Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Supported Ionic Liquid Membrane Technology in Gas/Organic Compounds Separations

Author(s): Pawanpreet Kaur and Harish Kumar Chopra*

Volume 26, Issue 12, 2022

Published on: 26 September, 2022

Page: [1149 - 1184] Pages: 36

DOI: 10.2174/1385272826666220901145540

Price: $65

Abstract

The development of the convenient separation processes is a major challenge being examined by scientists and technologists due to its industrial applications. The supported liquid membrane (SLM) technology has been widely employed to separate several species, like permeable gas from binary gaseous mixtures, metal ions, and organic and biological compounds. The main reason for the limited use of SLMs in the industry is their short life and less stability due to the high volatility of traditional organic solvents. Room-temperature ionic liquids (RTILs) are environmentally benign designer salts, exhibit negligible volatility, show good thermal stability, and have remarkable solubility, thus, acting as an alternative solvent to overcome the drawbacks of SLMs. Besides, the high viscosity of ionic liquids (ILs) offers good capillary force, which prevents their flow into membrane pores even under high pressure. Moreover, their tuned properties make them amenable compounds for their immobilization into membrane pores to provide supported ionic liquid membranes (SILMs) with good mechanical strength. In literature (from 2007 to the present), a variety of SILMs have been designed, synthesized, and employed in the field of separation science. This review is mainly focused on the applications of SILMs in the separation of more permeable gases (CO2, O2, CO, H2, and C2H4) from binary gas mixtures as well as the separation of organic compounds (organic acids, alcohols, aromatic hydrocarbons, amines, reactants and products of transesterification reaction, nitrogen- and sulfur-containing aromatic compounds) from distinct mixtures.

Keywords: Gas separations, membranes, organic compounds, permeability, ionic liquids, selectivity, immobilization, binary mixtures.

Graphical Abstract

[1]
Swain, B. Separation and purification of lithium by solvent extraction and supported liquid membrane, analysis of their mechanism: a review. J. Chem. Technol. Biotechnol., 2016, 91(10), 2549-2562.
[http://dx.doi.org/10.1002/jctb.4976]
[2]
Jönsson, J.Å.; Mathiasson, L. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis. Trends Analyt. Chem., 1992, 11(3), 106-114.
[http://dx.doi.org/10.1016/0165-9936(92)85008-S]
[3]
Teramoto, M.; Sakaida, Y.; Fu, S.S.; Ohnishi, N.; Matsuyama, H.; Maki, T.; Fukui, T.; Arai, K. An attempt for the stabilization of supported liquid membrane. Separ. Purif. Tech., 2000, 21(1-2), 137-144.
[http://dx.doi.org/10.1016/S1383-5866(00)00197-0]
[4]
Venkateswaran, P.; Palanivelu, K. Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. J. Hazard. Mater., 2006, 131(1-3), 146-152.
[http://dx.doi.org/10.1016/j.jhazmat.2005.09.025] [PMID: 16236443]
[5]
Neplenbroek, A.M.; Bargeman, D.; Smolders, C.A. Mechanism of supported liquid membrane degradation: emulsion formation. J. Membr. Sci., 1992, 67(2-3), 133-148.
[http://dx.doi.org/10.1016/0376-7388(92)80021-B]
[6]
Zha, F.F.; Fane, A.G.; Fell, C.J.D.; Schofield, R.W. Critical displacement pressure of a supported liquid membrane. J. Membr. Sci., 1992, 75(1-2), 69-80.
[http://dx.doi.org/10.1016/0376-7388(92)80007-7]
[7]
Van de Voorde, I.; Pinoy, L.; De Ketelaere, R.F. Recovery of nickel ions by supported liquid membrane (SLM) extraction. J. Membr. Sci., 2004, 234(1-2), 11-21.
[http://dx.doi.org/10.1016/j.memsci.2004.01.002]
[8]
Chaudry, M.A.; Ahmad, S.; Malik, M.T. Supported liquid membrane technique applicability for removal of chromium from tannery wastes. Waste Manag., 1998, 17(4), 211-218.
[http://dx.doi.org/10.1016/S0956-053X(97)10007-1]
[9]
Muthuraman, G.; Palanivelu, K. Transport of textile dye in vegetable oils based supported liquid membrane. Dyes Pigments, 2006, 70(2), 99-104.
[http://dx.doi.org/10.1016/j.dyepig.2005.05.002]
[10]
Wang, X.; Saridara, C.; Mitra, S. Microfluidic supported liquid membrane extraction. Anal. Chim. Acta, 2005, 543(1-2), 92-98.
[http://dx.doi.org/10.1016/j.aca.2005.04.033]
[11]
Kocherginsky, N.M.; Yang, Q.; Seelam, L. Recent advances in supported liquid membrane technology. Separ. Purif. Tech., 2007, 53(2), 171-177.
[http://dx.doi.org/10.1016/j.seppur.2006.06.022]
[12]
Danesi, P.R. Separation of metal species by supported liquid membranes. Sep. Sci. Technol., 1984, 19(11-12), 857-894.
[http://dx.doi.org/10.1080/01496398408068598]
[13]
Pei, L.; Wang, L.; Yu, G. Separation of Eu(III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution. J. Rare Earths, 2011, 29(1), 7-14.
[http://dx.doi.org/10.1016/S1002-0721(10)60394-8]
[14]
De Gyves, J.; Rodríguez de San Miguel, E. Rodriguez de SMF. Ind. Eng. Chem. Res., 1999, 38, 2182-2202.
[http://dx.doi.org/10.1021/ie980374p]
[15]
Marchese, J.; Valenzuela, F.; Basualto, C.; Acosta, A. Transport of molybdenum with Alamine 336 using supported liquid membrane. Hydrometallurgy, 2004, 72(3-4), 309-317.
[http://dx.doi.org/10.1016/j.hydromet.2003.07.003]
[16]
Ata, O.N.; Çolak, S. Modelling of zinc transport through a supported liquid membrane. Hydrometallurgy, 2005, 80(3), 155-162.
[http://dx.doi.org/10.1016/j.hydromet.2005.06.008]
[17]
Chen, L.; Wu, Y.; Dong, H.; Meng, M.; Li, C.; Yan, Y.; Chen, J. An overview on membrane strategies for rare earths extraction and separation. Separ. Purif. Tech., 2018, 197, 70-85.
[http://dx.doi.org/10.1016/j.seppur.2017.12.053]
[18]
Ramakul, P.; Supajaroon, T.; Prapasawat, T.; Pancharoen, U.; Lothongkum, A.W.; Ind, J. Synergistic separation of yttrium ions in lanthanide series from rare earths mixture via hollow fiber supported liquid membrane. J. Ind. Eng. Chem., 2009, 15(2), 224-228.
[http://dx.doi.org/10.1016/j.jiec.2008.09.011]
[19]
Altin, S.; Yildirim, Y.; Altin, A. Transport of silver ions through a flat-sheet supported liquid membrane. Hydrometallurgy, 2010, 103(1-4), 144-149.
[http://dx.doi.org/10.1016/j.hydromet.2010.03.015]
[20]
Hassoune, H.; Rhlalou, T.; Verchère, J.F. Mechanism of transport of sugars across a supported liquid membrane using methyl cholate as mobile carrier. Desalination, 2009, 242(1-3), 84-95.
[http://dx.doi.org/10.1016/j.desal.2008.03.033]
[21]
Li, S.J.; Chen, H.L.; Zhang, L. Recovery of fumaric acid by hollow-fiber supported liquid membrane with strip dispersion using trialkylamine carrier. Separ. Purif. Tech., 2009, 66(1), 25-34.
[http://dx.doi.org/10.1016/j.seppur.2008.12.004]
[22]
Zha, F.F.; Fane, A.G.; Fell, C.J.D. Instability mechanisms of supported liquid membranes in phenol transport process. J. Membr. Sci., 1995, 107(1-2), 59-74.
[http://dx.doi.org/10.1016/0376-7388(95)00104-K]
[23]
Hill, C.; Dozol, J-F.; Rouquette, H.; Eymard, S.; Tournois, B. Study of the stability of some supported liquid membranes. J. Membr. Sci., 1996, 114(1), 73-80.
[http://dx.doi.org/10.1016/0376-7388(95)00306-1]
[24]
Manna, M.S.; Saha, P.; Ghoshal, A.K. PEI functionalized NaCeF 4: Tb3+/Eu3+ for photoluminescence sensing of heavy metal ions and explosive aromatic nitro compounds. RSC Advances, 2015, 5, 71999-72008.
[http://dx.doi.org/10.1039/C5RA11897B]
[25]
Fontàs, C.; Salvadó, V.; Hidalgo, M. Selective enrichment of palladium from spent automotive catalysts by using a liquid membrane system. J. Membr. Sci., 2003, 223(1-2), 39-48.
[http://dx.doi.org/10.1016/S0376-7388(03)00288-6]
[26]
Lv, J.; Yang, Q.; Jiang, J.; Chung, T.S. Exploration of heavy metal ions transmembrane flux enhancement across a supported liquid membrane by appropriate carrier selection. Chem. Eng. Sci., 2007, 62(21), 6032-6039.
[http://dx.doi.org/10.1016/j.ces.2007.06.013]
[27]
Rajewski, J.; Religa, P. Synergistic extraction and separation of chromium(III) from acidic solution with a double-carrier supported liquid membrane. J. Mol. Liq., 2016, 218, 309-315.
[http://dx.doi.org/10.1016/j.molliq.2016.02.079]
[28]
Chiarizia, R.; Horwitz, E.P. Study of uranium removal from groundwater by supported liquid membranes. Solvent Extr. Ion Exch., 1990, 8(1), 65-98.
[http://dx.doi.org/10.1080/07366299008917987]
[29]
Malik, M.A.; Hashim, M.A.; Nabi, F. Ionic liquids in supported liquid membrane technology. Chem. Eng. J., 2011, 171(1), 242-254.
[http://dx.doi.org/10.1016/j.cej.2011.03.041]
[30]
Scovazzo, P.; Kieft, J.; Finan, D.; Koval, C.; Dubois, D.; Noble, R. Gas separations using non-hexafluorophosphate [PF6]-anion supported ionic liquid membranes. J. Membr. Sci., 2004, 238(1-2), 57-63.
[http://dx.doi.org/10.1016/j.memsci.2004.02.033]
[31]
Marsh, K.N.; Boxall, J.A.; Lichtenthaler, R. Room temperature ionic liquids and their mixtures—a review. Fluid Phase Equilib., 2004, 219(1), 93-98.
[http://dx.doi.org/10.1016/j.fluid.2004.02.003]
[32]
Giraud, G.; Gordon, C.M.; Dunkin, I.R.; Wynne, K. The effects of anion and cation substitution on the ultrafast solvent dynamics of ionic liquids: A time-resolved optical Kerr-effect spectroscopic study. J. Chem. Phys., 2003, 119(1), 464-477.
[http://dx.doi.org/10.1063/1.1578056]
[33]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev., 2011, 111(5), 3508-3576.
[http://dx.doi.org/10.1021/cr1003248] [PMID: 21469639]
[34]
Wei, D.; Ivaska, A. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta, 2008, 607(2), 126-135.
[http://dx.doi.org/10.1016/j.aca.2007.12.011] [PMID: 18190800]
[35]
Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem., 2014, 4(1), 44-53.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[36]
Welton, T. Ionic liquids: A brief history. Biophys. Rev., 2018, 10(3), 691-706.
[http://dx.doi.org/10.1007/s12551-018-0419-2] [PMID: 29700779]
[37]
Kokorin, A. Ionic liquids: theory, properties, new approaches; BoD–Books on Demand, 2011.
[http://dx.doi.org/10.5772/603]
[38]
Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev., 2004, 248(21-24), 2459-2477.
[http://dx.doi.org/10.1016/j.ccr.2004.04.015]
[39]
Van den Bossche, A.; De Witte, E.; Dehaen, W.; Binnemans, K. Trihalide ionic liquids as non-volatile oxidizing solvents for metals. Green Chem., 2018, 20(14), 3327-3338.
[http://dx.doi.org/10.1039/C8GC01061G]
[40]
Rogers, R.D. Reflections on ionic liquids. Nature, 2007, 447(7147), 917-918.
[http://dx.doi.org/10.1038/447917a] [PMID: 17581570]
[41]
Shamsuri, A.A. Ionic liquids: Preparations and limitations. MAKARA Sci. Ser., 2011, 14(2), 101-106.
[http://dx.doi.org/10.7454/mss.v14i2.677]
[42]
Noble, R.D.; Gin, D.L. Perspective on ionic liquids and ionic liquid membranes. J. Membr. Sci., 2011, 369(1-2), 1-4.
[http://dx.doi.org/10.1016/j.memsci.2010.11.075]
[43]
van Rantwijk, F.; Madeira Lau, R.; Sheldon, R.A. Biocatalytic transformations in ionic liquids. Trends Biotechnol., 2003, 21(3), 131-138.
[http://dx.doi.org/10.1016/S0167-7799(03)00008-8] [PMID: 12628370]
[44]
Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as ‘green’ solvents for extractions. J. Chem. Technol. Biotechnol., 2005, 80(10), 1089-1096.
[http://dx.doi.org/10.1002/jctb.1333]
[45]
Welton, T. Ionic liquids in green chemistry. Green Chem., 2011, 13(2), 225-225.
[http://dx.doi.org/10.1039/c0gc90047h]
[46]
Mallakpour, S.; Dinari, M.; Green Solvents, II; Mohammad, A; Inamuddin, Dr. ., Eds.;Springer: Dordrecht. 2012, 1-32.
[47]
Yoo, C.G.; Pu, Y.; Ragauskas, A.J. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Curr. Opin. Green Sustain. Chem., 2017, 5, 5-11.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.003]
[48]
Vafaeezadeh, M.; Alinezhad, H. Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mol. Liq., 2016, 218, 95-105.
[http://dx.doi.org/10.1016/j.molliq.2016.02.017]
[49]
Earle, M.J.; Seddon, K.R. Catalytic reactions in ionic liquids. Pure Appl. Chem., 2000, 72, 1391-1398.
[http://dx.doi.org/10.1351/pac200072071391]
[50]
Kaur, P.; Chopra, H.K. Recent advances in applications of supported ionic liquids. Curr. Org. Chem., 2020, 23(26), 2881-2915.
[http://dx.doi.org/10.2174/1385272823666191204151803]
[51]
Kaur, P.; Chopra, H.K. Exploring the potential of supported ionic liquids as building block systems in catalysis. ChemistrySelect, 2020, 5(39), 12057-12086.
[http://dx.doi.org/10.1002/slct.202002826]
[52]
Kaur, P.; Chopra, H.K. Recent progress in synthesis and applications of tunable materials and nanomaterials based on organic salts. ChemistrySelect, 2020, 5(42), 13033-13053.
[http://dx.doi.org/10.1002/slct.202002727]
[53]
Plechkova, N.V.; Seddon, K.R. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Chem. Soc. Rev., 2008, 37, 123-150.
[http://dx.doi.org/10.1039/B006677J] [PMID: 18197338]
[54]
MacFarlane, D.R.; Tachikawa, N.; Forsyth, M.; Pringle, J.M.; Howlett, P.C.; Elliott, G.D.; Davis, J.H.; Watanabe, M.; Simon, P.; Angell, C.A. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ. Sci., 2014, 7, 232-250.
[http://dx.doi.org/10.1039/C3EE42099J]
[55]
Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci., 2009, 34(5), 431-448.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.12.001]
[56]
Zhao, H. Innovative applications of ionic liquids as “green” engineering liquids. Chem. Eng. Commun., 2006, 193(12), 1660-1677.
[http://dx.doi.org/10.1080/00986440600586537]
[57]
Han, D.; Row, K.H. Recent applications of ionic liquids in separation technology. Molecules, 2010, 15(4), 2405-2426.
[http://dx.doi.org/10.3390/molecules15042405] [PMID: 20428052]
[58]
Handy, S. Applications of ionic liquids in science and technology; BoD–Books on Demand, 2011.
[http://dx.doi.org/10.5772/1769]
[59]
De Los Rios, A.P.; Fernandez, F.J.H. Ionic Liquids in Separation Technology; Elsevier, 2014.
[60]
Berthod, A.; Ruiz-Ángel, M.J.; Carda-Broch, S. Ionic liquids in separation techniques. J. Chromatogr. A, 2008, 1184(1-2), 6-18.
[http://dx.doi.org/10.1016/j.chroma.2007.11.109] [PMID: 18155711]
[61]
Shukla, S.K.; Pandey, S.; Pandey, S. Applications of ionic liquids in biphasic separation: Aqueous biphasic systems and liquid–liquid equilibria. J. Chromatogr. A, 2018, 1559, 44-61.
[http://dx.doi.org/10.1016/j.chroma.2017.10.019] [PMID: 29054438]
[62]
Vygodskii, Y.S.; Shaplov, A.S.; Lozinskaya, E.I.; Filippov, O.A.; Shubina, E.S.; Bandari, R.; Buchmeiser, M.R. Ring-opening metathesis polymerization (ROMP) in ionic liquids: scope and limitations. Macromolecules, 2006, 39(23), 7821-7830.
[http://dx.doi.org/10.1021/ma061456p]
[63]
Kravchyk, K.V.; Seno, C.; Kovalenko, M.V. Limitations of chloroaluminate ionic liquid anolytes for aluminum–graphite dual-ion batteries. ACS Energy Lett., 2020, 5(2), 545-549.
[http://dx.doi.org/10.1021/acsenergylett.9b02832]
[64]
Galan, M.C.; Jouvin, K.; Alvarez-Dorta, D. Scope and limitations of imidazolium-based ionic liquids as room temperature glycosylation promoters. Carbohydr. Res., 2010, 345(1), 45-49.
[http://dx.doi.org/10.1016/j.carres.2009.09.034] [PMID: 19896645]
[65]
Gschwend, F.J.V.; Chambon, C.L.; Biedka, M.; Brandt-Talbot, A.; Fennell, P.S.; Hallett, J.P. Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids. Green Chem., 2019, 21(3), 692-703.
[http://dx.doi.org/10.1039/C8GC02155D]
[66]
Santiago, R.; Lemus, J.; Moreno, D.; Moya, C.; Larriba, M.; Alonso-Morales, N.; Gilarranz, M.A.; Rodríguez, J.J.; Palomar, J. From kinetics to equilibrium control in CO2 capture columns using Encapsulated Ionic Liquids (ENILs). Chem. Eng. J., 2018, 348, 661-668.
[http://dx.doi.org/10.1016/j.cej.2018.05.029]
[67]
Sharma, A.; Julcour, C.; Kelkar, A.A.; Deshpande, R.M.; Delmas, H. Mass transfer and solubility of CO and H2 in ionic liquid. Case of [Bmim][PF6] with gas-inducing stirrer reactor. Ind. Eng. Chem. Res., 2009, 48(8), 4075-4082.
[http://dx.doi.org/10.1021/ie801584p]
[68]
George, A.; Brandt, A.; Tran, K.; Zahari, S.M.S.N.S.; Klein-Marcuschamer, D.; Sun, N.; Sathitsuksanoh, N.; Shi, J.; Stavila, V.; Parthasarathi, R.; Singh, S.; Holmes, B.M.; Welton, T.; Simmons, B.A.; Hallett, J.P. Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chem., 2015, 17(3), 1728-1734.
[http://dx.doi.org/10.1039/C4GC01208A]
[69]
Mai, N.L.; Ahn, K.; Koo, Y.M. Methods for recovery of ionic liquids—A review. Process Biochem., 2014, 49(5), 872-881.
[http://dx.doi.org/10.1016/j.procbio.2014.01.016]
[70]
Brennecke, J.F.; Maginn, E.J. Ionic liquids: Innovative fluids for chemical processing. AIChE J., 2001, 47(11), 2384-2389.
[http://dx.doi.org/10.1002/aic.690471102]
[71]
Yan, X.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic liquids combined with membrane separation processes: A review. Separ. Purif. Tech., 2019, 222, 230-253.
[http://dx.doi.org/10.1016/j.seppur.2019.03.103]
[72]
Ramdin, M.; de Loos, T.W.; Vlugt, T.J.H. State-of-the-Art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res., 2012, 51(24), 8149-8177.
[http://dx.doi.org/10.1021/ie3003705]
[73]
Wang, J.; Luo, J.; Feng, S.; Li, H.; Wan, Y.; Zhang, X. Recent development of ionic liquid membranes. Green Energy Environ., 2016, 1(1), 43-61.
[http://dx.doi.org/10.1016/j.gee.2016.05.002]
[74]
Gao, H.; Bai, L.; Han, J.; Yang, B.; Zhang, S.; Zhang, X. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. (Camb.), 2018, 54(90), 12671-12685.
[http://dx.doi.org/10.1039/C8CC07348A] [PMID: 30357137]
[75]
Karkhanechi, H.; Salmani, S.; Asghari, M. A review on gas separation applications of supported ionic liquid membranes. ChemBioEng Rev., 2015, 2(4), 290-302.
[http://dx.doi.org/10.1002/cben.201500001]
[76]
Bakonyi, P.; Koók, L.; Rózsenberszki, T.; Tóth, G.; Bélafi-Bakó, K.; Nemestóthy, N. Development and application of supported ionic liquid membranes in microbial fuel cell technology: A concise overview. Membranes (Basel), 2020, 10(1), 16.
[http://dx.doi.org/10.3390/membranes10010016] [PMID: 31963734]
[77]
Fortunato, R.; Afonso, C.; Benavente, J.; Rodriguezcastellon, E.; Crespo, J. Stability of supported ionic liquid membranes as studied by X-ray photoelectron spectroscopy. J. Membr. Sci., 2005, 256, 216-223.
[http://dx.doi.org/10.1016/j.memsci.2005.02.023]
[78]
Lozano, L.J.; Godínez, C.; de los Ríos, A.P.; Hernández-Fernández, F.J.; Sánchez-Segado, S.; Alguacil, F.J. Recent advances in supported ionic liquid membrane technology. J. Membr. Sci., 2011, 376(1-2), 1-14.
[http://dx.doi.org/10.1016/j.memsci.2011.03.036]
[79]
Fortunato, R.; Branco, L.C.; Afonso, C.A.M.; Benavente, J.; Crespo, J.G. Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. J. Membr. Sci., 2006, 270(1-2), 42-49.
[http://dx.doi.org/10.1016/j.memsci.2005.06.040]
[80]
Zhang, X.; Kar, M.; Mendes, T.C.; Wu, Y.; MacFarlane, D.R. Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv. Energy Mater., 2018, 8(15), 1702702.
[http://dx.doi.org/10.1002/aenm.201702702]
[81]
Hopkinson, D.; Zeh, M.; Luebke, D. The bubble point of supported ionic liquid membranes using flat sheet supports. J. Membr. Sci., 2014, 468, 155-162.
[http://dx.doi.org/10.1016/j.memsci.2014.05.042]
[82]
Noorani, N.; Mehrdad, A.; Chakhmaghi, F. Thermodynamic study on carbon dioxide and methane permeability in polyvinylchloride/ionic liquid blends. J. Chem. Thermodyn., 2020, 145, 106094.
[http://dx.doi.org/10.1016/j.jct.2020.106094]
[83]
Vázquez, M.I.; Romero, V.; Fontàs, C.; Anticó, E.; Benavente, J. Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: Effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. J. Membr. Sci., 2014, 455, 312-319.
[http://dx.doi.org/10.1016/j.memsci.2013.12.072]
[84]
Chi, W.S.; Hong, S.U.; Jung, B.; Kang, S.W.; Kang, Y.S.; Kim, J.H. Synthesis, structure and gas permeation of polymerized ionic liquid graft copolymer membranes. J. Membr. Sci., 2013, 443, 54-61.
[http://dx.doi.org/10.1016/j.memsci.2013.04.049]
[85]
Shi, X.L.; Zhang, M.; Li, Y.; Zhang, W. Polypropylene fiber supported ionic liquids for the conversion of fructose to 5-hydroxymethylfurfural under mild conditions. Green Chem., 2013, 15(12), 3438-3445.
[http://dx.doi.org/10.1039/c3gc41565a]
[86]
Peng, J.F.; Liu, J.F.; Hu, X.L.; Jiang, G.B. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J. Chromatogr. A, 2007, 1139(2), 165-170.
[http://dx.doi.org/10.1016/j.chroma.2006.11.006] [PMID: 17113589]
[87]
Baltus, R.E.; Counce, R.M.; Culbertson, B.H.; Luo, H.; DePaoli, D.W.; Dai, S.; Duckworth, D.C. Examination of the potential of ionic liquids for gas separations. Sep. Sci. Technol., 2005, 40(1-3), 525-541.
[http://dx.doi.org/10.1081/SS-200042513]
[88]
Abejón, R.; Pérez-Acebo, H.; Garea, A. A bibliometric analysis of research on supported ionic liquid membranes during the 1995–2015 period: Study of the main applications and trending topics. Membranes (Basel), 2017, 7(4), 63.
[http://dx.doi.org/10.3390/membranes7040063] [PMID: 29112172]
[89]
Branco, L.C.; Crespo, J.G.; Afonso, C.A.M. Highly selective transport of organic compounds by using supported liquid membranes based on ionic liquids. Angew. Chem. Int. Ed., 2002, 41(15), 2771-2773.
[http://dx.doi.org/10.1002/1521-3773(20020802)41:15<2771::AID-ANIE2771>3.0.CO;2-U] [PMID: 12203480]
[90]
de Gyves, J.; Rodríguez de San Miguel, E. Metal ion separations by supported liquid membranes. Ind. Eng. Chem. Res., 1999, 38(6), 2182-2202.
[http://dx.doi.org/10.1021/ie980374p]
[91]
Zia ul Mustafa, M.; bin Mukhtar, H.; Md Nordin, N.A.H.; Mannan, H.A.; Nasir, R.; Fazil, N. Zia ul Mustafa, M.; bin Mukhtar, H.; Md Nordin, N.A.H.; Mannan, H.A.; Nasir, R.; Fazil, N. Recent developments and applications of ionic liquids in gas separation membranes. Chem. Eng. Technol., 2019, 42(12), 2580-2593.
[http://dx.doi.org/10.1002/ceat.201800519]
[92]
Sirisopanaporn, C.; Fernicola, A.; Scrosati, B. New, ionic liquid-based membranes for lithium battery application. J. Power Sources, 2009, 186(2), 490-495.
[http://dx.doi.org/10.1016/j.jpowsour.2008.10.036]
[93]
Mendes, T.C.; Zhang, X.; Wu, Y.; Howlett, P.C.; Forsyth, M.; Macfarlane, D.R. Supported ionic liquid gel membrane electrolytes for a safe and flexible sodium metal battery. ACS Sustain. Chem. Eng., 2019, 7(4), 3722-3726.
[http://dx.doi.org/10.1021/acssuschemeng.8b06212]
[94]
Cheruvally, G.; Kim, J.K.; Choi, J.W.; Ahn, J.H.; Shin, Y.J.; Manuel, J.; Raghavan, P.; Kim, K.W.; Ahn, H.J.; Choi, D.S.; Song, C.E. Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries. J. Power Sources, 2007, 172(2), 863-869.
[http://dx.doi.org/10.1016/j.jpowsour.2007.07.057]
[95]
Zhao, W.; He, G.; Nie, F.; Zhang, L.; Feng, H.; Liu, H. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. J. Membr. Sci., 2012, 411-412, 73-80.
[http://dx.doi.org/10.1016/j.memsci.2012.04.016]
[96]
Albo, J.; Tsuru, T. Thin ionic liquid membranes based on inorganic supports with different pore sizes. Ind. Eng. Chem. Res., 2014, 53(19), 8045-8056.
[http://dx.doi.org/10.1021/ie500126x]
[97]
Li, W.; Molina-Fernández, C.; Estager, J.; Monbaliu, J.C.M.; Debecker, D.P.; Luis, P. Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation. J. Membr. Sci., 2020, 598, 117790.
[http://dx.doi.org/10.1016/j.memsci.2019.117790]
[98]
Dahi, A.; Fatyeyeva, K.; Langevin, D.; Chappey, C.; Rogalsky, S.P.; Tarasyuk, O.P.; Benamor, A.; Marais, S. Supported ionic liquid membranes for water and volatile organic compounds separation: Sorption and permeation properties. J. Membr. Sci., 2014, 458, 164-178.
[http://dx.doi.org/10.1016/j.memsci.2014.01.031]
[99]
Wickramanayake, S.; Hopkinson, D.; Myers, C.; Sui, L.; Luebke, D. Investigation of transport and mechanical properties of hollow fiber membranes containing ionic liquids for pre-combustion carbon dioxide capture. J. Membr. Sci., 2013, 439, 58-67.
[http://dx.doi.org/10.1016/j.memsci.2013.03.039]
[100]
Cheng, L.H.; Rahaman, M.S.A.; Yao, R.; Zhang, L.; Xu, X.H.; Chen, H.L.; Lai, J.Y.; Tung, K.L. Study on microporous supported ionic liquid membranes for carbon dioxide capture. Int. J. Greenh. Gas Control, 2014, 21, 82-90.
[http://dx.doi.org/10.1016/j.ijggc.2013.11.015]
[101]
Virtanen, P.; Karhu, H.; Kordas, K.; Mikkola, J.P. The effect of ionic liquid in supported ionic liquid catalysts (SILCA) in the hydrogenation of α β-unsaturated aldehydes. Chem. Eng. Sci., 2007, 62(14), 3660-3671.
[http://dx.doi.org/10.1016/j.ces.2007.03.029]
[102]
Mohammad, A. Green solvents II: properties and applications of ionic liquids; Springer Science & Business Media, 2012.
[http://dx.doi.org/10.1007/978-94-007-2891-2]
[103]
Fatyeyeva, K.; Rogalsky, S.; Tarasyuk, O.; Chappey, C.; Marais, S. Vapour sorption and permeation behaviour of supported ionic liquid membranes: Application for organic solvent/water separation. React. Funct. Polym., 2018, 130, 16-28.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2018.05.007]
[104]
Martínez-Palou, R.; Likhanova, N.V.; Olivares-Xometl, O. Supported ionic liquid membranes for separations of gases and liquids: An overview. Petrol. Chem., 2014, 54(8), 595-607.
[http://dx.doi.org/10.1134/S0965544114080106]
[105]
Luis, P.; Neves, L.A.; Afonso, C.A.M.; Coelhoso, I.M.; Crespo, J.G.; Garea, A.; Irabien, A. Facilitated transport of CO2 and SO2 through supported ionic liquid membranes (SILMs). Desalination, 2009, 245(1-3), 485-493.
[http://dx.doi.org/10.1016/j.desal.2009.02.012]
[106]
Ríos, A.P.; Hernández-Fernández, F.J.; Tomás-Alonso, F.; Palacios, J.M.; Gómez, D.; Rubio, M.; Víllora, G. A SEM–EDX study of highly stable supported liquid membranes based on ionic liquids. J. Membr. Sci., 2007, 300(1-2), 88-94.
[http://dx.doi.org/10.1016/j.memsci.2007.05.010]
[107]
Rynkowska, E.; Fatyeyeva, K.; Kujawski, W. Application of polymer-based membranes containing ionic liquids in membrane separation processes: a critical review. Rev. Chem. Eng., 2018, 34(3), 341-363.
[http://dx.doi.org/10.1515/revce-2016-0054]
[108]
Gan, Q.; Rooney, D.; Xue, M.; Thompson, G.; Zou, Y. An experimental study of gas transport and separation properties of ionic liquids supported on nanofiltration membranes. J. Membr. Sci., 2006, 280(1-2), 948-956.
[http://dx.doi.org/10.1016/j.memsci.2006.03.015]
[109]
Dai, Z.; Noble, R.D.; Gin, D.L.; Zhang, X.; Deng, L. Combination of ionic liquids with membrane technology: A new approach for CO2 separation. J. Membr. Sci., 2016, 497, 1-20.
[http://dx.doi.org/10.1016/j.memsci.2015.08.060]
[110]
Rahman, F.A.; Aziz, M.M.A.; Saidur, R.; Bakar, W.A.W.A.; Hainin, M.R.; Putrajaya, R.; Hassan, N.A. Pollution to solution: Capture and sequestration of carbon dioxide (CO 2) and its utilization as a renewable energy source for a sustainable future. Renew. Sustain. Energy Rev., 2017, 71, 112-126.
[http://dx.doi.org/10.1016/j.rser.2017.01.011]
[111]
Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Ind. Eng. Chem. Res., 2006, 45(8), 2558-2568.
[http://dx.doi.org/10.1021/ie0505763]
[112]
Peters, G.P.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Friedlingstein, P.; Ilyina, T.; Jackson, R.B.; Joos, F.; Korsbakken, J.I.; McKinley, G.A.; Sitch, S.; Tans, P. Towards real-time verification of CO2 emissions. Nat. Clim. Chang., 2017, 7(12), 848-850.
[http://dx.doi.org/10.1038/s41558-017-0013-9]
[113]
Cox, P.M.; Betts, R.A.; Jones, C.D.; Spall, S.A.; Totterdell, I.J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809), 184-187.
[http://dx.doi.org/10.1038/35041539] [PMID: 11089968]
[114]
Anderson, T.R.; Hawkins, E.; Jones, P.D. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today’s Earth System Models. Endeavour, 2016, 40(3), 178-187.
[http://dx.doi.org/10.1016/j.endeavour.2016.07.002] [PMID: 27469427]
[115]
Luo, Y.; Gerten, D.; Le Maire, G.; Parton, W.J.; Weng, E.; Zhou, X.; Keough, C.; Beier, C.; Ciais, P.; Cramer, W.; Dukes, J.S.; Emmett, B.; Hanson, P.J.; Knapp, A.; Linder, S.; Nepstad, D.; Rustad, L. Modeled interactive effects of precipitation, temperature, and [CO2] on ecosystem carbon and water dynamics in different climatic zones. Glob. Change Biol., 2008, 14(9), 1986-1999.
[http://dx.doi.org/10.1111/j.1365-2486.2008.01629.x]
[116]
Bazzaz, F.A. The response of natural ecosystems to the rising global CO2 levels. Annu. Rev. Ecol. Syst., 1990, 21(1), 167-196.
[http://dx.doi.org/10.1146/annurev.es.21.110190.001123]
[117]
Aresta, M.; Dibenedetto, A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans., 2007, 28(28), 2975-2992.
[http://dx.doi.org/10.1039/b700658f] [PMID: 17622414]
[118]
Dibenedetto, A.; Angelini, A.; Stufano, P. Use of carbon dioxide as feedstock for chemicals and fuels: homogeneous and heterogeneous catalysis. J. Chem. Technol. Biotechnol., 2014, 89(3), 334-353.
[http://dx.doi.org/10.1002/jctb.4229]
[119]
Whiteoak, C.J.; Nova, A.; Maseras, F.; Kleij, A.W. Merging sustainability with organocatalysis in the formation of organic carbonates by using CO2 as a feedstock. ChemSusChem, 2012, 5(10), 2032-2038.
[http://dx.doi.org/10.1002/cssc.201200255] [PMID: 22945474]
[120]
Aaron, D.; Tsouris, C. A novel carbon fiber-based material and separation technology. Sep. Sci. Technol., 2005, 40, 321-348.
[http://dx.doi.org/10.1081/SS-200042244]
[121]
Wang, Y.; Liu, X.; Zhang, H.; Liu, Y.; Cui, P.; Zhu, Z.; Ma, Y.; Gao, J. Comprehensive 3E analysis and multi-objective optimization of a novel process for CO2 capture and separation process from syngas. J. Clean. Prod., 2020, 274, 122871.
[http://dx.doi.org/10.1016/j.jclepro.2020.122871]
[122]
Adewole, J.K.; Ahmad, A.L.; Ismail, S.; Leo, C.P. Current challenges in membrane separation of CO2 from natural gas: A review. Int. J. Greenh. Gas Control, 2013, 17, 46-65.
[http://dx.doi.org/10.1016/j.ijggc.2013.04.012]
[123]
Vicent-Luna, J.M.; Gutiérrez-Sevillano, J.J.; Anta, J.A.; Calero, S. Effect of room-temperature ionic liquids on CO2 separation by a Cu-BTC metal–organic framework. J. Phys. Chem. C, 2013, 117(40), 20762-20768.
[http://dx.doi.org/10.1021/jp407176j]
[124]
Erto, A.; Silvestre-Albero, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F.; Balsamo, M.; Lancia, A.; Montagnaro, F. Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas. J. Colloid Interface Sci., 2015, 448, 41-50.
[http://dx.doi.org/10.1016/j.jcis.2015.01.089] [PMID: 25710387]
[125]
Zhou, M.; Khokarale, S.G.; Balsamo, M.; Mikkola, J.P.; Hedlund, J. Oligoamine ionic liquids supported on mesoporous microspheres for CO2 separation with good sorption kinetics and low cost. J. CO2 Util., 2020, 39, 101186.
[http://dx.doi.org/10.1016/j.jcou.2020.101186]
[126]
Wu, N.; Ji, X.; Xie, W.; Liu, C.; Feng, X.; Lu, X. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports. Langmuir, 2017, 33(42), 11719-11726.
[http://dx.doi.org/10.1021/acs.langmuir.7b02204] [PMID: 28844135]
[127]
Liu, Y.; Shi, J.; Chen, J.; Ye, Q.; Pan, H.; Shao, Z.; Shi, Y. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater., 2010, 134(1-3), 16-21.
[http://dx.doi.org/10.1016/j.micromeso.2010.05.002]
[128]
Filburn, T.; Helble, J.J.; Weiss, R.A. Development of supported ethanolamines and modified ethanolamines for CO2 capture. Weiss. Ind. Eng. Chem. Res., 2005, 44(5), 1542-1546.
[http://dx.doi.org/10.1021/ie0495527]
[129]
Brunetti, A.; Scura, F.; Barbieri, G.; Drioli, E. Membrane technologies for CO2 separation. J. Membr. Sci., 2010, 359(1-2), 115-125.
[http://dx.doi.org/10.1016/j.memsci.2009.11.040]
[130]
Ali, A.; Pothu, R.; Siyal, S.H.; Phulpoto, S.; Sajjad, M.; Thebo, K.H. Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol., 2019, 2(1), 83-88.
[http://dx.doi.org/10.1016/j.mset.2018.11.002]
[131]
Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Separ. Purif. Tech., 2017, 188, 431-450.
[http://dx.doi.org/10.1016/j.seppur.2017.07.051]
[132]
Rezakazemi, M.; Ebadi Amooghin, A.; Montazer-Rahmati, M.M.; Ismail, A.F.; Matsuura, T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci., 2014, 39(5), 817-861.
[http://dx.doi.org/10.1016/j.progpolymsci.2014.01.003]
[133]
Xu, J.; Wu, H.; Wang, Z.; Qiao, Z.; Zhao, S.; Wang, J. Recent advances on the membrane processes for CO2 separation. Chin. J. Chem. Eng., 2018, 26(11), 2280-2291.
[http://dx.doi.org/10.1016/j.cjche.2018.08.020]
[134]
Thallapally, P.K.; Tian, J.; Radha Kishan, M.; Fernandez, C.A.; Dalgarno, S.J.; McGrail, P.B.; Warren, J.E.; Atwood, J.L. Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. J. Am. Chem. Soc., 2008, 130(50), 16842-16843.
[http://dx.doi.org/10.1021/ja806391k] [PMID: 19053477]
[135]
Kueh, B.; Kapsi, M.; Veziri, C.M.; Athanasekou, C.; Pilatos, G.; Reddy, K.S.K.; Raj, A.; Karanikolos, G.N. Asphaltene-derived activated carbon and carbon nanotube membranes for CO2 separation. Energy Fuels, 2018, 32(11), 11718-11730.
[http://dx.doi.org/10.1021/acs.energyfuels.8b02913]
[136]
Xie, L.H.; Suh, M.P. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. Chemistry, 2013, 19(35), 11590-11597.
[http://dx.doi.org/10.1002/chem.201301822] [PMID: 23881821]
[137]
Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res., 2009, 48(10), 4638-4663.
[http://dx.doi.org/10.1021/ie8019032]
[138]
Xie, Y.; Zhang, Y.; Lu, X.; Ji, X. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Appl. Energy, 2014, 136, 325-335.
[http://dx.doi.org/10.1016/j.apenergy.2014.09.046]
[139]
Santos, E.; Albo, J.; Rosatella, A.; Afonso, C.A.M.; Irabien, Á. Synthesis and characterization of magnetic ionic liquids (MILs) for CO2 separation. J. Chem. Technol. Biotechnol., 2014, 89(6), 866-871.
[http://dx.doi.org/10.1002/jctb.4323]
[140]
Jindaratsamee, P.; Shimoyama, Y.; Morizaki, H.; Ito, A. Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes. J. Chem. Thermodyn., 2011, 43(3), 311-314.
[http://dx.doi.org/10.1016/j.jct.2010.09.015]
[141]
Akhmetshina, A.I.; Yanbikov, N.R.; Petukhov, A.N.; Vorotyntsev, I.V. Effect of temperature on gas transport properties of supported ionic liquid membranes. Petrol. Chem., 2017, 57(9), 770-778.
[http://dx.doi.org/10.1134/S096554411709002X]
[142]
Raeissi, S.; Peters, C.J. A potential ionic liquid for CO2-separating gas membranes: selection and gas solubility studies. Green Chem., 2009, 11(2), 185-192.
[http://dx.doi.org/10.1039/B814246G]
[143]
Muldoon, M.J.; Aki, S.N.V.K.; Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B, 2007, 111(30), 9001-9009.
[http://dx.doi.org/10.1021/jp071897q] [PMID: 17608519]
[144]
Gouveia, A.S.L.; Tomé, L.C.; Lozinskaya, E.I.; Shaplov, A.S.; Vygodskii, Y.S.; Marrucho, I.M. Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes. Phys. Chem. Chem. Phys., 2017, 19(42), 28876-28884.
[http://dx.doi.org/10.1039/C7CP06297D] [PMID: 29057411]
[145]
Bara, J.E.; Gabriel, C.J.; Carlisle, T.K.; Camper, D.E.; Finotello, A.; Gin, D.L.; Noble, R.D. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes. Chem. Eng. J., 2009, 147(1), 43-50.
[http://dx.doi.org/10.1016/j.cej.2008.11.021]
[146]
Hanioka, S.; Maruyama, T.; Sotani, T.; Teramoto, M.; Matsuyama, H.; Nakashima, K.; Hanaki, M.; Kubota, F.; Goto, M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J. Membr. Sci., 2008, 314(1-2), 1-4.
[http://dx.doi.org/10.1016/j.memsci.2008.01.029]
[147]
Myers, C.; Pennline, H.; Luebke, D.; Ilconich, J.; Dixon, J.K.; Maginn, E.J.; Brennecke, J.F. High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J. Membr. Sci., 2008, 322(1), 28-31.
[http://dx.doi.org/10.1016/j.memsci.2008.04.062]
[148]
Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Lopez, Z.K.; Price, E.A.; Huang, Y.; Brennecke, J.F. Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. J. Phys. Chem. B, 2011, 115(29), 9140-9150.
[http://dx.doi.org/10.1021/jp2015534] [PMID: 21650466]
[149]
Kasahara, S.; Kamio, E.; Matsuyama, H. Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transport membranes by controlling their gas absorption properties. J. Membr. Sci., 2014, 454, 155-162.
[http://dx.doi.org/10.1016/j.memsci.2013.12.009]
[150]
Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation. Chem. Commun. (Camb.), 2012, 48(55), 6903-6905.
[http://dx.doi.org/10.1039/c2cc17380h] [PMID: 22374137]
[151]
Santos, E.; Albo, J.; Irabien, A. Acetate based Supported Ionic Liquid Membranes (SILMs) for CO2 separation: Influence of the temperature. J. Membr. Sci., 2014, 452, 277-283.
[http://dx.doi.org/10.1016/j.memsci.2013.10.024]
[152]
Shamair, Z.; Habib, N.; Gilani, M.A.; Khan, A.L. Theoretical and experimental investigation of CO2 separation from CH4 and N2 through supported ionic liquid membranes. Appl. Energy, 2020, 268, 115016.
[http://dx.doi.org/10.1016/j.apenergy.2020.115016]
[153]
Liu, Z.; Liu, C.; Li, L.; Qin, W.; Xu, A. CO2 separation by supported ionic liquid membranes and prediction of separation performance. Int. J. Greenh. Gas Control, 2016, 53, 79-84.
[http://dx.doi.org/10.1016/j.ijggc.2016.07.041]
[154]
Cserjési, P.; Nemestóthy, N.; Bélafi-Bakó, K. Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids. J. Membr. Sci., 2010, 349(1-2), 6-11.
[http://dx.doi.org/10.1016/j.memsci.2009.10.044]
[155]
Jindaratsamee, P.; Ito, A.; Komuro, S.; Shimoyama, Y. Separation of CO2 from the CO2/N2 mixed gas through ionic liquid membranes at the high feed concentration. J. Membr. Sci., 2012, 423-424, 27-32.
[http://dx.doi.org/10.1016/j.memsci.2012.07.012]
[156]
Scovazzo, P.; Visser, A.E.; Davis, J.H., Jr; Rogers, R.D.; Koval, C.A.; DuBois, D.L.; Noble, R.D. Ionic liquids: Industrial applications for green chemistry; ACS Sympos. Ser, 2002, pp. 69-87.
[http://dx.doi.org/10.1021/bk-2002-0818.ch006]
[157]
Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J. Membr. Sci., 2009, 327(1-2), 41-48.
[http://dx.doi.org/10.1016/j.memsci.2008.10.056]
[158]
Scovazzo, P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J. Membr. Sci., 2009, 343(1-2), 199-211.
[http://dx.doi.org/10.1016/j.memsci.2009.07.028]
[159]
Lan, W.; Li, S.; Xu, J.; Luo, G. Preparation and Carbon Dioxide separation performance of a hollow fiber supported ionic liquid membrane. Ind. Eng. Chem. Res., 2013, 52(20), 6770-6777.
[http://dx.doi.org/10.1021/ie3034152]
[160]
Cserjési, P.; Nemestóthy, N.; Vass, A.; Csanádi, Z.; Bélafi-Bakó, K. Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination, 2009, 245(1-3), 743-747.
[http://dx.doi.org/10.1016/j.desal.2009.02.046]
[161]
Jiang, Y.; Youting, W.; Wenting, W.; Lei, L.; Zheng, Z.; Zhang, Z. Solubilities of benzene carboxylic acids in isobutyl acetate from (299.73 to 353.15). K. Chin. J. Chem. Eng., 2009, 17, 594-601.
[http://dx.doi.org/10.1016/S1004-9541(08)60249-9]
[162]
Neves, L.A.; Nemestóthy, N.; Alves, V.D.; Cserjési, P.; Bélafi-Bakó, K.; Coelhoso, I.M. Separation of biohydrogen by supported ionic liquid membranes. Desalination, 2009, 240(1-3), 311-315.
[http://dx.doi.org/10.1016/j.desal.2007.10.095]
[163]
Park, Y.I.; Kim, B.S.; Byun, Y.H.; Lee, S.H.; Lee, E.W.; Lee, J.M. Preparation of supported ionic liquid membranes (SILMs) for the removal of acidic gases from crude natural gas. Desalination, 2009, 236(1-3), 342-348.
[http://dx.doi.org/10.1016/j.desal.2007.10.085]
[164]
Akhmetshina, A.I.; Gumerova, O.R.; Atlaskin, A.A.; Petukhov, A.N.; Sazanova, T.S.; Yanbikov, N.R.; Nyuchev, A.V.; Razov, E.N.; Vorotyntsev, I.V. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Separ. Purif. Tech., 2017, 176, 92-106.
[http://dx.doi.org/10.1016/j.seppur.2016.11.074]
[165]
Kim, D.H.; Baek, I.H.; Hong, S.U.; Lee, H.K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO2/N2 separation. J. Membr. Sci., 2011, 372(1-2), 346-354.
[http://dx.doi.org/10.1016/j.memsci.2011.02.025]
[166]
Akhmetshina, A.; Davletbaeva, I.; Grebenschikova, E.; Sazanova, T.; Petukhov, A.; Atlaskin, A.; Razov, E.; Zaripov, I.; Martins, C.; Neves, L.; Vorotyntsev, I. The effect of microporous polymeric support modification on surface and gas transport properties of supported ionic liquid membranes. Membranes (Basel), 2015, 6(1), 4.
[http://dx.doi.org/10.3390/membranes6010004] [PMID: 26729177]
[167]
Neves, L.A.; Crespo, J.G.; Coelhoso, I.M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci., 2010, 357(1-2), 160-170.
[http://dx.doi.org/10.1016/j.memsci.2010.04.016]
[168]
Close, J.J.; Farmer, K.; Moganty, S.S.; Baltus, R.E. CO2/N2 separations using nanoporous alumina-supported ionic liquid membranes: Effect of the support on separation performance. J. Membr. Sci., 2012, 390-391, 201-210.
[http://dx.doi.org/10.1016/j.memsci.2011.11.037]
[169]
Albo, J.; Tsuru, T. Thin ionic liquid membranes based on inorganic supports with different pore sizes. Ind. Eng. Chem. Res., 2014, 53, 8045-8056.
[http://dx.doi.org/10.1021/ie500126x]
[170]
Albo, J.; Yoshioka, T.; Tsuru, T. Porous Al2O3/TiO2 tubes in combination with 1-ethyl-3-methylimidazolium acetate ionic liquid for CO2/N2 separation. Separ. Purif. Technol., 2014, 122, 440-448.
[http://dx.doi.org/10.1016/j.seppur.2013.11.024"10.1016/j.seppur.2013.11.024]
[171]
Karousos, D.S.; Labropoulos, A.I.; Tzialla, O.; Papadokostaki, K.; Gjoka, M.; Stefanopoulos, K.L.; Beltsios, K.G.; Iliev, B.; Schubert, T.J.S.; Romanos, G.E. Effect of a cyclic heating process on the CO 2/N 2 separation performance and structure of a ceramic nanoporous membrane supporting the ionic liquid 1-methyl-3-octylimidazolium tricyanomethanide. Separ. Purif. Tech., 2018, 200, 11-22.
[http://dx.doi.org/10.1016/j.seppur.2018.02.013]
[172]
Alkhouzaam, A.; Khraisheh, M.; Atilhan, M.; Al-Muhtaseb, S.A.; Qi, L.; Rooney, D. High-pressure CO2/N2 and CO2/CH4 separation using dense polysulfone-supported ionic liquid membranes. J. Nat. Gas Sci. Eng., 2016, 36, 472-485.
[http://dx.doi.org/10.1016/j.jngse.2016.10.061]
[173]
Zhao, W.; He, G.; Zhang, L.; Ju, J.; Dou, H.; Nie, F.; Li, C.; Liu, H. Effect of water in ionic liquid on the separation performance of supported ionic liquid membrane for CO2/N2. J. Membr. Sci., 2010, 350(1-2), 279-285.
[http://dx.doi.org/10.1016/j.memsci.2010.01.002]
[174]
Kasahara, S.; Kamio, E.; Ishigami, T.; Matsuyama, H. Effect of water in ionic liquids on CO2 permeability in amino acid ionic liquid-based facilitated transport membranes. J. Membr. Sci., 2012, 415-416, 168-175.
[http://dx.doi.org/10.1016/j.memsci.2012.04.049]
[175]
Iarikov, D.D.; Hacarlioglu, P.; Oyama, S.T. Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chem. Eng. J., 2011, 166(1), 401-406.
[http://dx.doi.org/10.1016/j.cej.2010.10.060]
[176]
Gonzalez-Miquel, M.; Palomar, J.; Omar, S.; Rodriguez, F. CO 2/N 2 Selectivity Prediction in Supported Ionic Liquid Membranes (SILMs) by COSMO-RS. Ind. Eng. Chem. Res., 2011, 50(9), 5739-5748.
[http://dx.doi.org/10.1021/ie102450x]
[177]
Ramli, N.A.; Hashim, N.A.; Aroua, M.K. Prediction of CO2/O2 absorption selectivity using supported ionic liquid membranes (SILMs) for gas–liquid membrane contactor. Chem. Eng. Commun., 2018, 205(3), 295-310.
[http://dx.doi.org/10.1080/00986445.2017.1387854]
[178]
Albo, J.; Santos, E.; Neves, L.A.; Simeonov, S.P.; Afonso, C.A.M.; Crespo, J.G.; Irabien, A. Separation performance of CO2 through Supported Magnetic Ionic Liquid Membranes (SMILMs). Separ. Purif. Tech., 2012, 97, 26-33.
[http://dx.doi.org/10.1016/j.seppur.2012.01.034]
[179]
Tomé, L.C.; Patinha, D.J.S.; Freire, C.S.R.; Rebelo, L.P.N.; Marrucho, I.M. CO2 separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Advances, 2013, 3(30), 12220-12229.
[http://dx.doi.org/10.1039/c3ra41269e]
[180]
Tome, L.C.; Patinha, D.J.; Ferreira, R.; Garcia, H.; Silva Pereira, C.; Freire, C.S.; Rebelo, L.P.N.; Marrucho, I.M. Natural gas purification using supported ionic liquid membrane. ChemSusChem, 2014, 7, 110-113.
[http://dx.doi.org/10.1002/cssc.201300613] [PMID: 24458737]
[181]
Cichowska-Kopczyńska, I.; Joskowska, M.; Dębski, B.; Łuczak, J.; Aranowski, R. Influence of Ionic Liquid Structure on Supported Ionic Liquid Membranes Effectiveness in Carbon Dioxide/Methane Separation. J. Chem., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/980689]
[182]
Hojniak, S.D.; Khan, A.L.; Hollóczki, O.; Kirchner, B.; Vankelecom, I.F.J.; Dehaen, W.; Binnemans, K. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): Influence of the cation charge of the ionic liquid. J. Phys. Chem. B, 2013, 117(48), 15131-15140.
[http://dx.doi.org/10.1021/jp409414t] [PMID: 24199938]
[183]
Shahkaramipour, N.; Adibi, M.; Seifkordi, A.A.; Fazli, Y. Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes. J. Membr. Sci., 2014, 455, 229-235.
[http://dx.doi.org/10.1016/j.memsci.2013.12.039]
[184]
Hojniak, S.D.; Silverwood, I.P.; Khan, A.L.; Vankelecom, I.F.J.; Dehaen, W.; Kazarian, S.G.; Binnemans, K. Highly selective separation of carbon dioxide from nitrogen and methane by nitrile/glycol-difunctionalized ionic liquids in supported ionic liquid membranes (SILMs). J. Phys. Chem. B, 2014, 118(26), 7440-7449.
[http://dx.doi.org/10.1021/jp503259b] [PMID: 24895912]
[185]
Gupta, K.M.; Chen, Y.; Jiang, J. Ionic liquid membranes supported by hydrophobic and hydrophilic metal–organic frameworks for CO2 Capture. J. Phys. Chem. C, 2013, 117(11), 5792-5799.
[http://dx.doi.org/10.1021/jp312404k]
[186]
Huang, K.; Zhang, X.M.; Li, Y.X.; Wu, Y.T.; Hu, X.B. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids. J. Membr. Sci., 2014, 471, 227-236.
[http://dx.doi.org/10.1016/j.memsci.2014.08.022]
[187]
Althuluth, M.; Overbeek, J.P.; van Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.; Peters, C.J.; Kroon, M.C. Natural gas purification using supported ionic liquid membrane. J. Membr. Sci., 2015, 484, 80-86.
[http://dx.doi.org/10.1016/j.memsci.2015.02.033]
[188]
Karousos, D.S.; Vangeli, O.C.; Athanasekou, C.P.; Sapalidis, A.A.; Kouvelos, E.P.; Romanos, G.E.; Kanellopoulos, N.K. Physically bound and chemically grafted activated carbon supported 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-ethyl-3-methylimidazolium acetate ionic liquid absorbents for SO2/CO2 gas separation. Chem. Eng. J., 2016, 306, 146-154.
[http://dx.doi.org/10.1016/j.cej.2016.07.040]
[189]
Zhu, J.; He, B.; Huang, J.; Li, C.; Ren, T. Effect of immobilization methods and the pore structure on CO2 separation performance in silica-supported ionic liquids. Microporous Mesoporous Mater., 2018, 260, 190-200.
[http://dx.doi.org/10.1016/j.micromeso.2017.10.035]
[190]
Zhang, X.; Tu, Z.; Li, H.; Huang, K.; Hu, X.; Wu, Y.; MacFarlane, D.R. Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes. J. Membr. Sci., 2017, 543, 282-287.
[http://dx.doi.org/10.1016/j.memsci.2017.08.033]
[191]
Liu, Y.F.; Xu, Q.Q.; Wang, Y.Q.; Zhen, M.Y.; Yin, J.Z. Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids. J. Supercrit. Fluids, 2018, 139, 88-96.
[http://dx.doi.org/10.1016/j.supflu.2018.05.014]
[192]
Liu, Y.F.; Xu, Q.Q.; Wang, Y.Q.; Zhu, H.Y.; Yin, J.Z. Preparation of supported ionic liquid membranes using supercritical fluid deposition based on γ-alumina membrane and imidazolium ionic liquids. Ind. Eng. Chem. Res., 2019, 58, 19189-19196.
[http://dx.doi.org/10.1021/acs.iecr.9b03161]
[193]
Akhmetshina, A.; Yanbikov, N.; Atlaskin, A.; Trubyanov, M.; Mechergui, A.; Otvagina, K.; Razov, E.; Mochalova, A.; Vorotyntsev, I. Acidic gases separation from gas mixtures on the supported ionic liquid membranes providing the facilitated and solution-diffusion transport mechanisms. Membranes (Basel), 2019, 9(1), 9.
[http://dx.doi.org/10.3390/membranes9010009] [PMID: 30621273]
[194]
Park, Y.S.; Kang, Y.S.; Kang, S.W. Highly CO2 selective membranes by potassium cations as carriers for facilitated transport with Ag2O particles and free ions in ionic liquid. Chem. Eng. J., 2017, 320, 29-33.
[http://dx.doi.org/10.1016/j.cej.2017.03.032]
[195]
Lee, W.G.; Kang, S.W. Highly selective poly(ethylene oxide)/ionic liquid electrolyte membranes containing CrO3 for CO2/N2 separation. Chem. Eng. J., 2019, 356, 312-317.
[http://dx.doi.org/10.1016/j.cej.2018.09.049]
[196]
Hu, X.B.; Li, Y.X.; Huang, K.; Ma, S.L.; Yu, H.; Wu, Y.T.; Zhang, Z.B. Impact of α-d-glucose pentaacetate on the selective separation of CO2 and SO2 in supported ionic liquid membranes. Green Chem., 2012, 14(5), 1440-1446.
[http://dx.doi.org/10.1039/c2gc35224a]
[197]
Couto, R.; Neves, L.; Simões, P.; Coelhoso, I. Supported ionic liquid membranes and Ion-Jelly® membranes with [BMIM][DCA]: Comparison of its performance for CO2 separation. Membranes (Basel), 2015, 5(1), 13-21.
[http://dx.doi.org/10.3390/membranes5010013] [PMID: 25594165]
[198]
Ilconich, J.; Myers, C.; Pennline, H.; Luebke, D. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125°C. J. Membr. Sci., 2007, 298(1-2), 41-47.
[http://dx.doi.org/10.1016/j.memsci.2007.03.056]
[199]
Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. Why Is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc., 2004, 126(16), 5300-5308.
[http://dx.doi.org/10.1021/ja039615x] [PMID: 15099115]
[200]
Uchytil, P.; Schauer, J.; Petrychkovych, R.; Setnickova, K.; Suen, S.Y. Ionic liquid membranes for carbon dioxide–methane separation. J. Membr. Sci., 2011, 383(1-2), 262-271.
[http://dx.doi.org/10.1016/j.memsci.2011.08.061]
[201]
Duczinski, R.; Bernard, F.; Rojas, M.; Duarte, E.; Chaban, V.; Vecchia, F.D.; Menezes, S.; Einloft, S. Waste derived MCMRH- supported IL for CO2/CH4 separation. J. Nat. Gas Sci. Eng., 2018, 54, 54-64.
[http://dx.doi.org/10.1016/j.jngse.2018.03.028]
[202]
Lin, H.; Freeman, B.D. Gas solubility, diffusivity and permeability in poly(ethylene oxide). J. Membr. Sci., 2004, 239(1), 105-117.
[http://dx.doi.org/10.1016/j.memsci.2003.08.031]
[203]
Yoo, S.; Won, J.; Kang, S.W.; Kang, Y.S.; Nagase, S. CO2 separation membranes using ionic liquids in a Nafion matrix. J. Membr. Sci., 2010, 363(1-2), 72-79.
[http://dx.doi.org/10.1016/j.memsci.2010.07.013]
[204]
Wickramanayake, S.; Hopkinson, D.; Myers, C.; Hong, L.; Feng, J.; Seol, Y.; Plasynski, D.; Zeh, M.; Luebke, D. Mechanically robust hollow fiber supported ionic liquid membranes for CO2 separation applications. J. Membr. Sci., 2014, 470, 52-59.
[http://dx.doi.org/10.1016/j.memsci.2014.07.015]
[205]
Grünauer, J.; Shishatskiy, S.; Abetz, C.; Abetz, V.; Filiz, V. Ionic liquids supported by isoporous membranes for CO2/N2 gas separation applications. J. Membr. Sci., 2015, 494, 224-233.
[http://dx.doi.org/10.1016/j.memsci.2015.07.054]
[206]
Zhang, X.; Xiong, W.; Tu, Z.; Peng, L.; Wu, Y.; Hu, X. Supported ionic liquid membranes with dual-site interaction mechanism for efficient separation of CO2. ACS Sustain. Chem. Eng., 2019, 7(12), 10792-10799.
[http://dx.doi.org/10.1021/acssuschemeng.9b01604]
[207]
Tian, Z.; Mahurin, S.M.; Dai, S.; Jiang, D. Ion-gated gas separation through porous graphene. Nano Lett., 2017, 17(3), 1802-1807.
[http://dx.doi.org/10.1021/acs.nanolett.6b05121] [PMID: 28231000]
[208]
Ramli, N.A.; Hashim, N.A.; Aroua, M.K. Supported ionic liquid membranes (SILMs) as a contactor for selective absorption of CO2/O2 by aqueous monoethanolamine (MEA). Separ. Purif. Tech., 2020, 230, 115849.
[http://dx.doi.org/10.1016/j.seppur.2019.115849]
[209]
Schott, J.A.; Do-Thanh, C.L.; Mahurin, S.M.; Tian, Z.; Onishi, N.C.; Jiang, D.; Dai, S. Supported bicyclic amidine ionic liquids as a potential CO2/N2 separation medium. J. Membr. Sci., 2018, 565, 203-212.
[http://dx.doi.org/10.1016/j.memsci.2018.08.012]
[210]
Mohammadi, M.; Asadollahzadeh, M.; Shirazian, S. Molecular-level understanding of supported ionic liquid membranes for gas separation. J. Mol. Liq., 2018, 262, 230-236.
[http://dx.doi.org/10.1016/j.molliq.2018.04.080]
[211]
Fan, T.; Xie, W.; Ji, X.; Liu, C.; Feng, X.; Lu, X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chin. J. Chem. Eng., 2016, 24(11), 1513-1521.
[http://dx.doi.org/10.1016/j.cjche.2016.03.006]
[212]
Chen, H.Z.; Li, P.; Chung, T.S. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas. Int. J. Hydrogen Energy, 2012, 37(16), 11796-11804.
[http://dx.doi.org/10.1016/j.ijhydene.2012.05.111]
[213]
Santos, J.C.; Cruz, P.; Regala, T.; Magalhães, F.D.; Mendes, A. High-purity oxygen production by pressure swing adsorption. Ind. Eng. Chem. Res., 2007, 46(2), 591-599.
[http://dx.doi.org/10.1021/ie060400g]
[214]
Mercea, P.V.; Hwang, S.T. Oxygen separation from air by a combined pressure swing adsorption and continuous membrane column process. J. Membr. Sci., 1994, 88(2-3), 131-144.
[http://dx.doi.org/10.1016/0376-7388(94)87001-2]
[215]
Allam, R.J. Improved oxygen production technologies. Energy Proc., 2009, 1(1), 461-470.
[http://dx.doi.org/10.1016/j.egypro.2009.01.062]
[216]
Berdowska, S.; Skorek-Osikowska, A. Technology of oxygen production in the membranecryogenic air separation system for a 600 MW oxy-type pulverized bed boiler. Arch. Thermodyn., 2012, 33(3), 61-72.
[http://dx.doi.org/10.2478/v10173-012-0018-8]
[217]
Burdyny, T.; Struchtrup, H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy, 2010, 35(5), 1884-1897.
[http://dx.doi.org/10.1016/j.energy.2009.12.033]
[218]
Hinchliffe, A.B.; Porter, K.E. A comparison of membrane separation and distillation. Chem. Eng. Res. Des., 2000, 78(2), 255-268.
[http://dx.doi.org/10.1205/026387600527121]
[219]
Smith, A.R.; Klosek, J. A review of air separation technologies and their integration with energy conversion processes. Fuel Process. Technol., 2001, 70(2), 115-134.
[http://dx.doi.org/10.1016/S0378-3820(01)00131-X]
[220]
Ismail, A.F. O2/N2 Separation. Encycl. Membr., 2016, 2016, 1421-1422.
[http://dx.doi.org/10.1007/978-3-662-44324-8_418]
[221]
Condemarin, R.; Scovazzo, P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data. Chem. Eng. J., 2009, 147(1), 51-57.
[http://dx.doi.org/10.1016/j.cej.2008.11.015]
[222]
Castro-Domínguez, B.; Leelachaikul, P.; Takagaki, A.; Sugawara, T.; Kikuchi, R.; Oyama, S.T. Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Separ. Purif. Tech., 2013, 116, 19-24.
[http://dx.doi.org/10.1016/j.seppur.2013.05.023]
[223]
Kammakakam, I.; Kim, H.W.; Nam, S.; Park, H.B.; Kim, T.H. Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations. Polymer (Guildf.), 2013, 54(14), 3534-3541.
[http://dx.doi.org/10.1016/j.polymer.2013.05.006]
[224]
Romano, U.; Tesel, R.; Mauri, M.M.; Rebora, P. Synthesis of dimethyl carbonate from methanol, carbon monoxide, and oxygen catalyzed by copper compounds. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(3), 396-403.
[http://dx.doi.org/10.1021/i360075a021]
[225]
Eisenmann, J.; Yamartino, R.; Howard, J., Jr Notes- Preparation of Methyl β-Hydroxybutyrate from Propylene Oxide, Carbon Monoxide, Methanol, and Dicobalt Octacarbonyl. J. Org. Chem., 1961, 26(6), 2102-2104.
[http://dx.doi.org/10.1021/jo01065a605]
[226]
Joo, O.S.; Jung, K.D.; Moon, I.; Rozovskii, A.Y.; Lin, G.I.; Han, S.H.; Uhm, S.J. Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process). Ind. Eng. Chem. Res., 1999, 38(5), 1808-1812.
[http://dx.doi.org/10.1021/ie9806848]
[227]
Mizuno, T.; Kino, T.; Ito, T.; Miyata, T. Synthesis of aromatic urea herbicides by the selenium-assisted carbonylation using carbon monoxide with sulfur. Synth. Commun., 2000, 30(9), 1675-1688.
[http://dx.doi.org/10.1080/00397910008087206]
[228]
Jeoung, J.H.; Fesseler, J.; Goetzl, S.; Dobbek, H. The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment; Kroneck, P.M.H.; Torres, M.E.S, Eds.; Springer: Dordrecht, 2014, pp. 37-69.
[229]
Koval, C.A.; Noble, R.D.; Way, J.D.; Louie, B.; Reyes, Z.E.; Bateman, B.R.; Horn, G.M.; Reed, D.L. Selective transport of gaseous carbon monoxide through liquid membranes using an iron(II) macrocyclic complex. Inorg. Chem., 1985, 24(8), 1147-1152.
[http://dx.doi.org/10.1021/ic00202a007]
[230]
Bouarab, R.; Bennici, S.; Mirodatos, C.; Auroux, A. Hydrogen production from the water-gas shift reaction on iron oxide catalysts. J. Catal., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/612575]
[231]
Sarup, B.; Wojciechowski, B.W. Studies of the fischer-tropsch synthesis on a cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng., 1989, 67(1), 62-74.
[http://dx.doi.org/10.1002/cjce.5450670110]
[232]
Dutta, N.N.; Patil, G.S. Developments in CO separation. Gas Separat. Purificat., 1995, 9(4), 277-283.
[http://dx.doi.org/10.1016/0950-4214(95)00011-Y]
[233]
Kim, N.U.; Kim, J.H.; Park, B.R.; Kim, K.C.; Kim, J.H. Solid-state facilitated transport membrane for CO/N2 separation based on PHMEP-co-PAA comb-like copolymer: Experimental and molecular simulation study. J. Membr. Sci., 2021, 620, 118939.
[http://dx.doi.org/10.1016/j.memsci.2020.118939]
[234]
Repper, S.E.; Haynes, A.; Ditzel, E.J.; Sunley, G.J. Infrared spectroscopic study of absorption and separation of CO using copper( I )-containing ionic liquids. Dalton Trans., 2017, 46(9), 2821-2828.
[http://dx.doi.org/10.1039/C6DT04816A] [PMID: 28177030]
[235]
Evans, A.D.; Cummings, M.S.; Luebke, R.; Brown, M.S.; Favero, S.; Attfield, M.P.; Siperstein, F.; Fairen-Jimenez, D.; Hellgardt, K.; Purves, R.; Law, D.; Petit, C. Screening Metal–Organic frameworks for dynamic CO/N2 separation using complementary adsorption measurement techniques. Ind. Eng. Chem. Res., 2019, 58(39), 18336-18344.
[http://dx.doi.org/10.1021/acs.iecr.9b03724]
[236]
Lopes, F.V.S.; Grande, C.A.; Ribeiro, A.M.; Loureiro, J.M.; Evaggelos, O.; Nikolakis, V.; Rodrigues, A.E. Adsorption of H2, CO2, CH4, CO, N2 and H2O in activated carbon and zeolite for hydrogen production. Sep. Sci. Technol., 2009, 44(5), 1045-1073.
[http://dx.doi.org/10.1080/01496390902729130]
[237]
Kasuya, F.; Tsuji, T. High purity CO gas separation by pressure swing adsorption. Gas Separat. Purificat., 1991, 5(4), 242-246.
[http://dx.doi.org/10.1016/0950-4214(91)80031-Y]
[238]
Peer, M.; Mahdeyarfar, M.; Mohammadi, T. Investigation of syngas ratio adjustment using a polyimide membrane. Chem. Eng. Process., 2009, 48(3), 755-761.
[http://dx.doi.org/10.1016/j.cep.2008.09.006]
[239]
Zarca, G.; Ortiz, I.; Urtiaga, A. Behaviour of 1-hexyl-3-methylimidazolium chloride-supported ionic liquid membranes in the permeation of CO2, H2, CO and N2 single and mixed gases. Desalination Water Treat., 2015, 56(13), 3640-3646.
[http://dx.doi.org/10.1080/19443994.2014.978820]
[240]
Zarca, G.; Ortiz, I.; Urtiaga, A. Copper(I)-containing supported ionic liquid membranes for carbon monoxide/nitrogen separation. J. Membr. Sci., 2013, 438, 38-45.
[http://dx.doi.org/10.1016/j.memsci.2013.03.025]
[241]
Feng, S.; Wu, Y.; Luo, J.; Wan, Y. AgBF4/[emim][BF4] supported ionic liquid membrane for carbon monoxide/nitrogen separation. J. Energy Chem., 2019, 29, 31-39.
[http://dx.doi.org/10.1016/j.jechem.2018.02.004]
[242]
Benemann, J. Hydrogen biotechnology: Progress and prospects. Nat. Biotechnol., 1996, 14(9), 1101-1103.
[http://dx.doi.org/10.1038/nbt0996-1101] [PMID: 9631059]
[243]
Kataoka, N.; Miya, A.; Kiriyama, K. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci. Technol., 1997, 36(6-7), 41-47.
[http://dx.doi.org/10.2166/wst.1997.0573]
[244]
McKAY, L.F.; Holbrook, W.P.; Eastwood, M.A. Methane and hydrogen production by human intestinal anaerobic bacteria. Acta Pathol. Microbiol. Immunol. Scand. [B], 1982, 90B(1-6), 257-260.
[http://dx.doi.org/10.1111/j.1699-0463.1982.tb00114.x] [PMID: 6289602]
[245]
Kapdan, I.K.; Kargi, F. Bio-hydrogen production from waste materials. Enzyme Microb. Technol., 2006, 38(5), 569-582.
[http://dx.doi.org/10.1016/j.enzmictec.2005.09.015]
[246]
Chen, W.; Chen, S.; Kumarkhanal, S.; Sung, S. Kinetic study of biological hydrogen production by anaerobic fermentation. Int. J. Hydrogen Energy, 2006, 31(15), 2170-2178.
[http://dx.doi.org/10.1016/j.ijhydene.2006.02.020]
[247]
Nath, K.; Muthukumar, M.; Kumar, A.; Das, D. Kinetics of two-stage fermentation process for the production of hydrogen. Int. J. Hydrogen Energy, 2008, 33(4), 1195-1203.
[http://dx.doi.org/10.1016/j.ijhydene.2007.12.011]
[248]
Bélafi-Bakó, K.; Búcsú, D.; Pientka, Z.; Bálint, B.; Herbel, Z.; Kovács, K.L.; Wessling, M. Integration of biohydrogen fermentation and gas separation processes to recover and enrich hydrogen. Int. J. Hydrogen Energy, 2006, 31(11), 1490-1495.
[http://dx.doi.org/10.1016/j.ijhydene.2006.06.022]
[249]
Choi, M.Y.; Chung, K.Y. Supported ionic liquid membrane preparation for Carbon Dioxide Separation. Membr. J., 2012, 22, 280-283.
[250]
Zarca, G.; Ortiz, I.; Urtiaga, A. Facilitated-transport supported ionic liquid membranes for the simultaneous recovery of hydrogen and carbon monoxide from nitrogen-enriched gas mixtures. Chem. Eng. Res. Des., 2014, 92(4), 764-768.
[http://dx.doi.org/10.1016/j.cherd.2013.12.021]
[251]
Wu, Z.; Han, S.S.; Cho, S.H.; Kim, J.N.; Chue, K.T.; Yang, R.T. Modification of resin-type adsorbents for ethane/ethylene separation. Ind. Eng. Chem. Res., 1997, 36(7), 2749-2756.
[http://dx.doi.org/10.1021/ie970185r]
[252]
Li, L.; Lin, R.B.; Krishna, R.; Li, H.; Xiang, S.; Wu, H.; Li, J.; Zhou, W.; Chen, B. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science, 2018, 362(6413), 443-446.
[http://dx.doi.org/10.1126/science.aat0586] [PMID: 30361370]
[253]
Dou, H.; Jiang, B.; Xu, M.; Zhou, J.; Sun, Y.; Zhang, L. Supported ionic liquid membranes with high carrier efficiency via strong hydrogen-bond basicity for the sustainable and effective olefin/paraffin separation. Chem. Eng. Sci., 2019, 193, 27-37.
[http://dx.doi.org/10.1016/j.ces.2018.08.060]
[254]
Sun, Y.; Bi, H.; Dou, H.; Yang, H.; Huang, Z.; Wang, B.; Deng, R.; Zhang, L. A novel copper (I)-based supported ionic liquid membrane with high permeability for ethylene/ethane separation. Ind. Eng. Chem. Res., 2017, 56(3), 741-749.
[http://dx.doi.org/10.1021/acs.iecr.6b03364]
[255]
Yang, P.; Gong, M.; Ye, Y.; Li, Y.; Zhuang, Q.; Gu, J. A robust MOF-based trap with high-density active alkyl thiol for the super-efficient capture of mercury. Chem. Asian J., 2019, 14, 135-140.
[http://dx.doi.org/10.1002/asia.201801582] [PMID: 30444305]
[256]
Zhao, X.; Wong, M.; Mao, C.; Trieu, T.X.; Zhang, J.; Feng, P.; Bu, X. Size-selective crystallization of homochiral camphorate metal-organic frameworks for lanthanide separation. J. Am. Chem. Soc., 2014, 136(36), 12572-12575.
[http://dx.doi.org/10.1021/ja5067306] [PMID: 25164942]
[257]
Lee, J.Y.; Raju, B.; Kumar, B.N.; Kumar, J.R.; Park, H.K.; Reddy, B.R. Solvent extraction separation and recovery of palladium and platinum from chloride leach liquors of spent automobile catalyst. Separ. Purif. Tech., 2010, 73(2), 213-218.
[http://dx.doi.org/10.1016/j.seppur.2010.04.003]
[258]
Tavlarides, L.L.; Bae, J.H.; Lee, C.K. Solvent extraction, membranes, and ion exchange in hydrometallurgical dilute metals separation. Sep. Sci. Technol., 1987, 22(2-3), 581-617.
[http://dx.doi.org/10.1080/01496398708068970]
[259]
Banda, R.; Jeon, H.; Lee, M. Solvent extraction separation of Pr and Nd from chloride solution containing la using cyanex 272 and its mixture with other extractants. Separ. Purif. Tech., 2012, 98, 481-487.
[http://dx.doi.org/10.1016/j.seppur.2012.08.015]
[260]
Coskun, O. Separation Tecniques: Chromatography. North. Clin. Istanb., 2016, 3(2), 156-160.
[http://dx.doi.org/10.14744/nci.2016.32757] [PMID: 28058406]
[261]
Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique. Anal. Bioanal. Chem., 2012, 402(1), 231-247.
[http://dx.doi.org/10.1007/s00216-011-5308-5] [PMID: 21879300]
[262]
Patton, H.W.; Lewis, J.S.; Kaye, W.I. Separation and analysis of gases and volatile liquids by gas chromatography. Anal. Chem., 1955, 27(2), 170-174.
[http://dx.doi.org/10.1021/ac60098a002]
[263]
Azwanida, N.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation. Med. Aromat. Plants, 2015, 4(3), 2167-0412.
[http://dx.doi.org/10.4172/2167-0412.1000196]
[264]
Craig, L.C. A fractional-distillation microapparatus. Ind. Eng. Chem. Anal. Ed., 1937, 9(9), 441-443.
[http://dx.doi.org/10.1021/ac50113a020]
[265]
Mohshim, D.F.; Mukhtar, H.; Man, Z. Composite blending of ionic liquid-poly(ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation. J. Appl. Polym. Sci., 2016, 133(39), 43999.
[http://dx.doi.org/10.1002/app.43999]
[266]
Ríos, A.P.; Hernández-Fernández, F.J.; Presa, H.; Gómez, D.; Víllora, G. Tailoring supported ionic liquid membranes for the selective separation of transesterification reaction compounds. J. Membr. Sci., 2009, 328(1-2), 81-85.
[http://dx.doi.org/10.1016/j.memsci.2008.11.041]
[267]
Banu, L.A.; Wang, D.; Baltus, R.E. Effect of ionic liquid confinement on gas separation characteristics. Energy Fuels, 2013, 27(8), 4161-4166.
[http://dx.doi.org/10.1021/ef302038e]
[268]
de los Ríos, A.P.; Hernández-Fernández, F.J.; Tomás-Alonso, F.; Rubio, M.; Gómez, D.; Víllora, G. On the importance of the nature of the ionic liquids in the selective simultaneous separation of the substrates and products of a transesterification reaction through supported ionic liquid membranes. J. Membr. Sci., 2008, 307(2), 233-238.
[http://dx.doi.org/10.1016/j.memsci.2007.09.020]
[269]
de los Ríos, A.P.; Hernández-Fernández, F.J.; Rubio, M.; Gómez, D.; Víllora, G. Highly selective transport of transesterification reaction compounds through supported liquid membranes containing ionic liquids based on the tetrafluoroborate anion. Desalination, 2010, 250(1), 101-104.
[http://dx.doi.org/10.1016/j.desal.2009.06.039]
[270]
de los Ríos, A.P.; Hernández-Fernández, F.J.; Rubio, M.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. Prediction of the selectivity in the recovery of transesterification reaction products using supported liquid membranes based on ionic liquids. J. Membr. Sci., 2008, 307(2), 225-232.
[http://dx.doi.org/10.1016/j.memsci.2007.09.019]
[271]
Hernández-Fernández, F.J.; de los Ríos, A.P.; Rubio, M.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction. J. Membr. Sci., 2007, 293(1-2), 73-80.
[http://dx.doi.org/10.1016/j.memsci.2007.01.037]
[272]
Hernández-Fernández, F.J.; de los Ríos, A.P.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. Improvement in the separation efficiency of transesterification reaction compounds by the use of supported ionic liquid membranes based on the dicyanamide anion. Desalination, 2009, 244(1-3), 122-129.
[http://dx.doi.org/10.1016/j.desal.2008.04.041]
[273]
Hernández-Fernández, F.J.; de los Ríos, A.P.; Tomás-Alonso, F.; Gómez, D.; Víllora, G. Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane. J. Chem. Technol. Biotechnol., 2009, 84(3), 337-342.
[http://dx.doi.org/10.1002/jctb.2044]
[274]
Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci., 2007, 32(4), 455-482.
[http://dx.doi.org/10.1016/j.progpolymsci.2007.01.005]
[275]
Tsuji, H. Bio-based plastics: Materials and applications; Kabasci, S., Ed.; John Wiley & Sons, 2014, pp. 171-239.
[276]
Kumar, R.; Nanavati, H.; Noronha, S.B.; Mahajani, S.M.; Kumar, R.; Nanavati, H.; Noronha, S.B.; Mahajani, S.M. A continuous process for the recovery of lactic acid by reactive distillation. J. Chem. Technol. Biotechnol., 2006, 81(11), 1767-1777.
[http://dx.doi.org/10.1002/jctb.1603]
[277]
Marták, J.; Schlosser, Š.; Vlčková, S. Pertraction of lactic acid through supported liquid membranes containing phosphonium ionic liquid. J. Membr. Sci., 2008, 318(1-2), 298-310.
[http://dx.doi.org/10.1016/j.memsci.2008.02.064]
[278]
Matsumoto, M.; Panigrahi, A.; Murakami, Y.; Kondo, K. Effect of ammonium-and phosphonium-based ionic liquids on the separation of lactic acid by supported ionic liquid membranes (SILMs). Membranes (Basel), 2011, 1(2), 98-108.
[http://dx.doi.org/10.3390/membranes1020098] [PMID: 24957613]
[279]
Matsumoto, M.; Hasegawa, W.; Kondo, K.; Shimamura, T.; Tsuji, M. Application of supported ionic liquid membranes using a flat sheet and hollow fibers to lactic acid recovery. Desalination Water Treat., 2010, 14(1-3), 37-46.
[http://dx.doi.org/10.5004/dwt.2010.1009]
[280]
Matsumoto, M.; Murakami, Y.; Minamidate, Y.; Kondo, K. Separation of lactic acid through polymer inclusion membranes containing ionic liquids. Sep. Sci. Technol., 2012, 47(2), 354-359.
[http://dx.doi.org/10.1080/01496395.2011.620582]
[281]
Fortunato, R.; González-Muñoz, M.J.; Kubasiewicz, M.; Luque, S.; Alvarez, J.R.; Afonso, C.A.M.; Coelhoso, I.M.; Crespo, J.G. Liquid membranes using ionic liquids: the influence of water on solute transport. J. Membr. Sci., 2005, 249(1-2), 153-162.
[http://dx.doi.org/10.1016/j.memsci.2004.10.007]
[282]
Blacklock, C.J.; Lawrence, J.R.; Wiles, D.; Malcolm, E.A.; Gibson, I.H.; Kelly, C.J.; Paterson, J.R. Salicylic acid in the serum of subjects not taking aspirin. Comparison of salicylic acid concentrations in the serum of vegetarians, non-vegetarians, and patients taking low dose aspirin. J. Clin. Pathol., 2001, 54(7), 553-555.
[http://dx.doi.org/10.1136/jcp.54.7.553] [PMID: 11429429]
[283]
Lanas, A.; McCarthy, D.; Voelker, M.; Brueckner, A.; Senn, S.; Baron, J.A. Short-term acetylsalicylic acid (aspirin) use for pain, fever, or colds - gastrointestinal adverse effects: a meta-analysis of randomized clinical trials. Drugs R D., 2011, 11(3), 277-288.
[http://dx.doi.org/10.2165/11593880-000000000-00000] [PMID: 21902288]
[284]
Hedner, T.; Everts, B. The early clinical history of salicylates in rheumatology and pain. Clin. Rheumatol., 1998, 17(1), 17-25.
[http://dx.doi.org/10.1007/BF01450953] [PMID: 9586674]
[285]
Kong, J.M.; Goh, N.K.; Chia, L.S.; Chia, T.F. Recent advances in traditional plant drugs and orchids. Acta Pharmacol. Sin., 2003, 24(1), 7-21.
[PMID: 12511224]
[286]
kouki, N.; Tayeb, R.; Zarrougui, R.; Dhahbi, M. Transport of salicylic acid through supported liquid membrane based on ionic liquids. Separ. Purif. Tech., 2010, 76(1), 8-14.
[http://dx.doi.org/10.1016/j.seppur.2010.09.013]
[287]
Miyako, E.; Maruyama, T.; Kamiya, N.; Goto, M. Use of ionic liquids in a lipase-facilitated supported liquid membrane. Biotechnol. Lett., 2003, 25(10), 805-808.
[http://dx.doi.org/10.1023/A:1023536922749] [PMID: 12882011]
[288]
Bi, P.Y.; Dong, H.R.; Guo, Q.Z. Separation and Purification of Penicillin G from fermentation broth by solvent sublation. Separ. Purif. Tech., 2009, 65(2), 228-231.
[http://dx.doi.org/10.1016/j.seppur.2008.10.028]
[289]
Lee, C.J.; Yeh, H.J.; Yang, W.J.; Kan, C.R. Extractive separation of penicillin G by facilitated transport via carrier supported liquid membranes. Biotechnol. Bioeng., 1993, 42(4), 527-534.
[http://dx.doi.org/10.1002/bit.260420417] [PMID: 18613058]
[290]
Matsumoto, M.; Ohtani, T.; Kondo, K. Comparison of solvent extraction and supported liquid membrane permeation using an ionic liquid for concentrating penicillin G. J. Membr. Sci., 2007, 289(1-2), 92-96.
[http://dx.doi.org/10.1016/j.memsci.2006.11.046]
[291]
Wang, C.; Wang, Y.; Herath, H.M.S.K. Polycyclic aromatic hydrocarbons (PAHs) in biochar – Their formation, occurrence and analysis: A review. Org. Geochem., 2017, 114, 1-11.
[http://dx.doi.org/10.1016/j.orggeochem.2017.09.001]
[292]
Sharma, B.K. Industrial chemistry; Krishna Prakashan Media, 1991.
[293]
Holecková, B.; Piesová, E.; Sivikova, K.; Dianovskỳ, J. Chromosomal aberrations in humans induced by benzene. Ann. Agric. Environ. Med., 2004, 11(2), 175-179.
[PMID: 15627321]
[294]
Galbraith, D.; Gross, S.A.; Paustenbach, D. Benzene and human health: A historical review and appraisal of associations with various diseases. Crit. Rev. Toxicol., 2010, 40(Suppl. 2), 1-46.
[http://dx.doi.org/10.3109/10408444.2010.508162] [PMID: 20939751]
[295]
Meek, M.E.; Chan, P.K.L. Toluene: Evaluation of risks to human health from environmental exposure in Canada. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 1994, 12(2), 507-515.
[http://dx.doi.org/10.1080/10590509409373464]
[296]
Jafari, H.R.; Ebrahimi, S. A study on risk assessment of benzene as one of the VOCs air pollution. Int. J. Environ. Res., 2007, 1, 214-217.
[http://dx.doi.org/10.22059/IJER.2010.128]
[297]
Nosrati, S.; Jayakumar, N.S.; Hashim, M.A. A review on gas separation applications of supported ionic liquid membranes. J. Hazard. Mater., 2011, 192, 1283-1290.
[http://dx.doi.org/10.1016/j.jhazmat.2011.06.037] [PMID: 21752542]
[298]
Panigrahi, A.; Pilli, S.R.; Mohanty, K. Selective separation of Bisphenol A from aqueous solution using supported ionic liquid membrane. Separ. Purif. Tech., 2013, 107, 70-78.
[http://dx.doi.org/10.1016/j.seppur.2013.01.020]
[299]
Matsumoto, M.; Inomoto, Y.; Kondo, K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J. Membr. Sci., 2005, 246(1), 77-81.
[http://dx.doi.org/10.1016/j.memsci.2004.08.013]
[300]
Matsumoto, M.; Ueba, K.; Kondo, K. Vapor permeation of hydrocarbons through supported liquid membranes based on ionic liquids. Desalination, 2009, 241(1-3), 365-371.
[http://dx.doi.org/10.1016/j.desal.2007.11.090]
[301]
Wang, B.; Lin, J.; Wu, F.; Peng, Y. Stability and selectivity of supported liquid membranes with ionic liquids for the separation of organic liquids by vapor permeation. Ind. Eng. Chem. Res., 2008, 47(21), 8355-8360.
[http://dx.doi.org/10.1021/ie7017004]
[302]
Chakraborty, M.; Dobaria, D.; Parikh, P.A. The separation of aromatic hydrocarbons through a supported ionic liquid membrane. Petrol. Sci. Technol., 2012, 30(23), 2504-2516.
[http://dx.doi.org/10.1080/10916466.2010.516618]
[303]
Kamaz, M.; Vogler, R.J.; Jebur, M.; Sengupta, A.; Wickramasinghe, R. π Electron induced separation of organic compounds using supported ionic liquid membranes. Separ. Purif. Tech., 2020, 236, 116237.
[http://dx.doi.org/10.1016/j.seppur.2019.116237]
[304]
Jebur, M.; Sengupta, A.; Chiao, Y.H.; Kamaz, M.; Qian, X.; Wickramasinghe, R. Pi electron cloud mediated separation of aromatics using supported ionic liquid (SIL) membrane having antibacterial activity. J. Membr. Sci., 2018, 556, 1-11.
[http://dx.doi.org/10.1016/j.memsci.2018.03.064]
[305]
Zhang, F.; Feng, H.; Sun, W.; Zhang, W.; Liu, J.; Ren, Z. Selective Separation of Toluene/n -Heptane by Supported Ionic Liquid Membranes with. [Bmim][BF4] Chem. Eng. Technol., 2015, 38(2), 355-361.
[http://dx.doi.org/10.1002/ceat.201400160]
[306]
Cichowska-Kopczyńska, I.; Joskowska, M.; Debski, B.; Aranowski, R.; Hupka, J. Separation of toluene from gas phase using supported imidazolium ionic liquid membrane. J. Membr. Sci., 2018, 566, 367-373.
[http://dx.doi.org/10.1016/j.memsci.2018.08.058]
[307]
Branco, L.C.; Crespo, J.G.; Afonso, C.A.M. Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chemistry, 2002, 8(17), 3865-3871.
[http://dx.doi.org/10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L] [PMID: 12203281]
[308]
Izák, P.; Köckerling, M.; Kragl, U. Solute transport from aqueous mixture throught supported ionic liquid membrane by pervaporation. Desalination, 2006, 199(1-3), 96-98.
[http://dx.doi.org/10.1016/j.desal.2006.03.151]
[309]
Izák, P.; Köckerling, M.; Kragl, U. Stability and selectivity of a multiphase membrane, consisting of dimethylpolysiloxane on an ionic liquid, used in the separation of solutes from aqueous mixtures by pervaporation. Green Chem., 2006, 8(11), 947-948.
[http://dx.doi.org/10.1039/B608114B]
[310]
Cascon, H.R.; Choudhari, S.K. 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes. J. Membr. Sci., 2013, 429, 214-224.
[http://dx.doi.org/10.1016/j.memsci.2012.11.028]
[311]
Izák, P.; Friess, K.; Hynek, V.; Ruth, W.; Fei, Z.; Dyson, J.P.; Kragl, U. Separation properties of supported ionic liquid–polydimethylsiloxane membrane in pervaporation process. Desalination, 2009, 241(1-3), 182-187.
[http://dx.doi.org/10.1016/j.desal.2007.12.050]
[312]
Izák, P.; Ruth, W.; Fei, Z.; Dyson, P.J.; Kragl, U. Selective removal of acetone and butan-1-ol from water with supported ionic liquid–polydimethylsiloxane membrane by pervaporation. Chem. Eng. J., 2008, 139(2), 318-321.
[http://dx.doi.org/10.1016/j.cej.2007.08.001]
[313]
Izák, P.; Schwarz, K.; Ruth, W.; Bahl, H.; Kragl, U. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane. Appl. Microbiol. Biotechnol., 2008, 78(4), 597-602.
[http://dx.doi.org/10.1007/s00253-008-1354-0] [PMID: 18231789]
[314]
Matsumoto, M.; Mikami, M.; Kondo, K. Selective permeation of organic sulfur and nitrogen compounds in model mixtures of petroleum fraction through supported ionic liquid membranes. J. Chem. Eng. of Jpn, 2007, 40(11), 1007-1010.
[http://dx.doi.org/10.1252/jcej.07WE002]
[315]
Bhosale, V.K.; Chana, H.K.; Kamble, S.P.; Kulkarni, P.S. Latest development of ionic liquid membranes and their applications. J. Water Process Eng., 2019, 32, 100925.
[http://dx.doi.org/10.1016/j.jwpe.2019.100925]
[316]
Kulkarni, P.S.; Neves, L.A.; Coelhoso, I.M.; Afonso, C.A.M.; Crespo, J.G. Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams. Environ. Sci. Technol., 2012, 46(1), 462-468.
[http://dx.doi.org/10.1021/es2024302] [PMID: 22087544]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy