic acid (BA) in adjacent therapy for GBM, based on its possible molecular mechanisms.

Methods: In this review paper, all papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using apoptosis, Boswellic acid, cancer, glioblastoma multiform, inflammation, oxidative stress as keywords.

Results: The most important compounds of BAs are alpha-boswellic acid, beta- boswellic acid, acetylbeta- boswellic acid, acetyl-alpha- boswellic acid, and 11-keto-beta- boswellic acid (KBA). Antiinflammation, reduction of skin irritation, anti-tumor, anti-cancer, anxiolytic, and anti-phlogistic are the main properties of BAs. Boswellic acid is recognized as a chemopreventive agent. Boswellic acid exerts its effects mainly via various mechanisms such as induction of apoptosis and cytotoxic effects on malignant cells, activation of caspases, up-regulation of genes expression with potential antiapoptotic and pro-survival properties, inhibition the signaling and activity pathway of nuclear factorkappa B (NF-κB) and enhancing poly (ADP)-ribose polymerase (PARP) cleavage. Boswellic acid inhibits the signaling pathway of 5 and 12-lipoxygenase (5, 12 LOX), and cyclooxygenase-2 (COX-2), which are considered triggers in the production of inflammatory cytokines such as tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β).

Conclusion: Future clinical trials are needed to identify the interaction between Boswellic acid and the severity of GBM and to define the safe dose and effective duration of supplementation.

Keywords: Apoptosis, Boswellic acid, cancer, glioblastoma multiform, inflammation.

Graphical Abstract

[1]
Stoyanov, G.S.; Dzhenkov, D.L. On the concepts and history of glioblastoma multiforme - morphology, genetics and epigenetics. Folia Med., 2018, 60(1), 48-66.
[http://dx.doi.org/10.1515/folmed-2017-0069] [PMID: 29668458]
[2]
Urbańska, K.; Sokołowska, J.; Szmidt, M.; Sysa, P. Review glioblastoma multiforme – an overview. Contemp. Oncol., 2014, 5(5), 307-312.
[http://dx.doi.org/10.5114/wo.2014.40559] [PMID: 25477751]
[3]
Iacob, G.; Dinca, E.B. Current data and strategy in glioblastoma multiforme. J. Med. Life, 2009, 2(4), 386-393.
[PMID: 20108752]
[4]
Lapointe, S.; Perry, A.; Butowski, N.A. Primary brain tumours in adults. Lancet, 2018, 392(10145), 432-446.
[http://dx.doi.org/10.1016/S0140-6736(18)30990-5] [PMID: 30060998]
[5]
Stoyanov, G.S.; Dzhenkov, D.; Ghenev, P.; Iliev, B.; Enchev, Y.; Tonchev, A.B. Cell biology of glioblastoma multiforme: From basic science to diagnosis and treatment. Med. Oncol., 2018, 35(3), 27-37.
[http://dx.doi.org/10.1007/s12032-018-1083-x] [PMID: 29387965]
[6]
Kleihues, P.; Louis, D.N.; Scheithauer, B.W.; Rorke, L.B.; Reifenberger, G.; Burger, P.C.; Cavenee, W.K. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol., 2002, 61(3), 215-225.
[http://dx.doi.org/10.1093/jnen/61.3.215] [PMID: 11895036]
[7]
Wen, J.; Chen, W.; Zhu, Y.; Zhang, P. Clinical features associated with the efficacy of chemotherapy in patients with glioblastoma (GBM): A surveillance, epidemiology, and end results (SEER) analysis. BMC Cancer, 2021, 21(1), 81-91.
[http://dx.doi.org/10.1186/s12885-021-07800-0] [PMID: 33468109]
[8]
Simińska, D.; Korbecki, J.; Kojder, K.; Kapczuk, P.; Fabiańska, M.; Gutowska, I.; Machoy-Mokrzyńska, A.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of anthropometric factors in glioblastoma multiforme-Literature review. Brain Sci., 2021, 11(1), 116.
[http://dx.doi.org/10.3390/brainsci11010116] [PMID: 33467126]
[9]
Samara, K.A.; Al Aghbari, Z.; Abusafia, A. GLIMPSE: A glioblastoma prognostication model using ensemble learning-A surveillance, epidemiology, and end results study. Health Inf. Sci. Syst., 2021, 9(1), 5-18.
[http://dx.doi.org/10.1007/s13755-020-00134-4] [PMID: 33489102]
[10]
Chen, B.; Chen, C.; Zhang, Y.; Xu, J. Recent incidence trend of elderly patients with glioblastoma in the United States, 2000-2017. BMC Cancer, 2021, 21(1), 54-65.
[http://dx.doi.org/10.1186/s12885-020-07778-1] [PMID: 33430813]
[11]
Park, Y.W.; Choi, D.; Park, J.E.; Ahn, S.S.; Kim, H.; Chang, J.H.; Kim, S.H.; Kim, H.S.; Lee, S.K. Differentiation of recurrent glioblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Sci. Rep., 2021, 11(1), 2913-2922.
[http://dx.doi.org/10.1038/s41598-021-82467-y] [PMID: 33536499]
[12]
Kanderi, T.; Gupta, V. Glioblastoma Multiforme; StatPearls Publishing©: Treasure Island, (FL), 2021.
[13]
Yee, P.P.; Wei, Y.; Kim, S.Y.; Lu, T.; Chih, S.Y.; Lawson, C.; Tang, M.; Liu, Z.; Anderson, B.; Thamburaj, K.; Young, M.M.; Aregawi, D.G.; Glantz, M.J.; Zacharia, B.E.; Specht, C.S.; Wang, H.G.; Li, W. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun., 2020, 11(1), 5424-5446.
[http://dx.doi.org/10.1038/s41467-020-19193-y] [PMID: 33110073]
[14]
Lim-Fat, M.J.; Song, K.W.; Iorgulescu, J.B.; Andersen, B.M.; Forst, D.A.; Jordan, J.T.; Gerstner, E.R.; Reardon, D.A.; Wen, P.Y.; Arrillaga-Romany, I. Clinical, radiological and genomic features and targeted therapy in BRAF V600E mutant adult glioblastoma. J. Neurooncol., 2021, 152(3), 515-522.
[http://dx.doi.org/10.1007/s11060-021-03719-5] [PMID: 33646525]
[15]
Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent glioblastoma: From molecular landscape to new treatment perspectives. Cancers, 2020, 13(1), 47.
[http://dx.doi.org/10.3390/cancers13010047] [PMID: 33375286]
[16]
Kim, H.J.; Park, J.W.; Lee, J.H. Genetic architectures and cell-of-origin in glioblastoma. Front. Oncol., 2021, 10615400
[http://dx.doi.org/10.3389/fonc.2020.615400] [PMID: 33552990]
[17]
Bollaert, E.; Johanns, M.; Herinckx, G.; de Rocca Serra, A.; Vandewalle, V.A.; Havelange, V.; Rider, M.H.; Vertommen, D.; Demoulin, J.B. HBP1 phosphorylation by AKT regulates its transcriptional activity and glioblastoma cell proliferation. Cell. Signal., 2018, 44, 158-170.
[http://dx.doi.org/10.1016/j.cellsig.2018.01.014] [PMID: 29355710]
[18]
Liu, K.W.; Feng, H.; Bachoo, R.; Kazlauskas, A.; Smith, E.M.; Symes, K.; Hamilton, R.L.; Nagane, M.; Nishikawa, R.; Hu, B.; Cheng, S.Y. SHP-2/PTPN11 mediates gliomagenesis driven by PDGFRA and INK4A/ARF aberrations in mice and humans. J. Clin. Invest., 2011, 121(3), 905-917.
[http://dx.doi.org/10.1172/JCI43690] [PMID: 21393858]
[19]
Brennan, C.W.; Verhaak, R.G.W.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Barnholtz-Sloan, J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Van Meir, E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; O’Neill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L.; Benz, C.; Barnholtz-Sloan, J.; Barrett, W.; Ostrom, Q.; Wolinsky, Y.; Black, K.L.; Bose, B.; Boulos, P.T.; Boulos, M.; Brown, J.; Czerinski, C.; Eppley, M.; Iacocca, M.; Kempista, T.; Kitko, T.; Koyfman, Y.; Rabeno, B.; Rastogi, P.; Sugarman, M.; Swanson, P.; Yalamanchii, K.; Otey, I.P.; Liu, Y.S.; Xiao, Y.; Auman, J.T.; Chen, P-C.; Hadjipanayis, A.; Lee, E.; Lee, S.; Park, P.J.; Seidman, J.; Yang, L.; Kucherlapati, R.; Kalkanis, S.; Mikkelsen, T.; Poisson, L.M.; Raghunathan, A.; Scarpace, L.; Bernard, B.; Bressler, R.; Eakin, A.; Iype, L.; Kreisberg, R.B.; Leinonen, K.; Reynolds, S.; Rovira, H.; Thorsson, V.; Shmulevich, I.; Annala, M.J.; Penny, R.; Paulauskis, J.; Curley, E.; Hatfield, M.; Mallery, D.; Morris, S.; Shelton, T.; Shelton, C.; Sherman, M.; Yena, P.; Cuppini, L.; DiMeco, F.; Eoli, M.; Finocchiaro, G.; Maderna, E.; Pollo, B.; Saini, M.; Balu, S.; Hoadley, K.A.; Li, L.; Miller, C.R.; Shi, Y.; Topal, M.D.; Wu, J.; Dunn, G.; Giannini, C.; O’Neill, B.P.; Aksoy, B.A.; Antipin, Y.; Borsu, L.; Berman, S.H.; Brennan, C.W.; Cerami, E.; Chakravarty, D.; Ciriello, G.; Gao, J.; Gross, B.; Jacobsen, A.; Ladanyi, M.; Lash, A.; Liang, Y.; Reva, B.; Sander, C.; Schultz, N.; Shen, R.; Socci, N.D.; Viale, A.; Ferguson, M.L.; Chen, Q-R.; Demchok, J.A.; Dillon, L.A.L.; Shaw, K.R.M.; Sheth, M.; Tarnuzzer, R.; Wang, Z.; Yang, L.; Davidsen, T.; Guyer, M.S.; Ozenberger, B.A.; Sofia, H.J.; Bergsten, J.; Eckman, J.; Harr, J.; Myers, J.; Smith, C.; Tucker, K.; Winemiller, C.; Zach, L.A.; Ljubimova, J.Y.; Eley, G.; Ayala, B.; Jensen, M.A.; Kahn, A.; Pihl, T.D.; Pot, D.A.; Wan, Y.; Eschbacher, J.; Foltz, G.; Hansen, N.; Hothi, P.; Lin, B.; Shah, N.; Yoon, J.; Lau, C.; Berens, M.; Ardlie, K.; Beroukhim, R.; Carter, S.L.; Cherniack, A.D.; Noble, M.; Cho, J.; Cibulskis, K.; DiCara, D.; Frazer, S.; Gabriel, S.B.; Gehlenborg, N.; Gentry, J.; Heiman, D.; Kim, J.; Jing, R.; Lander, E.S.; Lawrence, M.; Lin, P.; Mallard, W.; Meyerson, M.; Onofrio, R.C.; Saksena, G.; Schumacher, S.; Sougnez, C.; Stojanov, P.; Tabak, B.; Voet, D.; Zhang, H.; Zou, L.; Getz, G.; Dees, N.N.; Ding, L.; Fulton, L.L.; Fulton, R.S.; Kanchi, K-L.; Mardis, E.R.; Wilson, R.K.; Baylin, S.B.; Andrews, D.W.; Harshyne, L.; Cohen, M.L.; Devine, K.; Sloan, A.E.; VandenBerg, S.R.; Berger, M.S.; Prados, M.; Carlin, D.; Craft, B.; Ellrott, K.; Goldman, M.; Goldstein, T.; Grifford, M.; Haussler, D.; Ma, S.; Ng, S.; Salama, S.R.; Sanborn, J.Z.; Stuart, J.; Swatloski, T.; Waltman, P.; Zhu, J.; Foss, R.; Frentzen, B.; Friedman, W.; McTiernan, R.; Yachnis, A.; Hayes, D.N.; Perou, C.M.; Zheng, S.; Vegesna, R.; Mao, Y.; Akbani, R.; Aldape, K.; Bogler, O.; Fuller, G.N.; Liu, W.; Liu, Y.; Lu, Y.; Mills, G.; Protopopov, A.; Ren, X.; Sun, Y.; Wu, C-J.; Yung, W.K.A.; Zhang, W.; Zhang, J.; Chen, K.; Weinstein, J.N.; Chin, L.; Verhaak, R.G.W.; Noushmehr, H.; Weisenberger, D.J.; Bootwalla, M.S.; Lai, P.H.; Triche, T.J., Jr; Van Den Berg, D.J.; Laird, P.W.; Gutmann, D.H.; Lehman, N.L.; VanMeir, E.G.; Brat, D.; Olson, J.J.; Mastrogianakis, G.M.; Devi, N.S.; Zhang, Z.; Bigner, D.; Lipp, E.; McLendon, R. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[20]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 2008, 455(7216), 1061-1068.
[http://dx.doi.org/10.1038/nature07385] [PMID: 18772890]
[21]
Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.M.; Gallia, G.L.; Olivi, A.; McLendon, R.; Rasheed, B.A.; Keir, S.; Nikolskaya, T.; Nikolsky, Y.; Busam, D.A.; Tekleab, H.; Diaz, L.A., Jr; Hartigan, J.; Smith, D.R.; Strausberg, R.L.; Marie, S.K.N.; Shinjo, S.M.O.; Yan, H.; Riggins, G.J.; Bigner, D.D.; Karchin, R.; Papadopoulos, N.; Parmigiani, G.; Vogelstein, B.; Velculescu, V.E.; Kinzler, K.W. An integrated genomic analysis of human glioblastoma multiforme. Science, 2008, 321(5897), 1807-1812.
[http://dx.doi.org/10.1126/science.1164382] [PMID: 18772396]
[22]
Lee, J.H.; Lee, J.E.; Kahng, J.Y.; Kim, S.H.; Park, J.S.; Yoon, S.J.; Um, J.Y.; Kim, W.K.; Lee, J.K.; Park, J.; Kim, E.H.; Lee, J.H.; Lee, J.H.; Chung, W.S.; Ju, Y.S.; Park, S.H.; Chang, J.H.; Kang, S.G.; Lee, J.H. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature, 2018, 560(7717), 243-247.
[http://dx.doi.org/10.1038/s41586-018-0389-3] [PMID: 30069053]
[23]
Naqvi, A.A.T.; Jairajpuri, D.S.; Hussain, A.; Hasan, G.M.; Alajmi, M.F.; Hassan, M.I. Impact of glioblastoma multiforme associated mutations on the structure and function of MAP/microtubule affinity regulating kinase 4. J. Biomol. Struct. Dyn., 2021, 39(5), 1781-1794.
[http://dx.doi.org/10.1080/07391102.2020.1738959] [PMID: 32141394]
[24]
Cohen, A.L.; Colman, H. Glioma biology and molecular markers. Cancer Treat. Res., 2015, 163, 15-30.
[http://dx.doi.org/10.1007/978-3-319-12048-5_2] [PMID: 25468223]
[25]
Park, A.K.; Kim, P.; Ballester, L.Y.; Esquenazi, Y.; Zhao, Z. Subtype-specific signaling pathways and genomic aberrations associated with prognosis of glioblastoma. Neuro-oncol., 2019, 21(1), 59-70.
[http://dx.doi.org/10.1093/neuonc/noy120] [PMID: 30053126]
[26]
Stichel, D.; Ebrahimi, A.; Reuss, D.; Schrimpf, D.; Ono, T.; Shirahata, M.; Reifenberger, G.; Weller, M.; Hänggi, D.; Wick, W.; Herold-Mende, C.; Westphal, M.; Brandner, S.; Pfister, S.M.; Capper, D.; Sahm, F.; von Deimling, A. Distribution of EGFR amplification, combined chromosome 7 gain and chromosome 10 loss, and TERT promoter mutation in brain tumors and their potential for the reclassification of IDHwt astrocytoma to glioblastoma. Acta Neuropathol., 2018, 136(5), 793-803.
[http://dx.doi.org/10.1007/s00401-018-1905-0] [PMID: 30187121]
[27]
el-Azouzi, M.; Chung, R.Y.; Farmer, G.E.; Martuza, R.L.; Black, P.M.; Rouleau, G.A.; Hettlich, C.; Hedley-Whyte, E.T.; Zervas, N.T.; Panagopoulos, K. Loss of distinct regions on the short arm of chromosome 17 associated with tumorigenesis of human astrocytomas. Proc. Natl. Acad. Sci. USA, 1989, 86(18), 7186-7190.
[http://dx.doi.org/10.1073/pnas.86.18.7186] [PMID: 2571151]
[28]
Aghi, M.K.; Batchelor, T.T.; Louis, D.N.; Barker, F.G., II; Curry, W.T. Jr Decreased rate of infection in glioblastoma patients with allelic loss of chromosome 10q. J. Neurooncol., 2009, 93(1), 115-120.
[http://dx.doi.org/10.1007/s11060-009-9826-3] [PMID: 19430887]
[29]
Parsa, A.T.; Waldron, J.S.; Panner, A.; Crane, C.A.; Parney, I.F.; Barry, J.J.; Cachola, K.E.; Murray, J.C.; Tihan, T.; Jensen, M.C.; Mischel, P.S.; Stokoe, D.; Pieper, R.O. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med., 2007, 13(1), 84-88.
[http://dx.doi.org/10.1038/nm1517] [PMID: 17159987]
[30]
Limam, S.; Missaoui, N.; Abdessayed, N.; Mestiri, S.; Selmi, B.; Mokni, M.; Yacoubi, M.T. Prognostic significance of MGMT methylation and expression of MGMT, P53, EGFR, MDM2 and PTEN in glioblastoma multiforme. Ann. Biol. Clin., 2019, 77(3), 307-317.
[http://dx.doi.org/10.1684/abc.2019.1448] [PMID: 31131831]
[31]
Wang, T.J.; Huang, M.S.; Hong, C.Y.; Tse, V.; Silverberg, G.D.; Hsiao, M. Comparisons of tumor suppressor p53, p21, and p16 gene therapy effects on glioblastoma tumorigenicity in situ. Biochem. Biophys. Res. Commun., 2001, 287(1), 173-180.
[http://dx.doi.org/10.1006/bbrc.2001.5565] [PMID: 11549271]
[32]
Mentlein, R.; Held-Feindt, J. Angiogenesis factors in gliomas: a new key to tumour therapy? Naturwissenschaften, 2003, 90(9), 385-394.
[http://dx.doi.org/10.1007/s00114-003-0449-9] [PMID: 14504780]
[33]
An, Z.; Aksoy, O.; Zheng, T.; Fan, Q.W.; Weiss, W.A. Epidermal growth factor receptor and EGFRvIII in glioblastoma: signaling pathways and targeted therapies. Oncogene, 2018, 37(12), 1561-1575.
[http://dx.doi.org/10.1038/s41388-017-0045-7] [PMID: 29321659]
[34]
Rich, J.N.; Hans, C.; Jones, B.; Iversen, E.S.; McLendon, R.E.; Rasheed, B.K.A.; Dobra, A.; Dressman, H.K.; Bigner, D.D.; Nevins, J.R.; West, M. Gene expression profiling and genetic markers in glioblastoma survival. Cancer Res., 2005, 65(10), 4051-4058.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3936] [PMID: 15899794]
[35]
Zhang, R.; Shi, Z.; Chen, H.; Chung, N.Y.F.; Yin, Z.; Li, K.K.W.; Chan, D.T.M.; Poon, W.S.; Wu, J.; Zhou, L.; Chan, A.K.; Mao, Y.; Ng, H.K. Biomarker-based prognostic stratification of young adult glioblastoma. Oncotarget, 2016, 7(4), 5030-5041.
[http://dx.doi.org/10.18632/oncotarget.5456] [PMID: 26452024]
[36]
Nagpal, J.; Jamoona, A.; Gulati, N.D.; Mohan, A.; Braun, A.; Murali, R.; Jhanwar-Uniyal, M. Revisiting the role of p53 in primary and secondary glioblastomas. Anticancer Res., 2006, 26(6C), 4633-4639.
[PMID: 17214319]
[37]
Takahashi, Y.; Makino, K.; Nakamura, H.; Hide, T.; Yano, S.; Kamada, H.; Kuratsu, J.I. Clinical characteristics and pathogenesis of cerebellar glioblastoma. Mol. Med. Rep., 2014, 10(5), 2383-2388.
[http://dx.doi.org/10.3892/mmr.2014.2549] [PMID: 25199771]
[38]
Elsherbiny, M. Chen, H.; Emara, M.; Godbout, R.ω-3 and ω-6 fatty acids modulate conventional and atypical protein kinase C activities in a brain fatty acid binding protein dependent manner in glioblastoma multiforme. Nutrients, 2018, 10(4), 454-465.
[http://dx.doi.org/10.3390/nu10040454] [PMID: 29642372]
[39]
Kim, S. Jing, K.; Shin, S.; Jeong, S.; Han, S.H.; Oh, H.; Yoo, Y.S.; Han, J.; Jeon, Y.J.; Heo, J.Y.; Kweon, G.R.; Park, S.K.; Park, J.I.; Wu, T.; Lim, K. ω3-polyunsaturated fatty acids induce cell death through apoptosis and autophagy in glioblastoma cells: In vitro and in vivo. Oncol. Rep., 2018, 39(1), 239-246.
[PMID: 29192322]
[40]
Panagopoulos, A.T.; Gomes, R.N.; Almeida, F.G.; da Costa Souza, F.; Veiga, J.C.E.; Nicolaou, A.; Colquhoun, A. The prostanoid pathway contains potential prognostic markers for glioblastoma. Prostaglandins Other Lipid Mediat., 2018, 137, 52-62.
[http://dx.doi.org/10.1016/j.prostaglandins.2018.06.003] [PMID: 29966699]
[41]
Wang, X.; Chen, Y.; Zhang, S.; Zhang, L.; Liu, X.; Zhang, L.; Li, X.; Chen, D. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis. J. Neurooncol., 2015, 125(2), 277-285.
[http://dx.doi.org/10.1007/s11060-015-1919-6] [PMID: 26334317]
[42]
Qiu, J.; Shi, Z.; Jiang, J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov. Today, 2017, 22(1), 148-156.
[http://dx.doi.org/10.1016/j.drudis.2016.09.017] [PMID: 27693715]
[43]
Yang, L.; Zhang, H. Expression of cytosolic phospholipase A2 Alpha in glioblastoma is associated with resistance to chemotherapy. Am. J. Med. Sci., 2018, 356(4), 391-398.
[http://dx.doi.org/10.1016/j.amjms.2018.06.019] [PMID: 30360807]
[44]
Kang, K.B.; Wang, T.T.; Woon, C.T.; Cheah, E.S.; Moore, X.L.; Zhu, C.; Wong, M.C. Enhancement of glioblastoma radioresponse by a selective COX-2 inhibitor celecoxib: Inhibition of tumor angiogenesis with extensive tumor necrosis. Int. J. Radiat. Oncol. Biol. Phys., 2007, 67(3), 888-896.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.055] [PMID: 17293239]
[45]
Kesari, S.; Schiff, D.; Henson, J.W.; Muzikansky, A.; Gigas, D.C.; Doherty, L.; Batchelor, T.T.; Longtine, J.A.; Ligon, K.L.; Weaver, S.; Laforme, A.; Ramakrishna, N.; Black, P.M.; Drappatz, J.; Ciampa, A.; Folkman, J.; Kieran, M.; Wen, P.Y. Phase II study of temozolomide, thalidomide, and celecoxib for newly diagnosed glioblastoma in adults. Neuro-oncol., 2008, 10(3), 300-308.
[http://dx.doi.org/10.1215/15228517-2008-005] [PMID: 18403492]
[46]
Noch, E.K.; Ramakrishna, R.; Magge, R. Challenges in the treatment of glioblastoma: multisystem mechanisms of therapeutic resistance. World Neurosurg., 2018, 116, 505-517.
[http://dx.doi.org/10.1016/j.wneu.2018.04.022] [PMID: 30049045]
[47]
Adhikaree, J.; Moreno-Vicente, J.; Kaur, A.P.; Jackson, A.M.; Patel, P.M. Resistance mechanisms and barriers to successful immunotherapy for treating glioblastoma. Cells, 2020, 9(2), 263.
[http://dx.doi.org/10.3390/cells9020263] [PMID: 31973059]
[48]
Shanmugam, M.K.; Nguyen, A.H.; Kumar, A.P.; Tan, B.K.H.; Sethi, G. Targeted inhibition of tumor proliferation, survival, and metastasis by pentacyclic triterpenoids: Potential role in prevention and therapy of cancer. Cancer Lett., 2012, 320(2), 158-170.
[http://dx.doi.org/10.1016/j.canlet.2012.02.037] [PMID: 22406826]
[49]
Moussaieff, A.; Mechoulam, R. Boswellia resin: From religious ceremonies to medical uses; a review of in-vitro, in-vivo and clinical trials. J. Pharm. Pharmacol., 2009, 61(10), 1281-1293.
[http://dx.doi.org/10.1211/jpp/61.10.0003] [PMID: 19814859]
[50]
Poeckel, D.; Werz, O. Boswellic acids: Biological actions and molecular targets. Curr. Med. Chem., 2006, 13(28), 3359-3369.
[http://dx.doi.org/10.2174/092986706779010333] [PMID: 17168710]
[51]
Upaganlawar, A.; Ghule, B. Pharmacological activities of Boswellia serrata roxb. Ethanobotenical Leaflets., 2009, 13, 766-774.
[52]
Haroyan, A.; Mukuchyan, V.; Mkrtchyan, N.; Minasyan, N.; Gasparyan, S.; Sargsyan, A.; Narimanyan, M.; Hovhannisyan, A. Efficacy and safety of curcumin and its combination with boswellic acid in osteoarthritis: A comparative, randomized, double-blind, placebo-controlled study. BMC Complement. Altern. Med., 2018, 18(1), 7.
[http://dx.doi.org/10.1186/s12906-017-2062-z] [PMID: 29316908]
[53]
Kirste, S.; Treier, M.; Wehrle, S.J.; Becker, G.; Abdel-Tawab, M.; Gerbeth, K.; Hug, M.J.; Lubrich, B.; Grosu, A.L.; Momm, F. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors. Cancer, 2011, 117(16), 3788-3795.
[http://dx.doi.org/10.1002/cncr.25945] [PMID: 21287538]
[54]
Zhang, X.; Ding, K.; Wang, J.; Li, X.; Zhao, P. Chemoresistance caused by the microenvironment of glioblastoma and the corresponding solutions. Biomed. Pharmacother., 2019, 109, 39-46.
[http://dx.doi.org/10.1016/j.biopha.2018.10.063] [PMID: 30391707]
[55]
Eyre, H.; Hills, M.J.; Watkins, S.D. Compositions containing Boswellia extracts. US Patent 6589516B1, 2003.
[56]
Yu, G.; Xiang, W.; Zhang, T.; Zeng, L.; Yang, K.; Li, J. Effectiveness of Boswellia and Boswellia extract for osteoarthritis patients: A systematic review and meta-analysis. BMC Complement Med Ther, 2020, 20(1), 225-241.
[http://dx.doi.org/10.1186/s12906-020-02985-6] [PMID: 32680575]
[57]
Catanzaro, D.; Rancan, S.; Orso, G.; Dall’Acqua, S.; Brun, P.; Giron, M.C.; Carrara, M.; Castagliuolo, I.; Ragazzi, E.; Caparrotta, L.; Montopoli, M. Boswellia serrata preserves intestinal epithelial barrier from oxidative and inflammatory damage. PLoS One, 2015, 10(5)e0125375
[http://dx.doi.org/10.1371/journal.pone.0125375] [PMID: 25955295]
[58]
Liu, J.J.; Nilsson, A.; Oredsson, S.; Badmaev, V.; Zhao, W.Z.; Duan, R.D. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent on Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinogenesis, 2002, 23(12), 2087-2093.
[http://dx.doi.org/10.1093/carcin/23.12.2087] [PMID: 12507932]
[59]
Suhail, M.M.; Wu, W.; Cao, A.; Mondalek, F.G.; Fung, K.M.; Shih, P.T.; Fang, Y.T.; Woolley, C.; Young, G.; Lin, H.K. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. BMC Complement. Altern. Med., 2011, 11(1), 129-143.
[http://dx.doi.org/10.1186/1472-6882-11-129] [PMID: 22171782]
[60]
Agrawal, S.S.; Saraswati, S.; Mathur, R.; Pandey, M. Antitumor properties of Boswellic acid against Ehrlich ascites cells bearing mouse. Food Chem. Toxicol., 2011, 49(9), 1924-1934.
[http://dx.doi.org/10.1016/j.fct.2011.04.007] [PMID: 21513768]
[61]
Nathoo, N.; Barnett, G.H.; Golubic, M. The eicosanoid cascade: Possible role in gliomas and meningiomas. J. Clin. Pathol., 2004, 57(1), 6-13.
[http://dx.doi.org/10.1136/jcp.57.1.6] [PMID: 14693827]
[62]
Kumar, A.; Shah, B.A.; Singh, S.; Hamid, A.; Singh, S.K.; Sethi, V.K.; Saxena, A.K.; Singh, J.; Taneja, S.C. Acyl derivatives of boswellic acids as inhibitors of NF-κB and STATs. Bioorg. Med. Chem. Lett., 2012, 22(1), 431-435.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.112] [PMID: 22123322]
[63]
Takada, Y.; Ichikawa, H.; Badmaev, V.; Aggarwal, B.B. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J. Immunol., 2006, 176(5), 3127-3140.
[http://dx.doi.org/10.4049/jimmunol.176.5.3127] [PMID: 16493072]
[64]
Fang, Z.Z.; Nian, Y.; Li, W.; Wu, J.J.; Ge, G.B.; Dong, P.P.; Zhang, Y.Y.; Qiu, M.H.; Liu, L.; Yang, L. Cycloartane triterpenoids from Cimicifuga yunnanensis induce apoptosis of breast cancer cells (MCF7) via p53-dependent mitochondrial signaling pathway. Phytother. Res., 2011, 25(1), 17-24.
[http://dx.doi.org/10.1002/ptr.3222] [PMID: 20564500]
[65]
Marefati, N.; Beheshti, F.; Memarpour, S.; Bayat, R.; Naser Shafei, M.; Sadeghnia, H.R.; Ghazavi, H.; Hosseini, M. The effects of acetyl-11-keto-β-boswellic acid on brain cytokines and memory impairment induced by lipopolysaccharide in rats. Cytokine, 2020, 131(131)155107
[http://dx.doi.org/10.1016/j.cyto.2020.155107] [PMID: 32380425]
[66]
Hostanska, K.; Daum, G.; Saller, R. Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res., 2002, 22(5), 2853-2862.
[PMID: 12530009]
[67]
Barbarisi, M.; Barbarisi, A.; De Sena, G.; Armenia, E.; Aurilio, C.; Libutti, M.; Iaffaioli, R.V.; Botti, G.; Maurea, N.; Quagliariello, V. Boswellic acid has anti-inflammatory effects and enhances the anticancer activities of Temozolomide and Afatinib, an irreversible ErbB family blocker, in human glioblastoma cells. Phytother. Res., 2019, 33(6), 1670-1682.
[http://dx.doi.org/10.1002/ptr.6354] [PMID: 30924205]
[68]
Bredel, M. Anticancer drug resistance in primary human brain tumors. Brain Res. Brain Res. Rev., 2001, 35(2), 161-204.
[http://dx.doi.org/10.1016/S0165-0173(01)00045-5] [PMID: 11336781]
[69]
Joki, T.; Heese, O.; Nikas, D.C.; Bello, L.; Zhang, J.; Kraeft, S.K.; Seyfried, N.T.; Abe, T.; Chen, L.B.; Carroll, R.S.; Black, P.M. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res., 2000, 60(17), 4926-4931.
[PMID: 10987308]
[70]
Conti, S.; Vexler, A.; Edry-Botzer, L.; Kalich-Philosoph, L.; Corn, B.W.; Shtraus, N.; Meir, Y.; Hagoel, L.; Shtabsky, A.; Marmor, S.; Earon, G.; Lev-Ari, S. Combined acetyl-11-keto-β-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoS One, 2018, 13(7)e0198627
[http://dx.doi.org/10.1371/journal.pone.0198627] [PMID: 29969452]
[71]
Winking, M.; Sarikaya, S.; Rahmanian, A.; Jödicke, A.; Böker, D.K. Boswellic acids inhibit glioma growth: A new treatment option? J. Neurooncol., 2000, 46(2), 97-103.
[http://dx.doi.org/10.1023/A:1006387010528] [PMID: 10894362]
[72]
Glaser, T.; Winter, S.; Groscurth, P.; Safayhi, H.; Sailer, E-R.; Ammon, H.P.T.; Schabet, M.; Weller, M. Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Br. J. Cancer, 1999, 80(5-6), 756-765.
[http://dx.doi.org/10.1038/sj.bjc.6690419] [PMID: 10360653]
[73]
Schneider, H.; Weller, M. Boswellic acid activity against glioblastoma stem-like cells. Oncol. Lett., 2016, 11(6), 4187-4192.
[http://dx.doi.org/10.3892/ol.2016.4516] [PMID: 27313764]
[74]
Streffer, J.R.; Bitzer, M.; Schabet, M.; Dichgans, J.; Weller, M. Response of radiochemotherapy-associated cerebral edema to a phytotherapeutic agent, H15. Neurology, 2001, 56(9), 1219-1221.
[http://dx.doi.org/10.1212/WNL.56.9.1219] [PMID: 11342692]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy