Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

First Report on the Antimicrobial, Antioxidant, Antihemolytic and Antiinflammatory Activities of Extracts of Two Apiaceous Species from Eastern Algeria

Author(s): Meriem Elkolli*, Hayat Elkolli and Hocine Laouer

Volume 19, Issue 6, 2023

Published on: 21 November, 2022

Article ID: e300922209347 Pages: 8

DOI: 10.2174/1573407218666220930100949

Price: $65

Abstract

Background: Plants continue to be widely used in Algeria to treat many health disorders; hence, there is a need to find new natural substances of plant origin with effective biological properties.

Objective: The aim of this study was to investigate the bioactivity of two apiaceous species, Daucus gracilis and Carum montanum, growing in Algeria in order to find new uses of local plants that can replace expensive and inaccessible medicines by local people.

Methods: The methanolic extracts (MEs) were prepared in water/methanol solvent. Afterwards, an estimation of total phenolic content (TPC) was made. The MEs were tested for their antimicrobial activities by the disc diffusion test; the antioxidant activity of the MEs alone and their combinations was tested using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the reducing power tests. The antihemolytic effect was tested by the stabilization of the human red blood cell (HRBC) membrane method, and the in vitro antiinflammatory activity was evaluated by the protein denaturation method.

Results: The MEs were found to be high in TP with 149.05 μg/mg in D. gracilis and 101.50 μg/mg in C. montanum. The best antimicrobial activity recorded with B. cereus (9.5mm) was lower than that of gentamicin (GM: 10μg) at 19-20 mm. The MEs exhibited the highest antioxidant activity (IC50=60.09 μg/ml for D. gracilis, 65.04 μg/ml for C. montanum) and reducing power effect, which was strongly concentration-dependent. The extract of D. gracilis exhibited important membrane stabilization, and the inhibition of denaturation was directly related to the concentration; Carum extract was found to be active with an IC50 value of 298.12μg/ml and Daucus with an IC50 value of 554.07μg/ml.

Conclusion: It can be concluded that these two species can be used for food preservation and in herbal medicine after additional toxicity and molecular characterization studies.

Keywords: Carum montanum, Daucus gracilis, Bioactivities, Synergistic activity.

Graphical Abstract

[1]
Benarba, B.; Belabid, L.; Righi, K.; Bekkar, A.; Elouissi, M.; Khaldi, A.; Hamimed, A. Ethnobotanical study of medicinal plants used by traditional healers in Mascara (North West of Algeria). J. Ethnopharmacol., 2015, 175, 626-637.
[http://dx.doi.org/10.1016/j.jep.2015.09.030] [PMID: 26440857]
[2]
Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A review of Algerian medicinal plants used in the treatment of diabetes. J. Ethnopharmacol., 2019, 238111841
[http://dx.doi.org/10.1016/j.jep.2019.111841] [PMID: 30959140]
[3]
Sousa, R.M.O.F.; Cunha, A.C.; Fernandes-Ferreira, M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. Phytochemistry, 2021, 187112714
[http://dx.doi.org/10.1016/j.phytochem.2021.112714] [PMID: 33845406]
[4]
Spinozzi, E.; Maggi, F.; Bonacucina, G.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Canale, A.; Romano, D.; Desneux, N.; Wilke, A.B.B.; Beier, J.C.; Benelli, G. Apiaceae essential oils and their constituents as insecticides against mosquitoes-A review. Ind. Crops Prod., 2021, 171113892
[http://dx.doi.org/10.1016/j.indcrop.2021.113892]
[5]
Hosseini, S.M.; Behbahani, M. Enhancement of probiotics viability and lactic acid production in yogurts treated with Prangos ferulaceae and Carum copticum plant extracts. Biocatal. Agric. Biotechnol., 2021, 35102084
[http://dx.doi.org/10.1016/j.bcab.2021.102084]
[6]
Quezel, P.; Santa, S. Nouvelle flore de l’Algérie et des régions désertiques et méridionales; Centre National de la Recherche Scientifique: Paris, 1963.
[7]
Benyelles, B.; Allali, H.; Dib, M.E.A.; Djabou, N.; Paolini, J.; Costa, J. Chemical composition variability of essential oils of Daucus Gracilis Steinh. from Algeria. Chem. Biodivers., 2017, 14(6)e1600490
[http://dx.doi.org/10.1002/cbdv.201600490] [PMID: 28212458]
[8]
Nadia, B.; Merad-Boussalah, N.; Benyoucef, F.; Zoheir, A.; Muselli, A.; El Amine Dib, M. Anti-inflammatory, antimicrobial and insecticidal properties of Daucus Gracilis Steinh flowers essential oil. Antiinflamm. Antiallergy Agents Med. Chem., 2021, 20(3), 264-270.
[http://dx.doi.org/10.2174/1871523019999201208202319] [PMID: 33292157]
[9]
Laouer, H.; Meriem, E.K.; Prado, S.; Baldovini, N. An antibacterial and antifungal Res., 2009, 23(12), 1726-1730.
[http://dx.doi.org/10.1002/ptr.2820]
[10]
El Kolli, M.; Laouer, H.; El Kolli, H.; Akkal, S.; Sahli, F. Chemical analysis, antimicrobial and anti-oxidative properties of Daucus gracilis essential oil and its mechanism of action. Asian Pac. J. Trop. Biomed., 2016, 6(1), 8-15.
[http://dx.doi.org/10.1016/j.apjtb.2015.08.004]
[11]
Sourabie, T.S.; Nikiema, J.B.; Lega, I.; Nacoulma, O.G.; Guissou, I.P. Etude in vitro de l’activité antibactérienne d’extraits d’une plante de la pharmacopée burkinabé: cas d’Argemone mexicana L. (Papaveraceae). Int. J. Biol. Chem. Sci., 2011, 4(6)
[http://dx.doi.org/10.4314/ijbcs.v4i6.64954]
[12]
Li, H.; Cheng, K.; Wong, C.; Fan, K.; Chen, F.; Jiang, Y. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 2007, 102(3), 771-776.
[http://dx.doi.org/10.1016/j.foodchem.2006.06.022]
[13]
Rahal, K. Standardisation de l’antibiogramme en médecine humaine à l’échelle nationale selon les recommandations de l’OMS, 5th ed.; de laSanté, M. Ed. Alger, 2011.
[14]
Singh, G.; Marimuthu, P.; de Heluani, C.S.; Catalan, C.A.N. Antioxidant and biocidal activities of Carum nigrum (seed) essential oil, oleoresin, and their selected components. J. Agric. Food Chem., 2006, 54(1), 174-181.
[http://dx.doi.org/10.1021/jf0518610] [PMID: 16390196]
[15]
Peyrat-Maillard, M.N.; Bonnely, S.; Rondini, L.; Berset, C. Effect of vitamin E and vitamin C on the antioxidant activity of malt rootlets extracts. Lebensm. Wiss. Technol., 2001, 34(3), 176-182.
[http://dx.doi.org/10.1006/fstl.2001.0752]
[16]
Bougandoura, N.; Bendimerad, N. Evaluation de l’activité antioxydante des extraits aqueux et méthanolique de Satureja calamintha ssp. Nepeta (L.) Briq. Nat. technol.,, 2013, 9, 14-19.
[17]
Chippada, S.C.; Volluri, S.S.; Bammidi, S.R.; Vangalapati, M. In vitro anti inflammatory activity of methanolic extract of Centella asiatica by HRBC membrane stabilisation. Basayan J. Chem, 2011, 4(2), 457-460.
[18]
Alhakmani, F.; Kumar, S.; Khan, S.A. Estimation of total phenolic content, in–vitro antioxidant and anti–inflammatory activity of flowers of Moringa oleifera. Asian Pac. J. Trop. Biomed., 2013, 3(8), 623-627.
[http://dx.doi.org/10.1016/S2221-1691(13)60126-4] [PMID: 23905019]
[19]
Padmashree, A.; Roopa, N.; Semwal, A.D.; Sharma, G.K.; Agathian, G.; Bawa, A.S. Star-anise (Illicium verum) and black caraway (Carum nigrum) as natural antioxidants. Food Chem., 2007, 104(1), 59-66.
[http://dx.doi.org/10.1016/j.foodchem.2006.10.074]
[20]
Thippeswamy, N.B.; Naidu, K.A.; Achur, R.N. Antioxidant and antibacterial properties of phenolic extract from Carum carvi L. J. Pharm. Res., 2013, 7(4), 352-357.
[http://dx.doi.org/10.1016/j.jopr.2013.03.028]
[21]
Bendiabdellah, A.; Dib, M.E.A.; Meliani, N.; Muselli, A.; Nassim, D.; Tabti, B.; Costa, J. Antibacterial activity of Daucus crinitus essential oils along the vegetative life of the plant. J. Chem., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/149502]
[22]
Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol., 2008, 331(11), 865-873.
[http://dx.doi.org/10.1016/j.crvi.2008.07.024] [PMID: 18940702]
[23]
Mohammadi, M.; Masoumipour, F.; Hassanshahian, M.; Jafarinasab, T. Study the antibacterial and antibiofilm activity of Carum copticum against antibiotic-resistant bacteria in planktonic and biofilm forms. Microb. Pathog., 2019, 129, 99-105.
[http://dx.doi.org/10.1016/j.micpath.2019.02.002] [PMID: 30731188]
[24]
Maheshwari, M.; Safar Althubiani, A.; Hasan Abulreesh, H.; Abul Qais, F.; Shavez Khan, M.; Ahmad, I. Bioactive extracts of Carum copticum L. enhances efficacy of ciprofloxacin against MDR enteric bacteria. Saudi J. Biol. Sci., 2019, 26(7), 1848-1855.
[http://dx.doi.org/10.1016/j.sjbs.2017.12.008] [PMID: 31762667]
[25]
Algarra, M.; Fernandes, A.; Mateus, N.; de Freitas, V.; Esteves da Silva, J.C.G.; Casado, J. Anthocyanin profile and antioxidant capacity of black carrots (Daucus carota L. ssp. sativus var. atrorubens Alef.) from Cuevas Bajas, Spain. J. Food Compos. Anal., 2014, 33(1), 71-76.
[http://dx.doi.org/10.1016/j.jfca.2013.11.005]
[26]
Ramesh, C.K.; Raghu, K.L.; Jamuna, K.S.; Govinden, S.J.; Ranghoo-Sanmukhiya, V.M.; Vijay Avin, B.R. Comparative evaluation of antioxidant property in methanol extracts of some common vegetables of India. Ann. Biol. Res., 2011, 2(2), 86-94.
[27]
Shyamala, B.N., Jr; Jamuna, P. Nutritional content and antioxidant properties of pulp waste from Daucus carota and Beta vulgaris. Malays. J. Nutr., 2010, 16(3), 397-408.
[PMID: 22691993]
[28]
Wang, S.; Zhu, F. Dietary antioxidant synergy in chemical and biological systems. Crit. Rev. Food Sci. Nutr., 2017, 57(11), 2343-2357.
[http://dx.doi.org/10.1080/10408398.2015.1046546] [PMID: 26176981]
[29]
Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem., 2011, 59(3), 960-968.
[http://dx.doi.org/10.1021/jf1040977] [PMID: 21222468]
[30]
Djabou, N.; Meliani, N.; Tabti, B. Preliminary phytochemical screening and antioxidant activities of solvent extracts from Daucus aureus Desf., from Algeria. Int. J. Herb. Med., 2013, 1(2), 41-44.
[31]
Liu, D.M.; Sheng, J.W.; Qi, H.M.; Zhang, W.F.; Han, C.M.; Xin, X.L. Antioxidant activity of polysaccharides extracted from Athyrium multidentatum (Doll). Ching. J. Med. Plants Res., 2011, 5(14), 3061-3066.
[32]
Narasimhan, M.K.; Pavithra, S.K.; Krishnan, V.; Chandrasekaran, M. In vitro analysis of antioxidant, antimicrobial and antiproliferative activity of Enteromorpha antenna, Enteromorpha linza and Gracilaria corticata extracts. Jundishapur J. Nat. Pharm. Prod., 2013, 8(4), 151-159.
[http://dx.doi.org/10.17795/jjnpp-11277] [PMID: 24624206]
[33]
Ebrahimzadeh, M.A.; Nabavi, S.M.; Nabavi, S.; Eslami, B.; Rahmani, Z. Antioxidant and antihaemolytic activities of the leaves of Kefe cumin (Laser trilobum) umbelliferae. Trop. J. Pharm. Res., 2010, 9(5), 441-449.
[http://dx.doi.org/10.4314/tjpr.v9i5.61053]
[34]
Thangam, C.; Dhananjayan, R. Antiinflammatory potential of the seeds of Carum copticum Linn. Indian J. Pharmacol., 2003, 35(6), 388.
[35]
Zahin, M.; Ahmad, I.; Aqil, F. Antioxidant and antimutagenic activity of Carum copticum fruit extracts. Toxicol. In Vitro, 2010, 24(4), 1243-1249.
[http://dx.doi.org/10.1016/j.tiv.2010.02.004] [PMID: 20149861]
[36]
Kumar, B.S.A.; Saran, G.S.; Mouna, A.; Kumar, C.N. In vitro anti–inflammatory activity of Tankana churna. Food Feed Res., 2013, 40(1), 17-20.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy