Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Overview of Ruthenium-Catalyzed Multicomponent Reactions

Author(s): Padinjare Veetil Saranya, Mohan Neetha, C.M.A. Afsina and Gopinathan Anilkumar*

Volume 26, Issue 12, 2022

Published on: 13 October, 2022

Page: [1119 - 1148] Pages: 30

DOI: 10.2174/1385272826666220915151951

Price: $65

Abstract

In multicomponent reactions (MCRs), highly functionalized compounds can be formed through the reaction between three or more reactants in a one-pot manner. These reactions provide products through the utilization of lesser amounts of energy, time, and effort. MCRs also possess advantages like the generation of lesser waste materials. Fewer resources are needed, high convergence etc. In terms of energy economy and atom economy, MCRs are superior to multistep synthesis. A wide range of products can be acquired by combining the reagents in a variety of ways and thus, MCRs became popular in various fields such as catalysis, pharmaceutical chemistry, material science, agrochemistry, fine chemistry and so on. MCRs obey the principles of green chemistry because these approaches are simple and ecofriendly. MCR is an unrivalled synthetic technique and has been used by chemists at an accelerating rate in recent years. Ruthenium catalysts are cheap in comparison to palladium and rhodium, and generally show high activity. Ru possesses wide-ranging oxidation states due to its 4d75s1 electronic configuration. Numerous organic reactions are catalyzed by ruthenium, which are utilized in forming a wide range of pharmaceuticals and natural products, with biological importance. Minimum amounts of waste materials are formed in most of the ruthenium- catalyzed reactions; hence, ruthenium catalysis paves the way to environmentally benign protocols. Ruthenium chemistry has had a really big impact on organic synthesis in recent years and it is now on par with palladium in terms of relevance. The developments in the field of ruthenium-catalyzed multicomponent reactions are highlighted in this review, covering the literature up to 2021.

Keywords: Multicomponent reactions, Ruthenium, Pyrrole, Aldehydes, Alkynes

Next »
Graphical Abstract

[1]
Palapetta, S.C.; Gurusamy, H.; Krishnan, S.; Ponnusamy, S. Facile multicomponent synthesis, computational, and docking studies of spiroindoloquinazoline compounds. ACS Omega, 2022, 7(9), 7874-7884.
[http://dx.doi.org/10.1021/acsomega.1c06781] [PMID: 35284703]
[2]
Ramón, D.J.; Yus, M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew. Chem. Int. Ed., 2005, 44(11), 1602-1634.
[http://dx.doi.org/10.1002/anie.200460548] [PMID: 15719349]
[3]
Nazeri, M.T.; Shaabani, A. Synthesis of polysubstituted pyrroles via isocyanide-based multicomponent reactions as an efficient synthesis tool. New J. Chem., 2021, 45(47), 21967-22011.
[http://dx.doi.org/10.1039/D1NJ04514H]
[4]
Gulati, S.; John, S.E.; Shankaraiah, N. Microwave-assisted multicomponent reactions in heterocyclic chemistry and mechanistic aspects. Beilstein J. Org. Chem., 2021, 17, 819-865.
[http://dx.doi.org/10.3762/bjoc.17.71] [PMID: 33968258]
[5]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[6]
John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front., 2021, 8(15), 4237-4287.
[http://dx.doi.org/10.1039/D0QO01480J]
[7]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[8]
Ambethkar, S.; Padmini, V.; Bhuvanesh, N. A green and efficient protocol for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives via a one-pot, four component reaction by grinding method. J. Adv. Res., 2015, 6(6), 975-985.
[http://dx.doi.org/10.1016/j.jare.2014.11.011] [PMID: 26644936]
[9]
Brahmachari, G.; Das, S. Bismuth nitrate-catalyzed multicomponent reaction for efficient and one-pot synthesis of densely functionalized piperidine scaffolds at room temperature. Tetrahedron Lett., 2012, 53(12), 1479-1484.
[http://dx.doi.org/10.1016/j.tetlet.2012.01.042]
[10]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[11]
Khan, A.T.; Lal, M.; Khan, M.M. Synthesis of highly functionalized piperidines by one-pot multicomponent reaction using tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2010, 51(33), 4419-4424.
[http://dx.doi.org/10.1016/j.tetlet.2010.06.069]
[12]
Wang, H.J.; Mo, L.P.; Zhang, Z.H. Cerium ammonium nitrate-catalyzed multicomponent reaction for efficient synthesis of functionalized tetrahydropyridines. ACS Comb. Sci., 2011, 13(2), 181-185.
[http://dx.doi.org/10.1021/co100055x] [PMID: 21395344]
[13]
Wang, W.; Joyner, S.; Khoury, K.A.S.; Dömling, A. (−)-Bacillamide C: The convergent approach. Org. Biomol. Chem., 2010, 8(3), 529-532.
[http://dx.doi.org/10.1039/B918214D] [PMID: 20090966]
[14]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via Multicomponent Reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[15]
Reguera, L.; Méndez, Y.; Humpierre, A.R.; Valdés, O.; Rivera, D.G. Multicomponent reactions in ligation and bioconjugation chemistry. Acc. Chem. Res., 2018, 51(6), 1475-1486.
[http://dx.doi.org/10.1021/acs.accounts.8b00126] [PMID: 29799718]
[16]
Haji, M. Multicomponent reactions: A simple and efficient route to heterocyclic phosphonates. Beilstein J. Org. Chem., 2016, 12, 1269-1301.
[http://dx.doi.org/10.3762/bjoc.12.121] [PMID: 27559377]
[17]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[18]
Ibarra, I.A.; Islas-Jácome, A.; González-Zamora, E. Synthesis of polyheterocycles via multicomponent reactions. Org. Biomol. Chem., 2018, 16(9), 1402-1418.
[http://dx.doi.org/10.1039/C7OB02305G] [PMID: 29238790]
[19]
van Berkel, S.S.; Bögels, B.G.M.; Wijdeven, M.A.; Westermann, B.; Rutjes, F.P.J.T. Recent advances in asymmetric isocyanide-based multicomponent reactions. Eur. J. Org. Chem., 2012, 2012(19), 3543-3559.
[http://dx.doi.org/10.1002/ejoc.201200030]
[20]
Guillena, G.; Ramόn, D.J.; Yus, M. Enantioselective direct aldol reaction: The blossoming of modern organocatalysis. Tetrahedron Asymmetry, 2007, 18, 693-700.
[http://dx.doi.org/10.1016/j.tetasy.2007.03.002]
[21]
Yu, J.; Shi, F.; Gong, L.Z. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc. Chem. Res., 2011, 44(11), 1156-1171.
[http://dx.doi.org/10.1021/ar2000343] [PMID: 21800828]
[22]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[23]
Nunes, P.S.G.; Vidal, H.D.A.; Corrêa, A.G. Recent advances in catalytic enantioselective multicomponent reactions. Org. Biomol. Chem., 2020, 18(39), 7751-7773.
[http://dx.doi.org/10.1039/D0OB01631D] [PMID: 32966520]
[24]
Weber, L. The application of multi-component reactions in drug discovery. Curr. Med. Chem., 2002, 9(23), 2085-2093.
[http://dx.doi.org/10.2174/0929867023368719] [PMID: 12470248]
[25]
Ruijter, E.; Orru, R.V.A. Multicomponent reactions – opportunities for the pharmaceutical industry. Drug Discov. Today. Technol., 2013, 10(1), e15-e20.
[http://dx.doi.org/10.1016/j.ddtec.2012.10.012] [PMID: 24050225]
[26]
Hantzsch, A. Condensation products of aldehyde ammonia and ketone-like compounds. Chem. Ber., 1881, 14, 1637-1638.
[http://dx.doi.org/10.1002/cber.18810140214]
[27]
Alvim, H.G.O.; da Silva Júnior, E.N.; Neto, B.A.D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, 2014, 4(97), 54282-54299.
[http://dx.doi.org/10.1039/C4RA10651B]
[28]
Khodja, I.A.; Ghalem, W.; Dehimat, Z.I.; Boulcina, R.; Carboni, B.; Debache, A. Solvent-free synthesis of dihydropyridines and acridinediones via a salicylic acid–catalyzed hantzsch multicomponent reaction. Synth. Commun., 2014, 44(7), 959-967.
[http://dx.doi.org/10.1080/00397911.2013.838791]
[29]
Gewald, K.; Schinke, E.; Böttcher, H. Heterocycles from CH‐acidic nitriles, VIII. 2‐amino‐thiophenes from methylene‐active nitriles, carbonyl compounds, and sulfur. Chem. Ber., 1966, 99, 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[30]
Huang, Y.; Dömling, A. The Gewald multicomponent reaction. Mol. Divers., 2011, 15(1), 3-33.
[http://dx.doi.org/10.1007/s11030-010-9229-6] [PMID: 20191319]
[31]
Wang, K.; Kim, D.; Dömling, A. Cyanoacetamide MCR (III): Three-component Gewald reactions revisited. J. Comb. Chem., 2010, 12(1), 111-118.
[http://dx.doi.org/10.1021/cc9001586] [PMID: 19958011]
[32]
Liu, Z.Q. Ugi and passerini reactions as successful models for investigating multicomponent reactions. Curr. Org. Chem., 2014, 18(6), 719-739.
[http://dx.doi.org/10.2174/1385272819666140201002717]
[33]
Maeda, S.; Komagawa, S.; Uchiyama, M.; Morokuma, K. Finding reaction pathways for multicomponent reactions: The Passerini reaction is a four-component reaction. Angew. Chem. Int. Ed., 2011, 50(3), 644-649.
[http://dx.doi.org/10.1002/anie.201005336] [PMID: 21226143]
[34]
Ngouansavanh, T.; Zhu, J. Alcohols in isonitrile-based multicomponent reaction: Passerini reaction of alcohols in the presence of o-iodoxybenzoic acid. Angew. Chem. Int. Ed., 2006, 45(21), 3495-3497.
[http://dx.doi.org/10.1002/anie.200600588] [PMID: 16637095]
[35]
Ugi, I.; Domling, A.; Werner, B. Since 1995 the new chemistry of multicomponent reactions and their libraries, including their heterocyclic chemistry. J. Heterocycl. Chem., 2000, 37(3), 647-658.
[http://dx.doi.org/10.1002/jhet.5570370322]
[36]
Banfi, L.; Basso, A.; Lambruschini, C.; Moni, L.; Riva, R. Synthesis of seven-membered nitrogen heterocycles through the Ugi multicomponent reaction. Chem. Heterocycl. Compd., 2017, 53(4), 382-408.
[http://dx.doi.org/10.1007/s10593-017-2065-1]
[37]
Rocha, R.O.; Rodrigues, M.O.; Neto, B.A.D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega, 2020, 5(2), 972-979.
[http://dx.doi.org/10.1021/acsomega.9b03684] [PMID: 31984252]
[38]
Kumar, P.; Gupta, R.K.; Pandey, D.S. Half-sandwich arene ruthenium complexes: Synthetic strategies and relevance in catalysis. Chem. Soc. Rev., 2014, 43(2), 707-733.
[http://dx.doi.org/10.1039/C3CS60189G] [PMID: 24193103]
[39]
Simonneaux, G.; Le Maux, P. Optically active ruthenium porphyrins: Chiral recognition and asymmetric catalysis. Coord. Chem. Rev., 2002, 228(1), 43-60.
[http://dx.doi.org/10.1016/S0010-8545(02)00009-7]
[40]
Ordomsky, V.V.; Khodakov, A.Y.; Legras, B.; Lancelot, C. Fischer–Tropsch synthesis on a ruthenium catalyst in two-phase systems: An excellent opportunity for the control of reaction rate and selectivity. Catal. Sci. Technol., 2014, 4(9), 2896-2899.
[http://dx.doi.org/10.1039/C4CY00803K]
[41]
Foppa, L.; Iannuzzi, M.; Copéret, C.; Comas-Vives, A. Adlayer dynamics drives CO activation in Ru-catalyzed fischer–tropsch synthesis. ACS Catal., 2018, 8(8), 6983-6992.
[http://dx.doi.org/10.1021/acscatal.8b01232]
[42]
Kang, J.; Deng, W.; Zhang, Q.; Wang, Y. Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis. J. Energy Chem., 2013, 22(2), 321-328.
[http://dx.doi.org/10.1016/S2095-4956(13)60039-X]
[43]
Johnson, J.B.; Bäckvall, J.E. Mechanism of ruthenium-catalyzed hydrogen transfer reactions. Concerted transfer of OH and CH hydrogens from an alcohol to a (Cyclopentadienone)ruthenium complex. J. Org. Chem., 2003, 68(20), 7681-7684.
[http://dx.doi.org/10.1021/jo034634a] [PMID: 14510542]
[44]
Porcheddu, A.; Mura, M.G.; De Luca, L.; Pizzetti, M.; Taddei, M. From alcohols to indoles: A tandem Ru catalyzed hydrogen-transfer Fischer indole synthesis. Org. Lett., 2012, 14(23), 6112-6115.
[http://dx.doi.org/10.1021/ol3030956] [PMID: 23190207]
[45]
Yamakawa, M.; Ito, H.; Noyori, R. The metal−ligand bifunctional catalysis: A theoretical study on the ruthenium(II)-catalyzed hydrogen transfer between alcohols and carbonyl compounds. J. Am. Chem. Soc., 2000, 122(7), 1466-1478.
[http://dx.doi.org/10.1021/ja991638h]
[46]
Cho, C.S. Ruthenium-catalyzed cross-coupling reactions between ketones and primary amines. Catal. Commun., 2006, 7(12), 1012-1014.
[http://dx.doi.org/10.1016/j.catcom.2006.05.005]
[47]
Zhao, Y.; Snieckus, V. Beyond directed ortho metalation: Ru-catalyzed CAr-O activation/cross-coupling reaction by amide chelation. J. Am. Chem. Soc., 2014, 136(32), 11224-11227.
[http://dx.doi.org/10.1021/ja503819x] [PMID: 25041584]
[48]
Liu, T.T.; Tang, S.Y.; Hu, B.; Liu, P.; Bi, S.; Jiang, Y.Y. Mechanism and origin of chemoselectivity of Ru-catalyzed cross-coupling of secondary alcohols to β-disubstituted ketones. J. Org. Chem., 2020, 85(19), 12444-12455.
[http://dx.doi.org/10.1021/acs.joc.0c01671] [PMID: 32865421]
[49]
Dethe, D.H.; Beeralingappa, N.C.; Das, S.; Nirpal, A.K. Ruthenium-catalyzed formal sp 3 C–H activation of allylsilanes/esters with olefins: Efficient access to functionalized 1,3-dienes. Chem. Sci. (Camb.), 2021, 12(12), 4367-4372.
[http://dx.doi.org/10.1039/D0SC06845D] [PMID: 34163699]
[50]
Gollapelli, K.K.; Kallepu, S.; Govindappa, N.; Nanubolu, J.B.; Chegondi, R. Carbonyl-assisted reverse regioselective cascade annulation of 2-acetylenic ketones triggered by Ru-catalyzed C–H activation. Chem. Sci. (Camb.), 2016, 7(7), 4748-4753.
[http://dx.doi.org/10.1039/C6SC01456A] [PMID: 30155126]
[51]
Kaishap, P.P.; Sarma, B.; Gogoi, S. The amide C–N bond of isatins as the directing group and the internal oxidant in Ru-catalyzed C–H activation and annulation reactions: Access to 8-amido isocoumarins. Chem. Commun. (Camb.), 2016, 52(63), 9809-9812.
[http://dx.doi.org/10.1039/C6CC04461A] [PMID: 27417438]
[52]
Naota, T.; Taki, H.; Mizuno, M.; Murahashi, S. Ruthenium-catalyzed aldol and Michael reactions of activated nitriles. J. Am. Chem. Soc., 1989, 111(15), 5954-5955.
[http://dx.doi.org/10.1021/ja00197a073]
[53]
Trost, B.M.; Yang, H.; Wuitschik, G. A Ru-catalyzed tandem alkyne-enone coupling/Michael addition: Synthesis of 4-methylene-2,6-cis-tetrahydropyrans. Org. Lett., 2005, 7(21), 4761-4764.
[http://dx.doi.org/10.1021/ol0520065] [PMID: 16209529]
[54]
Mahesha, C.K.; Mandal, S.K.; Sakhuja, R. Indazolone‐assisted sequential ortho ‐alkenylation‐oxidative aza‐michael addition of 1‐arylindazolone using acrylates under Ru(II) catalysis. Asian J. Org. Chem., 2020, 9(8), 1199-1204.
[http://dx.doi.org/10.1002/ajoc.202000239]
[55]
Moradi, P.; Hajjami, M. Stabilization of ruthenium on biochar-nickel magnetic nanoparticles as a heterogeneous, practical, selective, and reusable nanocatalyst for the Suzuki C–C coupling reaction in water. RSC Advances, 2022, 12(21), 13523-13534.
[http://dx.doi.org/10.1039/D1RA09350A] [PMID: 35520120]
[56]
Pump, E.; Poater, A.; Bahri-Laleh, N.; Credendino, R.; Serra, L.; Scarano, V.; Cavallo, L. Regio, stereo and chemoselectivity of 2nd generation Grubbs ruthenium-catalyzed olefin metathesis. Catal. Today, 2022, 388-389, 394-402.
[http://dx.doi.org/10.1016/j.cattod.2020.04.071]
[57]
Cannon, J.S.; Grubbs, R.H. Alkene chemoselectivity in ruthenium-catalyzed Z-selective olefin metathesis. Angew. Chem. Int. Ed., 2013, 52(34), 9001-9004.
[http://dx.doi.org/10.1002/anie.201302724] [PMID: 23832646]
[58]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Modification of boehmite nanoparticles with Adenine for the immobilization of Cu(II) as organic–inorganic hybrid nanocatalyst in organic reactions. Polyhedron, 2019, 163, 98-107.
[http://dx.doi.org/10.1016/j.poly.2019.02.004]
[59]
Nikoorazm, M.; Tahmasbi, B.; Gholami, S.; Moradi, P. Copper and nickel immobilized on cytosine@MCM‐41: As highly efficient, reusable and organic–inorganic hybrid nanocatalysts for the homoselective synthesis of tetrazoles and pyranopyrazoles. Appl. Organomet. Chem., 2020, 34(11), e5919.
[http://dx.doi.org/10.1002/aoc.5919]
[60]
Ghorbani-Choghamarani, A.; Tahmasbi, B.; Moradi, P.; Havasi, N. Cu- S -(propyl)-2-aminobenzothioate on magnetic nanoparticles: Highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl. Organomet. Chem., 2016, 30(8), 619-625.
[http://dx.doi.org/10.1002/aoc.3478]
[61]
Ghorbani-Choghamarani, A.; Moradi, P.; Tahmasbi, B. Nickel(II) immobilized on dithizone–boehmite nanoparticles: As a highly efficient and recyclable nanocatalyst for the synthesis of polyhydroquinolines and sulfoxidation reaction. J. Indian Chem. Soc., 2019, 16(3), 511-521.
[http://dx.doi.org/10.1007/s13738-018-1526-5]
[62]
Moradi, P.; Hajjami, M. Magnetization of biochar nanoparticles as a novel support for fabrication of organo nickel as a selective, reusable and magnetic nanocatalyst in organic reactions. New J. Chem., 2021, 45(6), 2981-2994.
[http://dx.doi.org/10.1039/D0NJ04990E]
[63]
Koolivand, M.; Nikoorazm, M.; Ghorbani-Choghamarani, A.; Azadbakht, R.; Tahmasbi, B. Ni–citric acid coordination polymer as a practical catalyst for multicomponent reactions. Sci. Rep., 2021, 11(1), 24475-24490.
[http://dx.doi.org/10.1038/s41598-021-03857-w] [PMID: 34963682]
[64]
Herraiz, A.G.; Cramer, N. Cobalt(III)-catalyzed diastereo- and enantioselective three-component C–H functionalization. ACS Catal., 2021, 11(19), 11938-11944.
[http://dx.doi.org/10.1021/acscatal.1c03153]
[65]
Le Floch, C.; Le Gall, E.; Léonel, E.; Koubaa, J.; Martens, T.; Retailleau, P. A cobalt-catalyzed multicomponent approach to novel 2,3-Di- and 2,2,3-trisubstituted 3-methoxycarbonyl-γ-butyrolact¬ones. Eur. J. Org. Chem., 2010, 2010(27), 5279-5286.
[http://dx.doi.org/10.1002/ejoc.201000698]
[66]
Erver, F.; Hilt, G. Multi-component regio- and diastereoselective cobalt-catalyzed hydrovinylation/allylboration reaction sequence. Org. Lett., 2011, 13(20), 5700-5703.
[http://dx.doi.org/10.1021/ol202481j] [PMID: 21954907]
[67]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: An overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[68]
Shilpa, T.; Dhanya, R.; Saranya, S.; Anilkumar, G. An overview of rhodium‐catalysed multi‐component reactions. ChemistrySelect, 2020, 5(2), 898-915.
[http://dx.doi.org/10.1002/slct.201904441]
[69]
Neetha, M.; Rohit, K.R.; Saranya, S.; Anilkumar, G. Zinc‐catalysed multi‐component reactions: An overview. ChemistrySelect, 2020, 5(3), 1054-1070.
[http://dx.doi.org/10.1002/slct.201904146]
[70]
Trost, B.M.; Portnoy, M.; Kurihara, H. A Ru-catalyzed three-component addition to form 1,5-diketones. J. Am. Chem. Soc., 1997, 119(4), 836-837.
[http://dx.doi.org/10.1021/ja963460u]
[71]
Chen, Y.; Park, S.H.; Lee, C.W.; Lee, C. Ruthenium-catalyzed three-component coupling via hydrative conjugate addition of alkynes to alkenes: One-pot synthesis of 1,4-dicarbonyl compounds. Chem. Asian J., 2011, 6(8), 2000-2004.
[http://dx.doi.org/10.1002/asia.201100266] [PMID: 21688397]
[72]
Trost, B.M.; Pinkerton, A.B. A ruthenium-catalyzed three-component coupling to form E -vinyl chlorides. J. Am. Chem. Soc., 1999, 121(9), 1988-1989.
[http://dx.doi.org/10.1021/ja984264l]
[73]
Trost, B.M.; Pinkerton, A.B. A Ru-catalyzed four-component coupling. J. Am. Chem. Soc., 2000, 122, 8081-8082.
[http://dx.doi.org/10.1021/ja001656v]
[74]
Trost, B.M.; Pinkerton, A.B. Formation of vinyl halides via a ruthenium-catalyzed three-component coupling. J. Am. Chem. Soc., 2002, 124(25), 7376-7389.
[http://dx.doi.org/10.1021/ja011426w] [PMID: 12071746]
[75]
Trost, B.M.; Koester, D.C.; Sharif, E.U. Ruthenium‐catalyzed multicomponent reactions: Access to α‐silyl‐β‐hydroxy vinylsilanes, stereodefined 1,3‐dienes, and cyclohexenes. Chemistry, 2016, 22(8), 2634-2638.
[http://dx.doi.org/10.1002/chem.201504981] [PMID: 26669265]
[76]
Sinha, P.; Raghuvanshi, D.S.; Singh, K.N.; Mishra, L. Synthesis, characterization and catalytic property of ruthenium–terpyridyl complexes. Polyhedron, 2012, 31(1), 227-234.
[http://dx.doi.org/10.1016/j.poly.2011.09.014]
[77]
Selvam, N.P.; Perumal, P.T. A new synthesis of acetamido phenols promoted by Ce(SO4)2. Tetrahedron Lett., 2006, 47(42), 7481-7483.
[http://dx.doi.org/10.1016/j.tetlet.2006.08.038]
[78]
Shaterian, H.R.; Yarahmadi, H. A modified reaction for the preparation of amidoalkyl naphthols. Tetrahedron Lett., 2008, 49(8), 1297-1300.
[http://dx.doi.org/10.1016/j.tetlet.2007.12.093]
[79]
Zhu, X.; Lee, Y.R.; Kim, S.H. Facile one-pot synthesis of 1-amidoalkyl-2-naphthols by RuCl 2 (PPh3)3-catalyzed multi-component reactions. Bull. Korean Chem. Soc., 2012, 33(8), 2799-2802.
[http://dx.doi.org/10.5012/bkcs.2012.33.8.2799]
[80]
Deng, W.; Feng, W.; Li, Y.; Bao, H. Merging visible-light photocatalysis and transition-metal catalysis in three-component alkyl-fluorination of olefins with a fluoride ion. Org. Lett., 2018, 20(14), 4245-4249.
[http://dx.doi.org/10.1021/acs.orglett.8b01658] [PMID: 29956940]
[81]
Wang, X.G.; Li, Y.; Liu, H.C.; Zhang, B.S.; Gou, X.Y.; Wang, Q.; Ma, J.W.; Liang, Y.M. Three-component ruthenium-catalyzed direct Meta- selective C–H activation of arenes: A new approach to the alkylarylation of alkenes. J. Am. Chem. Soc., 2019, 141(35), 13914-13922.
[http://dx.doi.org/10.1021/jacs.9b06608] [PMID: 31394035]
[82]
An, J.; Gao, Z.; Wang, Y.; Zhang, Z.; Zhang, J.; Li, L.; Tang, B.; Wang, F. Heterogeneous Ru/TiO 2 for hydroaminomethylation of olefins: Multicomponent synthesis of amines. Green Chem., 2021, 23(7), 2722-2728.
[http://dx.doi.org/10.1039/D1GC00113B]
[83]
Wu, L.; Fleischer, I.; Jackstell, R.; Beller, M. Efficient and regioselective ruthenium-catalyzed hydro-aminomethylation of olefins. J. Am. Chem. Soc., 2013, 135(10), 3989-3996.
[http://dx.doi.org/10.1021/ja312271c] [PMID: 23419202]
[84]
Gülak, S.; Wu, L.; Liu, Q.; Franke, R.; Jackstell, R.; Beller, M. Phosphine‐ and hydrogen‐free: Highly regioselective ruthenium‐catalyzed hydroaminomethylation of olefins. Angew. Chem., 2014, 126(28), 7448-7451.
[http://dx.doi.org/10.1002/ange.201402368]
[85]
Wu, L.; Fleischer, I.; Zhang, M.; Liu, Q.; Franke, R.; Jackstell, R.; Beller, M. Using aqueous ammonia in hydroaminomethylation reactions: Ruthenium-catalyzed synthesis of tertiary amines. ChemSusChem, 2014, 7(12), 3260-3263.
[http://dx.doi.org/10.1002/cssc.201402626] [PMID: 25223274]
[86]
Liu, J.; Kubis, C.; Franke, R.; Jackstell, R.; Beller, M. From internal olefins to linear amines: Ruthenium-catalyzed domino water–gas shift/hydroaminomethylation sequence. ACS Catal., 2016, 6(2), 907-912.
[http://dx.doi.org/10.1021/acscatal.5b02457]
[87]
Bettoni, L.; Joly, N.; Lohier, J.F.; Gaillard, S.; Poater, A.; Renaud, J.L. Ruthenium‐catalyzed three‐component alkylation: A tandem approach to the synthesis of nonsymmetric N,N‐ dialkyl acyl hydrazides with alcohols. Adv. Synth. Catal., 2021, 363(16), 4009-4017.
[http://dx.doi.org/10.1002/adsc.202100554]
[88]
Reddy, A.R.; Zhou, C.Y.; Che, C.M. Ruthenium porphyrin catalyzed three-component reaction of diazo compounds, nitrosoarenes, and alkynes: An efficient approach to multifunctionalized aziridines. Org. Lett., 2014, 16(4), 1048-1051.
[http://dx.doi.org/10.1021/ol4035098] [PMID: 24491209]
[89]
Chatani, N.; Kamitani, A.; Murai, S. Ruthenium-catalyzed reaction of α,β-unsaturated imines with carbon monoxide and alkenes leading to β,γ-unsaturated γ-butyrolactams: Involvement of direct carbonylation at olefinic C[bond]H Bonds as a key step. J. Org. Chem., 2002, 67(20), 7014-7018.
[http://dx.doi.org/10.1021/jo026001m] [PMID: 12353994]
[90]
Xu, H.W.; Li, G.Y.; Wong, M.K.; Che, C.M. Asymmetric synthesis of multifunctionalized pyrrolines by a ruthenium porphyrin-catalyzed three-component coupling reaction. Org. Lett., 2005, 7(24), 5349-5352.
[http://dx.doi.org/10.1021/ol050819n] [PMID: 16288503]
[91]
Cadierno, V.; Gimeno, J.; Nebra, N. One-pot three-component catalytic synthesis of fully substituted pyrroles from readily available propargylic alcohols, 1,3-dicarbonyl compounds and primary amines. Chemistry, 2007, 13(35), 9973-9981.
[http://dx.doi.org/10.1002/chem.200701132] [PMID: 17854104]
[92]
Cadierno, V.; Gimeno, J.; Nebra, N. One-pot three-component synthesis of tetrasubstituted N-H pyrroles from secondary propargylic alcohols, 1,3-dicarbonyl compounds and tert -butyl carbamate. J. Heterocycl. Chem., 2010, 47, 233-236.
[93]
Huang, W.; Chen, S.; Chen, Z.; Yue, M.; Li, M.; Gu, Y. Synthesis of multisubstituted pyrroles from enolizable aldehydes and primary amines promoted by iodine. J. Org. Chem., 2019, 84(9), 5655-5666.
[http://dx.doi.org/10.1021/acs.joc.9b00596] [PMID: 30990706]
[94]
Biletski, T.; Imhof, W. A combinatorial approach towards a library of chiral γ-lactams and 2,3-disubstituted pyrroles. Synthesis, 2011, 24, 3979-3990.
[95]
Zhang, M.; Fang, X.; Neumann, H.; Beller, M. General and regioselective synthesis of pyrroles via ruthenium-catalyzed multicomponent reactions. J. Am. Chem. Soc., 2013, 135(30), 11384-11388.
[http://dx.doi.org/10.1021/ja406666r] [PMID: 23841459]
[96]
Michlik, S.; Kempe, R. A sustainable catalytic pyrrole synthesis. Nat. Chem., 2013, 5(2), 140-144.
[http://dx.doi.org/10.1038/nchem.1547] [PMID: 23344449]
[97]
Zhang, M.; Neumann, H.; Beller, M. Selective ruthenium-catalyzed three-component synthesis of pyrroles. Angew. Chem. Int. Ed., 2013, 52(2), 597-601.
[http://dx.doi.org/10.1002/anie.201206082] [PMID: 23184875]
[98]
Chandrasekhar, S.; Patro, V.; Chavan, L.N.; Chegondi, R.; Grée, R. Multicomponent reactions in PEG-400: Ruthenium-catalyzed synthesis of substituted pyrroles. Tetrahedron Lett., 2014, 55(43), 5932-5935.
[http://dx.doi.org/10.1016/j.tetlet.2014.08.105]
[99]
Lian, X.L.; Meng, J.; Han, Z.Y. Ru(II)/organo relay catalytic three-component reaction of 3-diazooxindoles, amines, and nitroalkene: Formal synthesis of (−)-psychotrimine. Org. Lett., 2016, 18(17), 4270-4273.
[http://dx.doi.org/10.1021/acs.orglett.6b02019] [PMID: 27529504]
[100]
Siyang, H.X.; Liu, H.L.; Wu, X.Y.; Liu, P.N. Highly efficient click reaction on water catalyzed by a ruthenium complex. RSC Advances, 2015, 5(6), 4693-4697.
[http://dx.doi.org/10.1039/C4RA12960A]
[101]
Molla, R.A.; Roy, A.S.; Ghosh, K.; Salam, N.; Iqubal, M.A.; Tuhina, K.; Islam, S.M. Polymer anchored ruthenium complex: A highly active and recyclable catalyst for one-pot azide–alkyne cycloaddition and transfer-hydrogenation of ketones under mild conditions. J. Organomet. Chem., 2015, 776, 170-179.
[http://dx.doi.org/10.1016/j.jorganchem.2014.11.007]
[102]
Nador, F.; Volpe, M.A.; Alonso, F.; Feldhoff, A.; Kirschning, A.; Radivoy, G. Copper nanoparticles supported on silica coated maghemite as versatile, magnetically recoverable and reusable catalyst for alkyne coupling and cycloaddition reactions. Appl. Catal. A Gen., 2013, 455, 39-45.
[http://dx.doi.org/10.1016/j.apcata.2013.01.023]
[103]
Sharma, P.; Rathod, J.; Singh, A.P.; Kumar, P.; Sasson, Y. Synthesis of heterogeneous Ru(II)-1,2,3-triazole catalyst supported over SBA-15: Application to the hydrogen transfer reaction and unusual highly selective 1,4-disubstituted triazole formation via multicomponent click reaction. Catal. Sci. Technol., 2018, 8(13), 3246-3259.
[http://dx.doi.org/10.1039/C7CY02619F]
[104]
Tabatabaeian, K.; Zanjanchi, M.A.; Mamaghani, M.; Dadashi, A. Anchoring of ruthenium onto imine-functionalized zeolite beta: An efficient route for the synthesis of 4 H -benzo[ b]pyrans and pyrano[ c]chromenes. Can. J. Chem., 2014, 92(11), 1086-1091.
[http://dx.doi.org/10.1139/cjc-2014-0101]
[105]
Jiang, J.; Ma, X.; Ji, C.; Guo, Z.; Shi, T.; Liu, S.; Hu, W. Ruthenium(II)/chiral Brønsted acid co-catalyzed enantioselective four-component reaction/cascade aza-Michael addition for efficient construction of 1,3,4-tetrasubstituted tetrahydroisoquinolines. Chemistry, 2014, 20(6), 1505-1509.
[http://dx.doi.org/10.1002/chem.201304576] [PMID: 24436086]
[106]
Mishra, S.; Ghosh, R. Efficient one-pot synthesis of functionalized piperidine scaffolds via ZrOCl2•8H2O catalyzed tandem reactions of aromatic aldehydes with amines and acetoacetic esters. Tetrahedron Lett., 2011, 52(22), 2857-2861.
[http://dx.doi.org/10.1016/j.tetlet.2011.03.116]
[107]
Sajadikhah, S.S.; Hazeri, N.; Maghsoodlou, M.T.; Habibi-Khorassani, S.M.; Willis, A.C. Trityl chloride as an efficient organic catalyst for one-pot, five-component and diastereoselective synthesis of highly substituted piperidines. Res. Chem. Intermed., 2014, 40(2), 723-736.
[http://dx.doi.org/10.1007/s11164-012-0997-8]
[108]
Mousavi, M.R.; Aboonajmi, J.; Maghsoodlou, M.T.; Hazeri, N. (NO3)3.4H2O-assisted three-component synthesis of polysubstituted tetrahydropyridines. J. Chem. Res., 2014, 38(2), 76-79.
[http://dx.doi.org/10.3184/174751914X13890195583234]
[109]
Mohammadi, S.; Abbasi, M. Ruthenium chloride catalysed multicomponent reaction for efficient and onepot synthesis of functionalised tetrahydropiperidines at room temperature. J. Chem. Res., 2015, 39(2), 123-126.
[http://dx.doi.org/10.3184/174751915X14230617481292]
[110]
Bai, Y.; Tang, L.; Huang, H.; Deng, G.J. Synthesis of 2,4-diarylsubstituted-pyridines through a Ru-catalyzed four component reaction. Org. Biomol. Chem., 2015, 13(15), 4404-4407.
[http://dx.doi.org/10.1039/C5OB00162E] [PMID: 25764281]
[111]
Zhang, M.; Roisnel, T.; Dixneuf, P.H. One‐pot synthesis of quinoline derivatives directly from terminal alkynes via sequential ruthenium(II) and acid catalysis. Adv. Synth. Catal., 2010, 352(11-12), 1896-1903.
[http://dx.doi.org/10.1002/adsc.201000278]
[112]
Biswas, N.; Srimani, D. Synthesis of 1,8-Dioxo-decahydroacridine Derivatives via Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. J. Org. Chem., 2021, 86(14), 9733-9743.
[http://dx.doi.org/10.1021/acs.joc.1c01075] [PMID: 34170141]
[113]
Zhu, X.; Lee, Y.R. RuCl 2 (PPh 3) 3 -catalyzed facile one-pot synthesis of 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-ones and 1,2-dihydro-1-arylnaphtho[1,2-e][1,3]oxazine-3-thiones. Bull. Korean Chem. Soc., 2012, 33(11), 3831-3834.
[http://dx.doi.org/10.5012/bkcs.2012.33.11.3831]
[114]
An, J.; Wang, Y.; Zhang, Z.; Zhao, Z.; Zhang, J.; Wang, F. The synthesis of quinazolinones from olefins, CO, and amines over a heterogeneous Ru-clusters/ceria catalyst. Angew. Chem. Int. Ed., 2018, 57(38), 12308-12312.
[http://dx.doi.org/10.1002/anie.201806266] [PMID: 30047568]
[115]
Maji, M.; Kundu, S. Cooperative ruthenium complex catalyzed multicomponent synthesis of pyrimidines. Dalton Trans., 2019, 48(47), 17479-17487.
[http://dx.doi.org/10.1039/C9DT04040D] [PMID: 31742288]
[116]
Maji, M.; Borthakur, I.; Guria, S.; Singha, S.; Kundu, S. Direct access to 2-(N-alkylamino)pyrimidines via ruthenium catalyzed tandem multicomponent annulation/N-alkylation. J. Catal., 2021, 402, 37-51.
[http://dx.doi.org/10.1016/j.jcat.2021.08.010]
[117]
Mukherjee, K.; Shankar, M.; Ghosh, K.; Sahoo, A.K. An orchestrated unsymmetrical annulation episode of C(sp 2)–H bonds with alkynes and quinones: Access to spiro-isoquinolones. Org. Lett., 2018, 20(7), 1914-1918.
[http://dx.doi.org/10.1021/acs.orglett.8b00468] [PMID: 29561160]
[118]
Khurana, J.M.; Kumar, S. Tetrabutylammonium bromide (TBAB): A neutral and efficient catalyst for the synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives in water and solvent-free conditions. Tetrahedron Lett., 2009, 50(28), 4125-4127.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.125]
[119]
Wang, H.J.; Lu, J.; Zhang, Z.H. Highly efficient three-component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives. Monatsh. Chem., 2010, 141(10), 1107-1112.
[http://dx.doi.org/10.1007/s00706-010-0383-4]
[120]
Mehrabi, H.; Abusaidi, H. Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. J. Indian Chem. Soc., 2010, 7(4), 890-894.
[http://dx.doi.org/10.1007/BF03246084]
[121]
Tabatabaeian, K.; Heidari, H.; Mamaghani, M.; Mahmoodi, N.O. Ru(II) complexes bearing tertiary phosphine ligands: A novel and efficient homogeneous catalyst for one-pot synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Appl. Organomet. Chem., 2012, 26(2), 56-61.
[http://dx.doi.org/10.1002/aoc.1866]
[122]
Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. Cp(*)RuCl-catalyzed formal intermolecular cyclotrimerization of three unsymmetrical alkynes through a boron temporary tether: Regioselective four-component coupling synthesis of phthalides. J. Am. Chem. Soc., 2005, 127(26), 9625-9631.
[http://dx.doi.org/10.1021/ja051377d] [PMID: 15984890]
[123]
Junker, C.S.; Welker, M.E. Ruthenium carbenes as catalysts in stereoselective ene–yne metathesis/Diels–Alder and ene–yne metathesis/Diels–Alder/cross coupling multicomponent reactions. Tetrahedron, 2012, 68(27-28), 5341-5345.
[http://dx.doi.org/10.1016/j.tet.2012.05.011]
[124]
Qu, H.; Li, J.; Li, H.; Wang, H.; Liu, L. Three-component, four-molecule, ru-catalyzed cascade reactions of indoles and alkyl bromides with sodium nitrite. Synth. Commun., 2015, 45(8), 993-1001.
[http://dx.doi.org/10.1080/00397911.2014.999869]
[125]
Chatterjee, B.; Gunanathan, C. Ruthenium-catalysed multicomponent synthesis of borasiloxanes. Chem. Commun. (Camb.), 2017, 53(16), 2515-2518.
[http://dx.doi.org/10.1039/C7CC00787F] [PMID: 28184406]
[126]
Rodrigues, C.; Delolo, F.G.; Norinder, J.; Börner, A.; Bogado, A.L.; Batista, A.A. Hydroformylation-hydrogenation and hydroformylation-acetalization reactions catalyzed by ruthenium complexes. J. Mol. Catal. Chem., 2017, 426, 586-592.
[http://dx.doi.org/10.1016/j.molcata.2016.09.020]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy