Generic placeholder image

Current Chromatography

Editor-in-Chief

ISSN (Print): 2213-2406
ISSN (Online): 2213-2414

Research Article

HPLC Fingerprint Analysis Coupled with Multivariate Analysis for Quality Assessment of Picrorhiza kurroa Rhizomes

Author(s): Nikunj Dhirubhai Patel*, Rinkal N. Patel, Kunjal L. Vegad and Niranjan S. Kanaki

Volume 9, Issue 1, 2022

Published on: 24 November, 2022

Article ID: e300922209383 Pages: 8

DOI: 10.2174/2213240609666220930121841

Price: $65

Abstract

Background: Kutki, the dried rhizome of Picrorhiza kurroa Royle ex Benth belonging to the family of Scrophulariaceae, has been utilized globally for liver ailments.

Objective: Comprehensive use of kutki needs to evaluate its role as a quality control tool for discrimination of kutki samples, and therefore an effective HPLC fingerprinting method was established.

Methods: Reverse-phase high-performance liquid chromatography with photodiode array (RPHPLC- PDA) detection method coupled with multivariate analysis was developed, which was modest, consistent and, accurate for classification of 11 kutki samples including authentic Picrorhiza kurroa rhizomes from the market of Ahmedabad and Gandhinagar in Gujarat, India.

Results: The method was validated for various parameters like precision, reproducibility, and stability. The lowest value of the % relative standard deviations (RSD) was 1.31%. Chromatographic fingerprint profiles of 11 kutki samples, including authenticated samples, were obtained by this method, which showed a total of 28 peaks, and 9 peaks were important among them. Chemometric techniques like PCA and HCA were applied to identify the kutki samples.The Samples of kutki could be exquisitely differentiated into two clusters.

Conclusion: HPLC-PDA method coupled with multivariate analysis divulged that chromatographic fingerprint analysis was reliable and effective for quality assessment and discrimination of kutki samples.

Keywords: Picrorhiza kurroa, HPLC-PDA, fingerprinting, PCA, HCA, quality assessment

Graphical Abstract

[1]
Katoch, M.; Fazli, I.S.; Suri, K.A.; Ahuja, A.; Qazi, G.N. Effect of altitude on picroside content in core collections of Picrorhiza kurrooa from the north western Himalayas. J. Nat. Med., 2011, 65(3-4), 578-582.
[http://dx.doi.org/10.1007/s11418-010-0491-9] [PMID: 21347670]
[2]
Kapahi, B.K.; Srivastava, T.N.; Sarin, Y.K. Description of Picrorhiza kurroa, a source of the Ayurvedic drug Kutaki. Int. J. Pharmacogn. Phytochem. Res., 1993, 31(3), 217-222.
[3]
Sagar, P.K. Adulteration and substitution in endangered, ASU herbal medicinal plants of India, their legal status, scientific screening of active phytochemical constituents. Int. J. Pharm. Sci. Res., 2014, 5(9), 4023.
[4]
Ganie, S.H.; Ali, Z.; Das, S.; Srivastava, P.S.; Sharma, M.P. Identification of Shankhpushpi by morphological, chemical and molecular markers. European J. Biotechnol. Biosci., 2015, 3(2), 1-9.
[5]
Sharma, N.; Pathania, V.; Singh, B.; Gupta, R.C. Intraspecific variability of main phytochemical compounds in Picrorhiza kurroa Royle ex Benth. from North Indian higher altitude Himalayas using reversed-phase high-performance liquid chromatography. J. Med. Plants Res., 2012, 6(16), 3181-3187.
[6]
Bohraa, N.; Prasad, P.; Tewari, G.; Tewaria, L.M. Variation in picrotin and picrotoxin content of Picrorhizakurroa Royle ex Benth rhi-zomes from Garhwal Himalaya. J. Indian Chem. Soc., 2015, 92, 375-378.
[7]
Gong, F.; Liang, Y.Z.; Xie, P.S.; Chau, F.T. Information theory applied to chromatographic fingerprint of herbal medicine for quality con-trol. J. Chromatogr. A, 2003, 1002(1-2), 25-40.
[http://dx.doi.org/10.1016/S0021-9673(03)00648-4] [PMID: 12885076]
[8]
Liang, Y.; Xie, P.; Chan, K. Quality control of herbal medicines. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2004, 812(1-2), 53-70.
[http://dx.doi.org/10.1016/S1570-0232(04)00676-2] [PMID: 15556488]
[9]
Patel, N.; Kanaki, N. Geographical classification of Adhatoda vasica based on HPLC fingerprint analysis coupled with multivariate analy-sis. J. Pharmacogn. Phytochem., 2018, 7(4), 2488-2490.
[10]
Patel, N.; Kanaki, N.; Movaliya, V. Assessment of diurnal variation in Ocimum sanctum Linn. by gas chromatographic fingerprint analysis coupled with chemometric methods. Plant Sci. Today, 2018, 5(3), 131-134.
[http://dx.doi.org/10.14719/pst.2018.5.3.413]
[11]
Wagner, H.; Bladt, S. Plant drug analysis: A thin layer chromatography atlas; Springer Science & Business Media, 1996.
[http://dx.doi.org/10.1007/978-3-642-00574-9]
[12]
Feng, X.; Kong, W.; Wei, J.; Ou-Yang, Z.; Yang, M. HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger. Pharm. Biol., 2014, 52(3), 362-367.
[http://dx.doi.org/10.3109/13880209.2013.837493] [PMID: 24171804]
[13]
Donno, D.; Boggia, R.; Zunin, P.; Cerutti, A.K.; Guido, M.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Phytochemical fingerprint and chemometrics for natural food preparation pattern recognition: an innovative technique in food supplement quality control. J. Food Sci. Technol., 2016, 53(2), 1071-1083.
[http://dx.doi.org/10.1007/s13197-015-2115-6] [PMID: 27162387]
[14]
Patel, P.R.; Patel, N.D.; Patel, S.G.; Kanaki, N.S.; Patel, A.J. Fingerprint Analysis of Vitex Negundo by HPLC Coupled with Multi-components Analysis. Curr. Pharm. Anal., 2020, 16(6), 743-751.
[http://dx.doi.org/10.2174/1573412915666190312161325]
[15]
Smillie, T.J.; Khan, I.A. A comprehensive approach to identifying and authenticating botanical products. Clin. Pharmacol. Ther., 2010, 87(2), 175-186.
[http://dx.doi.org/10.1038/clpt.2009.287] [PMID: 20032974]
[16]
Pai, S.R.; Roy, S.; Hegde, S.; Hegde, H.V.; Jalalpure, S.S.; Peram, M.R. Resolving identification issues of Saraca asoca from its adulterant and commercial samples using phytochemical markers. Pharmacogn. Mag., 2017, 13(50)(Suppl. 2), 266.
[http://dx.doi.org/10.4103/pm.pm_417_16] [PMID: 28808391]
[17]
Patel, N.D.; Kanaki, N.S. Fingerprint analysis of Shankhpushpi for species discrimination by HPLC coupled with chemometric methods. J. Liq. Chromatogr. Relat. Technol., 2020, 43(13-14), 455-463.
[http://dx.doi.org/10.1080/10826076.2020.1728695]
[18]
Kannel, P.R.; Lee, S.; Kanel, S.R.; Khan, S.P. Chemometric application in classification and assessment of monitoring locations of an ur-ban river system. Anal. Chim. Acta, 2007, 582(2), 390-399.
[http://dx.doi.org/10.1016/j.aca.2006.09.006] [PMID: 17386518]
[19]
Pierce, K.M.; Hope, J.L.; Johnson, K.J.; Wright, B.W.; Synovec, R.E. Classification of gasoline data obtained by gas chromatography using a piecewise alignment algorithm combined with feature selection and principal component analysis. J. Chromatogr. A, 2005, 1096(1-2), 101-110.
[http://dx.doi.org/10.1016/j.chroma.2005.04.078] [PMID: 16301073]
[20]
MacGregor, J.F.; Kourti, T. Statistical process control of multivariate processes. Control Eng. Pract., 1995, 3(3), 403-414.
[http://dx.doi.org/10.1016/0967-0661(95)00014-L]
[21]
Patel, N.D.; Kanaki, N.S. Quality evaluation of the tugaksheeree samples by ATR-FTIR spectroscopy using multicomponent analysis. Nat. Prod. J., 2020, 10, 1-6.
[22]
Patel, N.D.; Kanaki, N.S. Rapid authentication of sitopaladi churna samples by ATR-FTIR spectroscopy using multivariate analysis. Spectrosc. Lett., 2021, 54(6), 405-418.
[http://dx.doi.org/10.1080/00387010.2021.1931784]
[23]
Patel, N.D.; Prajapati, P.N.; Kanaki, N.S. Quality assessment of sitopaladi churna using high-performance liquid chromatography coupled with multivariate analysis. J. Chromatogr. Sci., 2020, 58(10), 961-968.
[http://dx.doi.org/10.1093/chromsci/bmaa070] [PMID: 33015709]
[24]
Patel, N.; Kanaki, N. Arbitrating identification issues of Picrorhiza kurroa samples by ATR- FTIR spectroscopy using multivariate analy-sis. Pharm. Chem. J., 2021, 55(6), 585-590.
[http://dx.doi.org/10.1007/s11094-021-02469-y]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy