Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Short Communication

High Frequency Repetitive Transcranial Magnetic Stimulation Improves Cognitive Performance Parameters in Patients with Alzheimer’s Disease – An Exploratory Pilot Study

Author(s): Friedrich Leblhuber*, Simon Geisler, Daniela Ehrlich, Kostja Steiner, Katharina Kurz and Dietmar Fuchs

Volume 19, Issue 9, 2022

Published on: 31 October, 2022

Page: [681 - 688] Pages: 8

DOI: 10.2174/1567205019666220920090919

Price: $65

Abstract

Background: Currently available medication for Alzheimer’s disease (AD) slows cognitive decline only temporarily but has failed to bring about long term positive effects. For this slowly progressive neurodegenerative disease, so far, no disease modifying therapy exists.

Objective: The study aims to find out if non-pharmacologic non-invasive neuromodulatory repetitive transcranial magnetic stimulation (rTMS) may offer a new alternative or an add on therapeutic strategy against loss of cognitive functions.

Methods: In this exploratory intervention study, safety and symptom development before and after frontopolar cortex stimulation (FPC) using intermittent theta burst stimulation (iTBS) at 10 subsequent working days was monitored as add-on treatment in 28 consecutive patients with AD. Out of these, 10 randomly selected patients received sham stimulation as a control. Serum concentrations of neurotransmitter precursor amino acids, immune activation and inflammation markers, brain-derived neurotrophic factor (BDNF), and nitrite were measured.

Results: Treatment was well tolerated, and no serious adverse effects were observed. Improvement of cognition was detected by an increase in Mini Mental State Examination score (MMSE; p<0.01, paired rank test) and also by an increase in a modified repeat address phrase test, part of the 6-item cognitive impairment test (p<0.01). A trend to increase the clock drawing test (CDT; p = 0.08) was also found in the verum treated group. Furtheron, in 10 of the AD patients with additional symptoms of depression treated with iTBS, a significant decrease in the HAMD-7 scale (p<0.01) and a trend to lower serum phenylalanine concentrations (p = 0.08) was seen. No changes in the parameters tested were found in the sham treated patients.

Conclusion: Our preliminary results may indicate that iTBS is effective in the treatment of AD. Also a slight influence of iTBS on the metabolism of phenylalanine was found after 10 iTBS sessions. An impact of iTBS to influence the enzyme phenylalanine hydroxylase (PAH), as found in the previous series of treatment resistant depression, could not be seen in our first observational trial in 10 AD patients with comorbidity of depression. Longer treatment periods for several weeks in a higher number of AD patients with depression could cause more intense and disease modifying effects visible in different neurotransmitter concentrations important in the pathogenesis of AD.

Keywords: Alzheimer’s disease, aging, memory impairment, concomitant depression, non-invasive brain stimulation, neurodegenerative disease, intermittent theta burst stimulation, cognitive performance

« Previous
[1]
Nisbet RM, Polanco JC, Ittner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 2015; 129(2): 207-20.
[http://dx.doi.org/10.1007/s00401-014-1371-2] [PMID: 25492702]
[2]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[3]
Leblhuber F, Ehrlich D, Steiner K, et al. The Immunpatho-genesis of Alzheimer’s disease is related to the composition of gut microbiota. Nutrients 2021; 13(2): 361.
[http://dx.doi.org/10.3390/nu13020361] [PMID: 33504065]
[4]
Alzheimer's Association.. Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 26588863]
[5]
Winblad B, Amouyel P, Andrieu S, et al. Defeating Alzheimer’s disease and other dementias: A priority for European science and society. Lancet Neurol 2016; 15(5): 455-532.
[http://dx.doi.org/10.1016/S1474-4422(16)00062-4] [PMID: 26987701]
[6]
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules 2020; 25(24): 5789.
[http://dx.doi.org/10.3390/molecules25245789] [PMID: 33302541]
[7]
Hallett M. Transcranial magnetic stimulation: A primer. Neuron 2007; 55(2): 187-99.
[http://dx.doi.org/10.1016/j.neuron.2007.06.026] [PMID: 17640522]
[8]
Noda Y, Silverstein WK, Barr MS, et al. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: A systematic review. Psychol Med 2015; 45(16): 3411-32.
[http://dx.doi.org/10.1017/S0033291715001609] [PMID: 26349810]
[9]
Liu S, Sheng J, Li B, Zhang X. Recent advances in non-invasive brain stimulation for major depressive disorder. Front Hum Neurosci 2017; 11: 526.
[http://dx.doi.org/10.3389/fnhum.2017.00526] [PMID: 29163106]
[10]
Leblhuber F, Steiner K, Fuchs D. Treatment of patients with geriatric depression with repetitive transcranial magnetic stimulation. J Neural Transm (Vienna) 2019; 126(8): 1105-10.
[http://dx.doi.org/10.1007/s00702-019-02037-5] [PMID: 31250285]
[11]
Leblhuber F, Geisler S, Ehrlich D, et al. Repetitive transcranial magnetic stimulation in the treatment of resistant depression: Changes of specific neurotransmitter precursor amino acids. J Neural Transm (Vienna) 2021; 128(8): 1225-31.
[http://dx.doi.org/10.1007/s00702-021-02363-7] [PMID: 34244826]
[12]
Anderson DN, Wilkinson AM, Abou-Saleh MT, Blair JA. Recovery from depression after electroconvulsive therapy is accompanied by evidence of increased tetrahydrobiopterin-dependent hydroxylation. Acta Psychiatr Scand 1994; 90(1): 10-3.
[http://dx.doi.org/10.1111/j.1600-0447.1994.tb01547.x] [PMID: 7976441]
[13]
Zhao J, Li Z, Cong Y, et al. Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer’s disease patients. Oncotarget 2017; 8(20): 33864-71.
[http://dx.doi.org/10.18632/oncotarget.13060] [PMID: 27823981]
[14]
Cheng J, Fairchild JK, McNerney MW, et al. Repetitive transcranial magnetic stimulation as a treatment for veterans with cognitive impairment and multiple comorbidities. J Alzheimers Dis 2022; 85(4): 1593-600.
[http://dx.doi.org/10.3233/JAD-210349] [PMID: 34958013]
[15]
Zhang M, He T, Wang Q. Effects of non-invasive brain stimulation on multiple system atrophy: A systemic review. Front Neurosci 2021; 15: 771090.
[http://dx.doi.org/10.3389/fnins.2021.771090] [PMID: 34966257]
[16]
Kamble N, Bhattacharya A, Hegde S, et al. Cortical excitability changes as a marker of cognitive impairment in Parkinson’s disease. Behav Brain Res 2022; 422: 113733.
[http://dx.doi.org/10.1016/j.bbr.2022.113733] [PMID: 34998797]
[17]
Wang Q, Zhang D, Zhao YY, Hai H, Ma YW. Effects of high-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex on motor recovery in severe hemiplegic stroke: A randomized clinical trial. Brain Stimul 2020; 13(4): 979-86.
[http://dx.doi.org/10.1016/j.brs.2020.03.020] [PMID: 32380449]
[18]
Krogh S, Jønsson AB, Aagaard P, Kasch H. Efficacy of repetitive transcranial magnetic stimulation for improving lower limb function in individuals with neurological disorders: A systematic review and meta-analysis of randomized sham-controlled trials. J Rehabil Med 2022; 54: jrm00256.
[http://dx.doi.org/10.2340/jrm.v53.1097] [PMID: 34913062]
[19]
Bonnet AM. Involvement of non-dopaminergic pathways in Parkinson’s disease. CNS Drugs 2000; 13(5): 351-64.
[http://dx.doi.org/10.2165/00023210-200013050-00005]
[20]
Widner B, Laich A, Sperner-Unterweger B, Ledochowski M, Fuchs D. Neopterin production, tryptophan degradation, and mental depression-What is the link? Brain Behav Immun 2002; 16(5): 590-5.
[http://dx.doi.org/10.1016/S0889-1591(02)00006-5] [PMID: 12401473]
[21]
Capuron L, Schroecksnadel S, Féart C, et al. Chronic low-grade immune activation in elderly is associated with increased tryptophan catabolism and altered phenylalanine turnover: Role in neuropsychiatric symptomatology. Biol Psychiatry 2011; 70(2): 175-82.
[http://dx.doi.org/10.1016/j.biopsych.2010.12.006] [PMID: 21277567]
[22]
Niimi M, Ishima T, Hashimoto K, Hara T, Yamada N, Abo M. Effect of repetitive transcranial magnetic stimulation on the kynurenine pathway in stroke patients. Neuroreport 2020; 31(9): 629-36.
[http://dx.doi.org/10.1097/WNR.0000000000001438] [PMID: 32427708]
[23]
Morgese MG, Bove M, Di Cesare Mannelli L, et al. Precision medicine in Alzheimer’s disease: Investigating comorbid common biological substrates in the rat model of amyloid beta-induced toxicity. Front Pharmacol 2022; 12: 799561.
[http://dx.doi.org/10.3389/fphar.2021.799561] [PMID: 35046821]
[24]
Morgese MG, Trabace L. Monoaminergic system modulation in depression and Alzheimer’s disease: A new standpoint? Front Pharmacol 2019; 1710: 483.
[http://dx.doi.org/10.3389/fphar.2019.00483]
[25]
Iimori T, Nakajima S, Miyazaki T, et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer’s disease: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88: 31-40.
[http://dx.doi.org/10.1016/j.pnpbp.2018.06.014] [PMID: 29953934]
[26]
Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000; 406(6792): 147-50.
[http://dx.doi.org/10.1038/35018000] [PMID: 10910346]
[27]
Bai W, Liu T, Dou M, Xia M, Lu J, Tian X. Repetitive transcranial magnetic stimulation reverses Aß1-42-induced dysfunction in gamma oscillation during working memory. Curr Alzheimer Res 2018; 15(6): 570-7.
[http://dx.doi.org/10.2174/1567205015666180110114050] [PMID: 29318972]
[28]
Debarnot U, Crépon B, Orriols E, et al. Intermittent theta burst stimulation over left BA10 enhances virtual reality-based prospective memory in healthy aged subjects. Neurobiol Aging 2015; 36(8): 2360-9.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.05.001] [PMID: 26058839]
[29]
Ryals AJ, Rogers LM, Gross EZ, Polnaszek KL, Voss JL. Associate recognition memory awareness improved by theta-burst stimulation of frontopolar cortex. Cereb Cortex 2016; 26(3): 1200-10.
[http://dx.doi.org/10.1093/cercor/bhu311] [PMID: 25577574]
[30]
Carbajal I, O’Neil JT, Palumbo RT, Voss JL, Ryals AJ. Hemisphere‐specific effects of prefrontal theta‐burst stimulation on visual recognition memory accuracy and awareness. Brain Behav 2019; 9(4): e01228.
[http://dx.doi.org/10.1002/brb3.1228] [PMID: 30873758]
[31]
Rolls ET, Cheng W, Feng J. The orbitofrontal cortex: Reward, emotion and depression. Brain Commun 2020; 2(2): fcaa196.
[http://dx.doi.org/10.1093/braincomms/fcaa196] [PMID: 33364600]
[32]
Leuba G, Vernay A, Zimmermann V, Saini K, Kraftsik R, Savioz A. Differential damage in the frontal cortex with aging, sporadic and familial Alzheimer’s disease. Brain Res Bull 2009; 80(4-5): 196-202.
[http://dx.doi.org/10.1016/j.brainresbull.2009.06.009] [PMID: 19559767]
[33]
Borgomaneri S, Battaglia S, Sciamanna G, Torora F, Laricchiuta D. Memories are not written in stone: Re-writing ear memories by means of non-invasive brain stimulation and optogenetic manipulations. Neurosci Biobehav Rev 2021; 127: 334-52.
[34]
Borgomaneri S, Battaglia S, Avenanti A, Pellegrino G. Don’t hurt me no more: State dependent transcranial magnetic stimulation for the treatment of specific phobia. J Affect Disord 2021; 286: 78-9.
[http://dx.doi.org/10.1016/j.jad.2021.02.076] [PMID: 33714173]
[35]
Battaglia S, Garofalo S, di Pellegrino G. Context-dependent extinction of threat memories: Influences of healthy aging. Sci Rep 2018; 8(1): 12592.
[http://dx.doi.org/10.1038/s41598-018-31000-9] [PMID: 30135561]
[36]
Battaglia S, Fabius JH, Moravkova K, Fracasso A, Borgomaneri S. The neurobiological correlates of gaze perception in healthy individuals and neurologic patients. Biomedicines 2022; 10(3): 627.
[http://dx.doi.org/10.3390/biomedicines10030627] [PMID: 35327431]
[37]
Varnava A, Stokes MG, Chambers CD. Reliability of the ‘observation of movement’ method for determining motor threshold using transcranial magnetic stimulation. J Neurosci Methods 2011; 201(2): 327-32.
[http://dx.doi.org/10.1016/j.jneumeth.2011.08.016] [PMID: 21871491]
[38]
Badran BW, Ly M, DeVries WH, et al. Are EMG and visual observation comparable in comparing resting motor threshold? A reexamination after twenty years. Brain Stimul 2011; 12(2): 364-6.
[39]
McIntyre RS, Konarski JZ, Mancini DA, et al. Measuring the severity of depression and remission in primary care: Validation of the HAMD-7 scale. Can Med Assoc J 2005; 173: 1327-34.
[http://dx.doi.org/10.1503/cmaj.050786]
[40]
Widner B, Werner ER, Schennach H, Wachter H, Fuchs D. Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 1997; 43(12): 2424-6.
[http://dx.doi.org/10.1093/clinchem/43.12.2424] [PMID: 9439467]
[41]
Neurauter G, Scholl-Bürgi S, Haara A, et al. Simultaneous measurement of phenylalanine and tyrosine by high performance liquid chromatography (HPLC) with fluorescence detection. Clin Biochem 2013; 46(18): 1848-51.
[http://dx.doi.org/10.1016/j.clinbiochem.2013.10.015] [PMID: 24183885]
[42]
Wang HY, Crupi D, Liu J, et al. Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci 2011; 31(30): 11044-54.
[http://dx.doi.org/10.1523/JNEUROSCI.2125-11.2011] [PMID: 21795553]
[43]
Niimi M, Hashimoto K, Kakuda W, et al. Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke. PLoS One 2016; 11: e0152241.
[http://dx.doi.org/10.1371/journal.pone.0152241]
[44]
Folstein MF, Folstein SE, McHugh PR. Mini-mental state. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[45]
Brooke P, Bullock R. Validation of a 6 item cognitive impairment test with a view to primary care usage. Int J Geriatr Psychiatry 1999; 14(11): 936-40.
[http://dx.doi.org/10.1002/(SICI)1099-1166(199911)14:11<936:AID-GPS39>3.0.CO;2-1] [PMID: 10556864]
[46]
Cahn DA, Salmon DP, Monsch AU, et al. Screening for dementia of the alzheimer type in the community: The utility of the clock drawing test. Arch Clin Neuropsychol 1996; 11(6): 529-39.
[http://dx.doi.org/10.1093/arclin/11.6.529] [PMID: 14588458]
[47]
Maliszewska-Cyna E, Lynch M, Oore J, Nagy P, Aubert I. The benefits of exercise and metabolic interventions for the prevention and early treatment of Alzheimer’s diease. Curr Alzheimer Res 2016; 14(1): 47-60.
[http://dx.doi.org/10.2174/1567205013666160819125400] [PMID: 27539597]
[48]
Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: Can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry 2013; 18(8): 864-74.
[http://dx.doi.org/10.1038/mp.2012.162] [PMID: 23164816]
[49]
Arendash G, Cao C, Abulaban H, et al. A clinical trial of transcranial electromagnetic treatment in Alzheimer’s disease: Cognitive enhancement and associated changes in cerebrospinal fluid, blood, and brain imaging. J Alzheimers Dis 2019; 71(1): 57-82.
[http://dx.doi.org/10.3233/JAD-190367] [PMID: 31403948]
[50]
Perez FP, Maloney B, Chopra N, Morisaki JJ, Lahiri DK. Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep 2021; 11(1): 621.
[http://dx.doi.org/10.1038/s41598-020-77808-2] [PMID: 33436686]
[51]
Pall ML. Low intensity electromagnetic fields act via voltage-gated calcium channel (VGCC) activation to cause very early early onset Alzheimer’s disease: 18 distinct types of evidence. Curr Alzheimer Res 2022; 19(2): 119-32.
[http://dx.doi.org/10.2174/1567205019666220202114510] [PMID: 35114921]
[52]
Esteras N, Abramov AY. Mitochondrial calcium deregulation in the mechanisms ofbeta-amyloid and tau pathology. Cells 2020; 9(9): 2135.
[http://dx.doi.org/10.3390/cells9092135] [PMID: 32967303]
[53]
Supnet C, Bezprozvanny I. The dysregulation of intracellular calcium in Alzheimer disease. Cell Calcium 2010; 47(2): 183-9.
[http://dx.doi.org/10.1016/j.ceca.2009.12.014]
[54]
Arendash GW, Sanchez-Ramos J, Mori T, et al. Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 2010; 19(1): 191-210.
[http://dx.doi.org/10.3233/JAD-2010-1228] [PMID: 20061638]
[55]
Bao Z, Bao L, Han N, Hou Y, Feng F. rTMS alleviates AD-induced cognitive impairment by inhibitng apoptosis in SAMP8 mouse. Aging (Albany NY) 2021; 13(24): 26034-45.
[http://dx.doi.org/10.18632/aging.203796] [PMID: 34965216]
[56]
Zernov N, Bezprozvanny I, Popugaeva E. CaMKIIβ knockdown decreases store-operated calcium entry in hippocampal dendritic spines. IBRO Neuroscience Reports 2022; 12(6): 90-7.
[http://dx.doi.org/10.1016/j.ibneur.2022.01.001] [PMID: 35079728]
[57]
Gonsalvez I, Baror R, Fried P, Santarnecchi E, Pascual-Leone A. Therapeutic noninvasive brain stimulation in Alzheimer’s disesease. Curr Alzheimer Res 2017; 14(4): 362-76.
[http://dx.doi.org/10.2174/1567205013666160930113907] [PMID: 27697061]
[58]
Rhodes A, Inker J, Richardson J, Zanjani F. Azheimer’s disease prevention health coaching. J Prev Alzheimers Dis 2022; 9(2): 277-85. 10.14283
[PMID: 35543001]
[59]
Cassano T, Calcagnini S, Carbone A, et al. Pharmacological treatment of depression in Alzheimer’s disease: A challenging task. Front Pharmacol 2019; 10: 1067.
[http://dx.doi.org/10.3389/fphar.2019.01067] [PMID: 31611786]
[60]
Björkholm C, Monteggia LM. BDNF – a key transducer of antidepressant effects. Neuropharmacology 2016; 102: 72-9.
[http://dx.doi.org/10.1016/j.neuropharm.2015.10.034] [PMID: 26519901]
[61]
Behl T, Kaur D, Sehgal A, et al. Role of monoamine oxidase activity in Alzheimer’s disease: An insight into the therapeutic potential of inhibitors. Molecules 2021; 26(12): 3724.
[http://dx.doi.org/10.3390/molecules26123724] [PMID: 34207264]
[62]
Török N, Tanaka M, Vécsei L. Searching for peripheral biomarkers in neurodegerative diseases: The tryptophan-kynurenine metabolic pathway. Int J Mol Sci 2020; 21(24): 9338.
[http://dx.doi.org/10.3390/ijms21249338] [PMID: 33302404]
[63]
Yang L, Su Y, Guo F, et al. Deep rTMS mitigates behavioral and neuropathologic anomalies in cuprizone exposed mice through reduzcing microglial proinflammatory cytocines. Front Integr Neurosci 2020; 14: 556839.
[http://dx.doi.org/10.3389/fnint.2020.556839]
[64]
Fanet H, Capuron L, Castanon N, Calon F. Vancassel lS. Tetrahydrobiopterin (BH4) pathway: from metabolism to neuropsychiatry. Curr Neuropharmacol 2021; 19(5): 591-609.
[65]
Thöny B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 2000; 347(1): 1-16.
[http://dx.doi.org/10.1042/bj3470001] [PMID: 10727395]
[66]
Foxton RH, Land JM, Heales SJR. Tetrahydrobiopterin availability in Parkinson’s and Alzheimer’s disease; potential pathogenic mechanisms. Neurochem Res 2007; 32(4-5): 751-6.
[http://dx.doi.org/10.1007/s11064-006-9201-0] [PMID: 17191137]
[67]
Midhun T, Krishna SS, Wilson SK. Tetrahydrobiopterin and its multiple roles in neuropsychiatric disorders. Neurochem Res 2022; 47(5): 1202-11.
[http://dx.doi.org/10.1007/s11064-022-03543-x] [PMID: 35142994]
[68]
Tortella G, Selingardi P, Moreno M, Veronezi B, Brunoni A. Does non-invasive brain stimulation improve cognition in major depressive disorder? A systematic review. CNS Neurol Disord Drug Targets 2015; 13(10): 1759-69.
[http://dx.doi.org/10.2174/1871527313666141130224431] [PMID: 25470400]
[69]
Sabbagh M, Sadowsky C, Tousi B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer’s disease. Alzheimers Dement 2020; 16(4): 641-50.
[http://dx.doi.org/10.1016/j.jalz.2019.08.197] [PMID: 31879235]
[70]
Lee J, Choi BH, Oh E, Sohn EH, Lee AY. Treatment of Aizheimer’s disease with repetitive transcranial magnetic stimulation combined with cognitive training: A prospective, randomized, double-blind, placebo-controlled study. J Clin Neurol 2016; 12(1): 57-64.
[http://dx.doi.org/10.3988/jcn.2016.12.1.57] [PMID: 26365021]
[71]
Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): A randomised non-inferiority trial. Lancet 2018; 391(10131): 1683-92.
[http://dx.doi.org/10.1016/S0140-6736(18)30295-2] [PMID: 29726344]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy