Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Pinpoint and Stewardship of Psoriasis by Using Phytoconstituent-based Novel Formulation

Author(s): Abdul Qadir*, Dipak Kumar Gupta, Shehla Nasar Mir Najib Ullah, Mohd. Aqil, Samreen Jahan and Nausheen Khan

Volume 19, Issue 4, 2023

Published on: 28 October, 2022

Article ID: e150922208837 Pages: 19

DOI: 10.2174/1573407218666220915110129

Price: $65

Abstract

Psoriasis is an autoimmune skin condition that is also inflammatory and proliferative. Psoriasis is caused by the activation of T-cells and is distinguished by prominent, drab-red, or peach-pink tight patches with silvery scales on the skin. In recent years, there have been some significant advances in the study of the etiology of inflammatory skin diseases such as psoriasis. The nanotechnology-based novel formulation provides a great occasion for enhancing the efficacy and safety of pharmacotherapeutic agents for psoriasis. The benefits of nanotechnological techniques to offer an effective drug concentration in the disease site and nanocarrier as innovative possibilities for drug delivery systems in psoriasis and other inflammatory chronic skin disorder are highlighted in this area. We have explored the mechanisms underlying the pathogenic aspects of psoriasis in this review, as well as phytoconstituents that are naturally occurring substances found in plants with anti-psoriatic properties. Anti-psoriatic action is attributed to phytochemicals that target cytokine signaling pathways. We also discussed the benefits of loading phytoconstituents as drugs in nanocarriers such as liposomes, niosomes, invasomes, phytosomes, transferosomes, and proniosomes for improved topical therapy and delivery of phytoconstituents with a better therapeutic profile and lower toxicity.

Keywords: Psoriasis, Pathophysiology, Novel drug delivery system, Phytoconstituent

Graphical Abstract

[1]
Tichenor, M.; Sridhar, D. Metric partnerships: Global burden of disease estimates within the World Bank, the World Health Organisation and the Institute for Health Metrics and Evaluation. Wellcome Open Res., 2019, 4, 35.
[http://dx.doi.org/10.12688/wellcomeopenres.15011.1]
[2]
Boehncke, W.H.; Schön, M.P. Disease burden and epidemiology. Lancet, 2015, 386, 983-994.
[http://dx.doi.org/10.1016/S0140-6736(14)61909-7] [PMID: 26025581]
[3]
Augustin, M.; Glaeske, G.; Radtke, M.A.; Christophers, E.; Reich, K.; Schäfer, I. Epidemiology and comorbidity of psoriasis in children. Br. J. Dermatol., 2010, 162(3), 633-636.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09593.x] [PMID: 19922529]
[4]
Vena, G.A.; Altomare, G.; Ayala, F.; Berardesca, E.; Calzavara-Pinton, P.; Chimenti, S.; Giannetti, A.; Girolomoni, G.; Lotti, T.; Martini, P.; Mazzaglia, G. Incidence of psoriasis and association with comorbidities in Italy: A 5-year observational study from a national primary care database. Eur. J. Dermatol., 2010, 20(5), 593-598.
[5]
Russo, P.A.J.; Ilchef, R.; Cooper, A.J. Psychiatric morbidity in psoriasis: A review. Australas. J. Dermatol., 2004, 45(3), 155-161.
[http://dx.doi.org/10.1111/j.1440-0960.2004.00078.x] [PMID: 15250891]
[6]
Kimball, A.B.; Jacobson, C.; Weiss, S.; Vreeland, M.G.; Wu, Y. The psychosocial burden of psoriasis. Am. J. Clin. Dermatol., 2005, 6(6), 383-392.
[http://dx.doi.org/10.2165/00128071-200506060-00005] [PMID: 16343026]
[7]
Fujii, R.K.; Mould, J.F.; Tang, B.; Brandt, H.; Pomerantz, D.; Chapnick, J.; Sternbach, N.; Manfrin, D.F. PSY46 Burden of disease in patients with diagnosed psoriasis in Brazil: Results from 2011 National Health and Wellness Survey (NHWS). Value Health, 2012, 15(4), A107.
[http://dx.doi.org/10.1016/j.jval.2012.03.580]
[8]
Dou, D.Q.; Hu, X.Y.; Zhao, Y.R.; Kang, T.G.; Liu, F.Y.; Kuang, H.X.; Smith, D.C. Studies on the anti-psoriasis constituents of Oplopanax elatus Nakai. Nat. Prod. Res., 2009, 23(4), 334-342.
[http://dx.doi.org/10.1080/14786410802075806] [PMID: 19296374]
[9]
Ference, E.H.; Ference, E.H.; Alikhan, A.; Hession, M.T.; Armstrong, A.W. Combination treatments for psoriasis: A systematic review and meta-analysis. Arch. Dermatol., 2012, 148(4), 511-522.
[http://dx.doi.org/10.1001/archdermatol.2011.1916] [PMID: 22184718]
[10]
Pradhan, M.; Singh, D.; Singh, M.R. Influence of selected variables on fabrication of Triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 392-400.
[http://dx.doi.org/10.3109/21691401.2014.955105] [PMID: 25229831]
[11]
Bhatia, A.; Singh, B.; Wadhwa, S.; Raza, K.; Katare, O.P. Novel phospholipid-based topical formulations of tamoxifen: Evaluation for antipsoriatic activity using mouse-tail model. Pharm. Dev. Technol., 2014, 19(2), 160-163.
[http://dx.doi.org/10.3109/10837450.2013.763260] [PMID: 23369039]
[12]
Gungor, S.; Rezigue, M. Nanocarriers mediated topical drug delivery for psoriasis treatment. Curr. Drug Metab., 2017, 18(5), 454-468.
[http://dx.doi.org/10.2174/1389200218666170222145240] [PMID: 28228078]
[13]
Sfikakis, P.P.; Iliopoulos, A.; Elezoglou, A.; Kittas, C.; Stratigos, A. Psoriasis induced by anti-tumor necrosis factor therapy: A paradoxical adverse reaction. Arthritis Rheum., 2005, 52(8), 2513-2518.
[http://dx.doi.org/10.1002/art.21233] [PMID: 16052599]
[14]
Okamoto, F.; Umebayasi, Y.; Ohtsuka, F.; Hommura, S. Factors associated with increased aqueous flare in psoriasis. Jpn. J. Ophthalmol., 2001, 45(2), 172-176.
[http://dx.doi.org/10.1016/S0021-5155(00)00359-2] [PMID: 11313050]
[15]
Campanati, A.; Neri, P.; Giuliodori, K.; Arapi, I.; Carbonari, G.; Borioni, E.; Herbort, C.P.; Mariotti, C.; Giovannini, A.; Offidani, A. Psoriasis beyond the skin surface: A pilot study on the ocular involvement. Int. Ophthalmol., 2015, 35(3), 331-340.
[http://dx.doi.org/10.1007/s10792-014-9950-8] [PMID: 24799345]
[16]
Ortonne, J.P.; Chimenti, S.; Luger, T.; Puig, L.; Reid, F.; Trüeb, R.M. Scalp psoriasis: European consensus on grading and treatment algorithm. J. Eur. Acad. Dermatol. Venereol., 2009, 23(12), 1435-1444.
[http://dx.doi.org/10.1111/j.1468-3083.2009.03372.x] [PMID: 19614856]
[17]
Ko, H.C.; Jwa, S.W.; Song, M.; Kim, M.B.; Kwon, K.S. Clinical course of guttate psoriasis: Long-term follow-up study. J. Dermatol., 2010, 37(10), 894-899.
[http://dx.doi.org/10.1111/j.1346-8138.2010.00871.x] [PMID: 20860740]
[18]
Martin, B.A.; Chalmers, R.J.; Telfer, N.R. How great is the risk of further psoriasis following a single episode of acute guttate psoriasis? Arch. Dermatol., 1996, 132(6), 717-718.
[http://dx.doi.org/10.1001/archderm.1996.03890300147032] [PMID: 8651734]
[19]
Navarini, A.A.; Burden, A.D.; Capon, F.; Mrowietz, U.; Puig, L.; Köks, S.; Kingo, K.; Smith, C.; Barker, J.N. European consensus statement on phenotypes of pustular psoriasis. J. Eur. Acad. Dermatol. Venereol., 2017, 31(11), 1792-1799.
[http://dx.doi.org/10.1111/jdv.14386] [PMID: 28585342]
[20]
Gerdes, S.; Mrowietz, U.; Boehncke, W.H. Komorbidität bei Psoriasis vulgaris. Hautarzt, 2016, 67(6), 438-444.
[http://dx.doi.org/10.1007/s00105-016-3805-3] [PMID: 27221798]
[21]
Harden, J.L.; Krueger, J.G.; Bowcock, A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun., 2015, 64, 66-73.
[http://dx.doi.org/10.1016/j.jaut.2015.07.008] [PMID: 26215033]
[22]
Liang, Y.; Sarkar, M.K.; Tsoi, L.C.; Gudjonsson, J.E. Psoriasis: A mixed autoimmune and autoinflammatory disease. Curr. Opin. Immunol., 2017, 49, 1-8.
[http://dx.doi.org/10.1016/j.coi.2017.07.007] [PMID: 28738209]
[23]
Morizane, S.; Yamasaki, K.; Mühleisen, B.; Kotol, P.F.; Murakami, M.; Aoyama, Y.; Iwatsuki, K.; Hata, T.; Gallo, R.L. Cathelicidin antimicrobial peptide LL-37 in psoriasis enables keratinocyte reactivity against TLR9 ligands. J. Invest. Dermatol., 2012, 132(1), 135-143.
[http://dx.doi.org/10.1038/jid.2011.259] [PMID: 21850017]
[24]
Gregorio, J.; Meller, S.; Conrad, C.; Di Nardo, A.; Homey, B.; Lauerma, A.; Arai, N.; Gallo, R.L.; DiGiovanni, J.; Gilliet, M. Plasmacytoid dendritic cells sense skin injury and promote wound healing through type I interferons. J. Exp. Med., 2010, 207(13), 2921-2930.
[http://dx.doi.org/10.1084/jem.20101102] [PMID: 21115688]
[25]
Santini, S.M.; Lapenta, C.; Donati, S.; Spadaro, F.; Belardelli, F.; Ferrantini, M. Interferon-α-conditioned human monocytes combine a Th1-orienting attitude with the induction of autologous Th17 responses: Role of IL-23 and IL-12. PLoS One, 2011, 6(2), e17364.
[http://dx.doi.org/10.1371/journal.pone.0017364] [PMID: 21387004]
[26]
Hänsel, A.; Günther, C.; Ingwersen, J.; Starke, J.; Schmitz, M.; Bachmann, M.; Meurer, M.; Rieber, E.P.; Schäkel, K. Human slan (6-sulfo LacNAc) dendritic cells are inflammatory dermal dendritic cells in psoriasis and drive strong T 17/T 1 T-cell responses. J. Allergy Clin. Immunol., 2011, 127(3), 787-794.e9, 9.
[http://dx.doi.org/10.1016/j.jaci.2010.12.009] [PMID: 21377044]
[27]
Nestle, F.O.; Turka, L.A.; Nickoloff, B.J. Characterization of dermal dendritic cells in psoriasis. Autostimulation of T lymphocytes and induction of Th1 type cytokines. J. Clin. Invest., 1994, 94(1), 202-209.
[http://dx.doi.org/10.1172/JCI117308] [PMID: 8040262]
[28]
Matsuzaki, G.; Umemura, M. Interleukin-17 family cytokines in protective immunity against infections: Role of hematopoietic cell-derived and non-hematopoietic cell-derived interleukin-17s. Microbiol. Immunol., 2018, 62(1), 1-13.
[http://dx.doi.org/10.1111/1348-0421.12560] [PMID: 29205464]
[29]
Lee, J.S.; Tato, C.M.; Joyce-Shaikh, B.; Gulen, M.F.; Cayatte, C.; Chen, Y.; Blumenschein, W.M.; Judo, M.; Ayanoglu, G.; McClanahan, T.K.; Li, X.; Cua, D.J. Interleukin-23-independent IL-17 production regulates intestinal epithelial permeability. Immunity, 2015, 43(4), 727-738.
[http://dx.doi.org/10.1016/j.immuni.2015.09.003] [PMID: 26431948]
[30]
Johnston, A.; Xing, X.; Wolterink, L.; Barnes, D.H.; Yin, Z.; Reingold, L.; Kahlenberg, J.M.; Harms, P.W.; Gudjonsson, J.E. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J. Allergy Clin. Immunol., 2017, 140(1), 109-120.
[http://dx.doi.org/10.1016/j.jaci.2016.08.056] [PMID: 28043870]
[31]
Bissonnette, R.; Fuentes-Duculan, J.; Mashiko, S.; Li, X.; Bonifacio, K.M.; Cueto, I.; Suárez-Fariñas, M.; Maari, C.; Bolduc, C.; Nigen, S.; Sarfati, M.; Krueger, J.G. Palmoplantar pustular psoriasis (PPPP) is characterized by activation of the IL-17A pathway. J. Dermatol. Sci., 2017, 85(1), 20-26.
[http://dx.doi.org/10.1016/j.jdermsci.2016.09.019] [PMID: 27743912]
[32]
Wilsmann-Theis, D.; Schnell, L.M.; Ralser-Isselstein, V.; Bieber, T.; Schön, M.P.; Hüffmeier, U.; Mössner, R. Successful treatment with interleukin-17A antagonists of generalized pustular psoriasis in patients without IL36RN mutations. J. Dermatol., 2018, 45(7), 850-854.
[http://dx.doi.org/10.1111/1346-8138.14318] [PMID: 29655177]
[33]
Boutet, M.A.; Nerviani, A.; Gallo Afflitto, G.; Pitzalis, C. Role of the IL-23/IL-17 axis in psoriasis and psoriatic arthritis: The clinical importance of its divergence in skin and joints. Int. J. Mol. Sci., 2018, 19(2), 530.
[http://dx.doi.org/10.3390/ijms19020530] [PMID: 29425183]
[34]
Sakkas, L.I.; Bogdanos, D.P. Are psoriasis and psoriatic arthritis the same disease? The IL-23/IL-17 axis data. Autoimmun. Rev., 2017, 16(1), 10-15.
[http://dx.doi.org/10.1016/j.autrev.2016.09.015] [PMID: 27666819]
[35]
Mensah, K.A.; Schwarz, E.M.; Ritchlin, C.T. Altered bone remodeling in psoriatic arthritis. Curr. Rheumatol. Rep., 2008, 10(4), 311-317.
[http://dx.doi.org/10.1007/s11926-008-0050-5] [PMID: 18662512]
[36]
Arakawa, A.; Siewert, K.; Stöhr, J.; Besgen, P.; Kim, S.M.; Rühl, G.; Nickel, J.; Vollmer, S.; Thomas, P.; Krebs, S.; Pinkert, S.; Spannagl, M.; Held, K.; Kammerbauer, C.; Besch, R.; Dornmair, K.; Prinz, J.C. Melanocyte antigen triggers autoimmunity in human psoriasis. J. Exp. Med., 2015, 212(13), 2203-2212.
[http://dx.doi.org/10.1084/jem.20151093] [PMID: 26621454]
[37]
Fuentes-Duculan, J.; Bonifacio, K.M.; Hawkes, J.E.; Kunjravia, N.; Cueto, I.; Li, X.; Gonzalez, J.; Garcet, S.; Krueger, J.G. Autoantigens ADAMTSL5 and LL37 are significantly upregulated in active Psoriasis and localized with keratinocytes, dendritic cells and other leukocytes. Exp. Dermatol., 2017, 26(11), 1075-1082.
[http://dx.doi.org/10.1111/exd.13378] [PMID: 28482118]
[38]
Cheung, K.L.; Jarrett, R.; Subramaniam, S.; Salimi, M.; Gutowska-Owsiak, D.; Chen, Y.L.; Hardman, C.; Xue, L.; Cerundolo, V.; Ogg, G. Psoriatic T cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J. Exp. Med., 2016, 213(11), 2399-2412.
[http://dx.doi.org/10.1084/jem.20160258] [PMID: 27670592]
[39]
Yunusbaeva, M.; Valiev, R.; Bilalov, F.; Sultanova, Z.; Sharipova, L.; Yunusbayev, B. Psoriasis patients demonstrate HLA-Cw*06:02 allele dosage-dependent T cell proliferation when treated with hair follicle-derived keratin 17 protein. Sci. Rep., 2018, 8(1), 6098.
[http://dx.doi.org/10.1038/s41598-018-24491-z] [PMID: 29666398]
[40]
Pradhan, M.; Singh, D.; Singh, M.R. Development and evaluation of novel topical formulations containing psoralen for management of psoriasis. Planta Med., 2015, 81(5), PP12.
[http://dx.doi.org/10.1055/s-0035-1545229a]
[41]
Marwaha, T.K. Formulation design and evaluation of herbal Anti psoriatic emulgel. J. Pharm. Scientific Innov., 2013, 2(3), 30-42.
[http://dx.doi.org/10.7897/2277-4572.02334]
[42]
Pandit, V.; Kumar, A.; Sharma, T.K.; Verma, C.P.; Kushawaha, S.K. Development and evaluation of herbo synthetic gel: A novel treatment for psoriasis. Int. J. Pharm. Sci. Res., 2021, 12(9), 4745-4752.
[43]
Abraham, N.; Krishnan, N.; Raj, A. Management of psoriasis-ayurveda and allopathy-A review. Int. J. Res. Dermatol., 2019, 5(1), 18-23.
[http://dx.doi.org/10.17352/2455-8605.000033]
[44]
Balato, N.; Di Costanzo, L.; Balato, A. Differential diagnosis of psoriasis. J. Rheumatol. Suppl., 2009, 83, 24-25.
[http://dx.doi.org/10.3899/jrheum.090216] [PMID: 19661533]
[45]
Herman, A.; Herman, A. Topically used herbal products for the treatment of psoriasis–mechanism of action, drug delivery, clinical studies. Planta Med., 2016, 82(17), 1447-1455.
[http://dx.doi.org/10.1055/s-0042-115177] [PMID: 27574899]
[46]
Shenefelt, P.D. Herbal treatment for dermatologic disorders. In: Herbal medicine: Biomolecular and Clinical Aspects, 2nd ed; CRC Press/Taylor & Francis: Boca Raton, FL, 2011; pp. 285-310.
[http://dx.doi.org/10.1201/b10787-19]
[47]
Moghimi, S.M.; Patel, H.M. Current progress and future prospects of liposomes in dermal drug delivery. J. Microencapsul., 1993, 10(2), 155-162.
[http://dx.doi.org/10.3109/02652049309104381] [PMID: 8331490]
[48]
Cevc, G. Transfersomes, liposomes and other lipid suspensions on the skin: Permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit. Rev. Ther. Drug Carrier Syst., 1996, 13(3-4), 257-388.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v13.i3-4.30]
[49]
Schmid, M.H.; Korting, H.C. Therapeutic progress with topical liposome drugs for skin disease. Adv. Drug Deliv. Rev., 1996, 18(3), 335-342.
[http://dx.doi.org/10.1016/0169-409X(95)00019-4]
[50]
Trapasso, E.; Cosco, D.; Celia, C.; Fresta, M.; Paolino, D. Retinoids: New use by innovative drug-delivery systems. Expert Opin. Drug Deliv., 2009, 6(5), 465-483.
[http://dx.doi.org/10.1517/17425240902832827] [PMID: 19413455]
[51]
Patel, S.S.; Patel, M.S.; Salampure, S.; Vishwanath, B.; Patel, N.M. Development and evaluation of liposomes for topical delivery of tacrolimus (Fk-506). J. Scientific Res., 2010, 2(3), 585.
[http://dx.doi.org/10.3329/jsr.v2i3.3258]
[52]
Bhatia, A.; Kumar, R.; Katare, O.P. Tamoxifen in topical liposomes: Development, characterization and in-vitro evaluation. J. Pharm. Pharm. Sci., 2004, 7(2), 252-259.
[PMID: 15367383]
[53]
Knudsen, N.Ø.; Rønholt, S.; Salte, R.D.; Jorgensen, L.; Thormann, T.; Basse, L.H.; Hansen, J.; Frokjaer, S.; Foged, C. Calcipotriol delivery into the skin with PEGylated liposomes. Eur. J. Pharm. Biopharm., 2012, 81(3), 532-539.
[http://dx.doi.org/10.1016/j.ejpb.2012.04.005] [PMID: 22538098]
[54]
Srisuk, P.; Thongnopnua, P.; Raktanonchai, U.; Kanokpanont, S. Physico-chemical characteristics of methotrexate-entrapped oleic acid-containing deformable liposomes for in vitro transepidermal delivery targeting psoriasis treatment. Int. J. Pharm., 2012, 427(2), 426-434.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.045] [PMID: 22310459]
[55]
Nagle, A.; Goyal, A.K.; Kesarla, R.; Murthy, R.R. Efficacy study of vesicular gel containing methotrexate and menthol combination on parakeratotic rat skin model. J. Liposome Res., 2011, 21(2), 134-140.
[http://dx.doi.org/10.3109/08982104.2010.492476] [PMID: 20557280]
[56]
Li, J.; Li, X.; Zhang, Y.; Zhou, X.K.; Yang, H.S.; Chen, X.C.; Wang, Y.S.; Wei, Y.Q.; Chen, L.J.; Hu, H.Z.; Liu, C.Y. Gene therapy for psoriasis in the K14‐VEGF transgenic mouse model by topical transdermal delivery of interleukin‐4 using ultradeformable cationic liposome. J. Gene Med., 2010, 12(6), 481-490.
[http://dx.doi.org/10.1002/jgm.1459]
[57]
Uchegbu, I.F.; Vyas, S.P. Non-ionic surfactant based vesicles (niosomes) in drug delivery. Int. J. Pharm., 1998, 172(1-2), 33-70.
[http://dx.doi.org/10.1016/S0378-5173(98)00169-0]
[58]
Uchegbu, I.F.; Florence, A.T. Non-ionic surfactant vesicles (niosomes): Physical and pharmaceutical chemistry. Adv. Colloid Interface Sci., 1995, 58(1), 1-55.
[http://dx.doi.org/10.1016/0001-8686(95)00242-I]
[59]
D’Souza, S.A.; Ray, J.; Pandey, S.; Udupa, N. Absorption of ciprofloxacin and norfloxacin when administered as niosome-encapsulated inclusion complexes. J. Pharm. Pharmacol., 2011, 49(2), 145-149.
[http://dx.doi.org/10.1111/j.2042-7158.1997.tb06769.x] [PMID: 9055185]
[60]
Namdeo, A.; Jain, N.K. Niosomes as drug carriers. Indian J. Pharm. Sci., 1996, 58(2), 41.
[61]
Agarwal, R.; Katare, O.P.; Vyas, S.P. Preparation and in vitro evaluation of liposomal/niosomal delivery systems for antipsoriatic drug dithranol. Int. J. Pharm., 2001, 228(1-2), 43-52.
[http://dx.doi.org/10.1016/S0378-5173(01)00810-9] [PMID: 11576767]
[62]
Marianecci, C.; Rinaldi, F.; Mastriota, M.; Pieretti, S.; Trapasso, E.; Paolino, D.; Carafa, M. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release, 2012, 164(1), 17-25.
[http://dx.doi.org/10.1016/j.jconrel.2012.09.018] [PMID: 23041542]
[63]
Lakshmi, P.K.; Devi, G.; Bhaskaran, S.; Sacchidanand, S. Niosomal methotrexate gel in the treatment of localized psoriasis: Phase I and phase II studies. Indian J. Dermatol. Venereol. Leprol., 2007, 73(3), 157-161.
[http://dx.doi.org/10.4103/0378-6323.32709] [PMID: 17558046]
[64]
Peltola, S.; Saarinen-Savolainen, P.; Kiesvaara, J.; Suhonen, T.M.; Urtti, A. Microemulsions for topical delivery of estradiol. Int. J. Pharm., 2003, 254(2), 99-107.
[http://dx.doi.org/10.1016/S0378-5173(02)00632-4] [PMID: 12623186]
[65]
Sintov, A.C.; Botner, S. Transdermal drug delivery using microemulsion and aqueous systems: Influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int. J. Pharm., 2006, 311(1-2), 55-62.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.019] [PMID: 16431047]
[66]
Kreilgaard, M. Influence of microemulsions on cutaneous drug delivery. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S77-S98.
[http://dx.doi.org/10.1016/S0169-409X(02)00116-3] [PMID: 12460717]
[67]
Karasulu, H.Y. Microemulsions as novel drug carriers: The formation, stability, applications and toxicity. Expert Opin. Drug Deliv., 2008, 5(1), 119-135.
[http://dx.doi.org/10.1517/17425247.5.1.119] [PMID: 18095932]
[68]
Heuschkel, S.; Goebel, A.; Neubert, R.H.H. Microemulsions-modern colloidal carrier for dermal and transdermal drug delivery. J. Pharm. Sci., 2008, 97(2), 603-631.
[http://dx.doi.org/10.1002/jps.20995] [PMID: 17696162]
[69]
Ji, J.; Wu, D.; Liu, L.; Chen, J.; Xu, Y. Preparation, evaluation, and in vitro release of folic acid conjugated O-carboxymethyl chitosan nanoparticles loaded with methotrexate. J. Appl. Polym. Sci., 2012, 125(S2), E208-E215.
[http://dx.doi.org/10.1002/app.36556]
[70]
Baroli, B.; López-Quintela, M.A.; Delgado-Charro, M.B.; Fadda, A.M.; Blanco-Méndez, J. Microemulsions for topical delivery of 8-methoxsalen. J. Control. Release, 2000, 69(1), 209-218.
[http://dx.doi.org/10.1016/S0168-3659(00)00309-6] [PMID: 11018558]
[71]
Alvarez-Figueroa, M.J.; Blanco-Méndez, J. Transdermal delivery of methotrexate: Iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int. J. Pharm., 2001, 215(1-2), 57-65.
[http://dx.doi.org/10.1016/S0378-5173(00)00674-8] [PMID: 11250092]
[72]
Raza, K.; Negi, P.; Takyar, S.; Shukla, A.; Amarji, B.; Katare, O.P. Novel dithranol phospholipid microemulsion for topical application: Development, characterization and percutaneous absorption studies. J. Microencapsul., 2011, 28(3), 190-199.
[http://dx.doi.org/10.3109/02652048.2010.546435] [PMID: 21395406]
[73]
Solans, C.; Izquierdo, P.; Nolla, J.; Azemar, N.; Garcia-Celma, M.J. Nano-emulsions. Curr. Opin. Colloid Interface Sci., 2005, 10(3-4), 102-110.
[http://dx.doi.org/10.1016/j.cocis.2005.06.004]
[74]
Weyenberg, W.; Filev, P.; Van den Plas, D.; Vandervoort, J.; De Smet, K.; Sollie, P.; Ludwig, A. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int. J. Pharm., 2007, 337(1-2), 291-298.
[http://dx.doi.org/10.1016/j.ijpharm.2006.12.045] [PMID: 17300887]
[75]
Zhang, L.W.; Al-Suwayeh, S.A.; Hung, C.F.; Chen, C.C.; Fang, J.Y. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int. J. Nanomedicine, 2011, 6, 693-704.
[PMID: 21556344]
[76]
Khandavilli, S.; Panchagnula, R. Nanoemulsions as versatile formulations for paclitaxel delivery: Peroral and dermal delivery studies in rats. J. Invest. Dermatol., 2007, 127(1), 154-162.
[http://dx.doi.org/10.1038/sj.jid.5700485] [PMID: 16858422]
[77]
Bernardi, D.S.; Pereira, T.A.; Maciel, N.R.; Bortoloto, J.; Viera, G.S.; Oliveira, G.C.; Rocha-Filho, P.A. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments. J. Nanobiotechnology, 2011, 9(1), 44.
[http://dx.doi.org/10.1186/1477-3155-9-44] [PMID: 21952107]
[78]
Raza, K.; Katare, O.P.; Setia, A.; Bhatia, A.; Singh, B. Improved therapeutic performance of dithranol against psoriasis employing systematically optimized nanoemulsomes. J. Microencapsul., 2013, 30(3), 225-236.
[http://dx.doi.org/10.3109/02652048.2012.717115] [PMID: 23088318]
[79]
Müller, R.; Petersen, R.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev., 2007, 59(6), 522-530.
[http://dx.doi.org/10.1016/j.addr.2007.04.012] [PMID: 17602783]
[80]
Lin, Y.K.; Huang, Z.R.; Zhuo, R.Z.; Fang, J.Y. Combination of calcipotriol and methotrexate in nanostructured lipid carriers for topical delivery. Int. J. Nanomedicine, 2010, 5, 117-128.
[PMID: 20309398]
[81]
Nam, S.H.; Ji, X.Y.; Park, J.S. Investigation of tacrolimus loaded nanostructured lipid carriers for topical drug delivery. Bull. Korean Chem. Soc., 2011, 32(3), 956-960.
[http://dx.doi.org/10.5012/bkcs.2011.32.3.956]
[82]
Doktorovová, S.; Araújo, J.; Garcia, M.L.; Rakovský, E.; Souto, E.B. Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids Surf. B Biointerfaces, 2010, 75(2), 538-542.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.033] [PMID: 19879736]
[83]
Touitou, E. Drug delivery across the skin. Expert Opin. Biol. Ther., 2002, 2(7), 723-733.
[http://dx.doi.org/10.1517/14712598.2.7.723] [PMID: 12387671]
[84]
Trotta, M.; Peira, E.; Carlotti, M.E.; Gallarate, M. Deformable liposomes for dermal administration of methotrexate. Int. J. Pharm., 2004, 270(1-2), 119-125.
[http://dx.doi.org/10.1016/j.ijpharm.2003.10.006] [PMID: 14726128]
[85]
Singh, A.; Malviya, R.; Sharma, P.K. Novasome-a breakthrough in pharmaceutical technology: A review article. Adv. Biol. Res., 2011, 5(4), 184-189.
[86]
Holick, M.F.; Chimeh, F.N.; Ray, S. Topical PTH (1-34) is a novel, safe and effective treatment for psoriasis: A randomized self-controlled trial and an open trial. Br. J. Dermatol., 2003, 149(2), 370-376.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05437.x] [PMID: 12932245]
[87]
Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta Biomembr., 1992, 1104(1), 226-232.
[http://dx.doi.org/10.1016/0005-2736(92)90154-E] [PMID: 1550849]
[88]
Vinod, K.R.; Kumar, M.S.; Anbazhagan, S.; Sandhya, S.; Saikumar, P.; Rohit, R.T.; Banji, D. Critical issues related to transfersomes - novel vesicular system. Acta Sci. Pol. Technol. Aliment., 2012, 11(1), 67-82.
[PMID: 22230977]
[89]
Talegaonkar, S.; Azeem, A.; Ahmad, F.; Khar, R.; Pathan, S.; Khan, Z. Microemulsions: A novel approach to enhanced drug delivery. Recent Pat. Drug Deliv. Formul., 2008, 2(3), 238-257.
[http://dx.doi.org/10.2174/187221108786241679] [PMID: 19075911]
[90]
Suresh, K.; Prameet, S.; Shailendra, S. Novel topical drug carriers as a tool for treatment of psoriasis: Progress and advances. Afr. J. Pharm. Pharmacol., 2013, 7(5), 138-147.
[http://dx.doi.org/10.5897/AJPPX12.001]
[91]
Gambhire, M.S.; Bhalekar, M.R.; Gambhire, V.M. Statistical optimization of dithranol-loaded solid lipid nanoparticles using factorial design. Braz. J. Pharm. Sci., 2011, 47(3), 503-511.
[http://dx.doi.org/10.1590/S1984-82502011000300008]
[92]
Savian, A.L.; Rodrigues, D.; Weber, J.; Ribeiro, R.F.; Motta, M.H.; Schaffazick, S.R.; Adams, A.I.H.; de Andrade, D.F.; Beck, R.C.R.; da Silva, C.B. Dithranol-loaded lipid-core nanocapsules improve the photostability and reduce the in vitro irritation potential of this drug. Mater. Sci. Eng. C, 2015, 46, 69-76.
[http://dx.doi.org/10.1016/j.msec.2014.10.011] [PMID: 25491961]
[93]
Joshi, M.; Sharma, V.; Pathak, K. Matrix based system of isotretinoin as nail lacquer to enhance transungal delivery across human nail plate. Int. J. Pharm., 2015, 478(1), 268-277.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.050] [PMID: 25445993]
[94]
Pasch, M.C. Nail psoriasis: A review of treatment options. Drugs, 2016, 76(6), 675-705.
[http://dx.doi.org/10.1007/s40265-016-0564-5] [PMID: 27041288]
[95]
Avramoff, A.; Khan, W.; Ezra, A.; Elgart, A.; Hoffman, A.; Domb, A.J. Cyclosporin pro-dispersion liposphere formulation. J. Control. Release, 2012, 160(2), 401-406.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.016] [PMID: 22227025]
[96]
Saleem, S.; Iqubal, M.K.; Garg, S.; Ali, J.; Baboota, S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin. Drug Deliv., 2020, 17(6), 817-838.
[http://dx.doi.org/10.1080/17425247.2020.1758665] [PMID: 32315216]
[97]
Sala, M.; Elaissari, A.; Fessi, H. Advances in psoriasis physiopathology and treatments: Up to date of mechanistic insights and perspectives of novel therapies based on innovative skin drug delivery systems (ISDDS). J. Control. Release, 2016, 239, 182-202.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.003] [PMID: 27381248]
[98]
Thapa, R.K.; Yoo, B.K. Evaluation of the effect of tacrolimus-loaded liquid crystalline nanoparticles on psoriasis-like skin inflammation. J. Dermatolog. Treat., 2014, 25(1), 22-25.
[http://dx.doi.org/10.3109/09546634.2012.755250] [PMID: 23210668]
[99]
Gizaway, S.E.; Fadel, M.; Mourad, B.; Elnaby, F.E.A. Betamethasone dipropionate gel for treatment of localized plaque psoriasis. Int. J. Pharm. Pharm. Sci., 2017, 9(8), 173-182.
[http://dx.doi.org/10.22159/ijpps.2017v9i8.18571]
[100]
Lei, W.; Yu, C.; Lin, H.; Zhou, X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharm. Sci., 2013, 8(6), 336-345.
[http://dx.doi.org/10.1016/j.ajps.2013.09.005]
[101]
Cevc, G.; Blume, G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochim. Biophys. Acta Biomembr., 2004, 1663(1-2), 61-73.
[http://dx.doi.org/10.1016/j.bbamem.2004.01.006] [PMID: 15157608]
[102]
Fesq, H.; Lehmann, J.; Kontny, A.; Erdmann, I.; Theiling, K.; Rother, M.; Ring, J.; Cevc, G.; Abeck, D. Improved risk-benefit ratio for topical triamcinolone acetonide in Transfersome R in comparison with equipotent cream and ointment: A randomized controlled trial. Br. J. Dermatol., 2003, 149(3), 611-619.
[http://dx.doi.org/10.1046/j.1365-2133.2003.05475.x] [PMID: 14510997]
[103]
Nghiem, P.P.; Kornegay, J.N. Gene therapies in canine models for Duchenne muscular dystrophy. Hum. Genet., 2019, 138(5), 483-489.
[http://dx.doi.org/10.1007/s00439-019-01976-z] [PMID: 30734120]
[104]
Al-Raawi, D.; Jones, R.; Wijesinghe, S.; Halsall, J.; Petric, M.; Roberts, S.; Hotchin, N.A.; Kanhere, A. A novel form of JARID2 is required for differentiation in lineage‐committed cells. EMBO J., 2019, 38(3), e98449.
[http://dx.doi.org/10.15252/embj.201798449] [PMID: 30573669]
[105]
Victorelli, S.; Lagnado, A.; Halim, J.; Moore, W.; Talbot, D.; Barrett, K.; Chapman, J.; Birch, J.; Ogrodnik, M.; Meves, A.; Pawlikowski, J.S.; Jurk, D.; Adams, P.D.; Heemst, D.; Beekman, M.; Slagboom, P.E.; Gunn, D.A.; Passos, J.F. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J., 2019, 38(23), e101982.
[http://dx.doi.org/10.15252/embj.2019101982] [PMID: 31633821]
[106]
Hegde, V.; Hickerson, R.P.; Nainamalai, S.; Campbell, P.A.; Smith, F.J.D.; McLean, W.H.I.; Leslie Pedrioli, D.M. In vivo gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation. J. Control. Release, 2014, 196, 355-362.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.022] [PMID: 25449884]
[107]
Seetharaman, R.; Mahmood, A.; Kshatriya, P.; Patel, D.; Srivastava, A. Mesenchymal stem cell conditioned media ameliorate psoriasis vulgaris: A case study. Case Rep. Dermatol. Med., 2019, 2019
[http://dx.doi.org/10.1155/2019/8309103]
[108]
Liu, R.; Wang, Y.; Zhao, X.; Yang, Y.; Zhang, K. Lymphocyte inhibition is compromised in mesenchymal stem cells from psoriatic skin. Eur. J. Dermatol., 2014, 24(5), 560-567.
[http://dx.doi.org/10.1684/ejd.2014.2394] [PMID: 25445090]
[109]
Ourique, A.F.; Melero, A.; Silva, C.B.; Schaefer, U.F.; Pohlmann, A.R.; Guterres, S.S.; Lehr, C.M.; Kostka, K.H.; Beck, R.C.R. Improved photostability and reduced skin permeation of tretinoin: Development of a semisolid nanomedicine. Eur. J. Pharm. Biopharm., 2011, 79(1), 95-101.
[http://dx.doi.org/10.1016/j.ejpb.2011.03.008] [PMID: 21402157]
[110]
Saraswat, A.; Agarwal, R.; Katare, O.P.; Kaur, I.; Kumar, B. A randomized, double‐blind, vehicle‐controlled study of a novel liposomal dithranol formulation in psoriasis. J. Dermatolog. Treat., 2007, 18(1), 40-45.
[http://dx.doi.org/10.1080/09546630601028729] [PMID: 17365266]
[111]
Casas, A.; Batlle, A. Aminolevulinic acid derivatives and liposome delivery as strategies for improving 5-aminolevulinic acid-mediated photodynamic therapy. Curr. Med. Chem., 2006, 13(10), 1157-1168.
[http://dx.doi.org/10.2174/092986706776360888] [PMID: 16719777]
[112]
Pierre, M.B.R.; Tedesco, A.C.; Marchetti, J.M.; Bentley, M.V.L.B. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: Preparation and in vitro permeation study. BMC Dermatol., 2001, 1(1), 5.
[http://dx.doi.org/10.1186/1471-5945-1-5] [PMID: 11545679]
[113]
Fang, Y.P.; Huang, Y.B.; Wu, P.C.; Tsai, Y.H. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. Eur. J. Pharm. Biopharm., 2009, 73(3), 391-398.
[http://dx.doi.org/10.1016/j.ejpb.2009.07.011] [PMID: 19660544]
[114]
Zhi, X.H.; Jin, L.; Yang, C.G. Preparation and quality evaluation of methotrexate microemulsion. China Pharm., 2011, 5, 433-436.
[115]
Umezawa, Y.; Ozawa, A. Optimal time for therapeutic drug monitoring of cyclosporine microemulsion in patients with psoriasis. Int. J. Dermatol., 2007, 46(7), 763-766.
[http://dx.doi.org/10.1111/j.1365-4632.2007.03136.x] [PMID: 17614813]
[116]
Gilani, S.J.; Beg, S.; Kala, C.; Nomani, M.S.; Mahapatra, D.K.; Imam, S.S.; Taleuzzaman, M. Chemically nano-engineered theranostics for phytoconstituents as healthcare application. Curr. Biochem. Eng., 2020, 6(1), 53-61.
[http://dx.doi.org/10.2174/2212711906666190723144111]
[117]
Rai, V.K.; Gupta, G.D.; Pottoo, F.H.; Barkat, M. Potential of nano-structured drug delivery system for phytomedicine delivery.Nanophytomedicine; Springer: Singapore, 2020, pp. 89-111.
[http://dx.doi.org/10.1007/978-981-15-4909-0_6]
[118]
Shukla, R.; Kakade, S.; Handa, M.; Kohli, K. Emergence of nanophytomedicine in health care setting; In: Beg, S.; Barkat, M.; Ahmad, F., Eds.; Nanophytomedicine Springer: Singapore, 2020, pp. 33-53.
[http://dx.doi.org/10.1007/978-981-15-4909-0_3]
[119]
Tapadiya, G.G. Impact of nanotechnology on global trade of herbal drugs: An overview. Int. J. Green Pharm., 2017, 11(03), 371-376.
[120]
Snehal, B. Application of nanotechnology for phyto constituents: Review. Arch. Nanomed., 2018, 1, 1-7.
[121]
Watkins, R.; Wu, L.; Zhang, C.; Davis, R.M.; Xu, B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomedicine, 2015, 10, 6055-6074.
[PMID: 26451111]
[122]
Bilia, A.; Piazzini, V.; Guccione, C.; Risaliti, L.; Asprea, M.; Capecchi, G.; Bergonzi, M. Improving on nature: The role of nanomedicine in the development of clinical natural drugs. Planta Med., 2017, 83(5), 366-381.
[http://dx.doi.org/10.1055/s-0043-102949] [PMID: 28178749]
[123]
Karpuz, M.; Gunay, M.S.; Ozer, A.Y. Liposomes and phytosomes for phytoconstituents. In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Academia Press: Cambridge, 2020; pp. 525-553.
[124]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[125]
Agrawal, U.; Gupta, M.; Vyas, S.P. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif. Cells Nanomed. Biotechnol., 2015, 43(1), 33-39.
[http://dx.doi.org/10.3109/21691401.2013.832683] [PMID: 24040836]
[126]
Gupta, R.; Gupta, M.; Mangal, S.; Agrawal, U.; Vyas, S.P. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 825-834.
[PMID: 25465045]
[127]
Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O.P. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement. Altern. Med., 2019, 19(1), 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[128]
Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[129]
Qadir, A.; Aqil, M.; Ali, A.; Warsi, M.H.; Mujeeb, M.; Ahmad, F.J.; Ahmad, S.; Beg, S. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J. Drug Deliv. Sci. Technol., 2020, 57, 101775.
[http://dx.doi.org/10.1016/j.jddst.2020.101775]
[130]
Iriventi, P.; Gupta, N.V.; Osmani, R.A.M.; Balamuralidhara, V. Design & development of nanosponge loaded topical gel of curcumin and caffeine mixture for augmented treatment of psoriasis. Daru, 2020, 28(2), 489-506.
[http://dx.doi.org/10.1007/s40199-020-00352-x] [PMID: 32472531]
[131]
Sahu, S.; Katiyar, S.S.; Kushwah, V.; Jain, S. Active natural oil-based nanoemulsion containing tacrolimus for synergistic antipsoriatic efficacy. Nanomedicine, 2018, 13(16), 1985-1998.
[http://dx.doi.org/10.2217/nnm-2018-0135] [PMID: 30188761]
[132]
Petit, R.G.; Cano, A.; Ortiz, A.; Espina, M.; Prat, J.; Muñoz, M.; Severino, P.; Souto, E.B.; García, M.L.; Pujol, M.; Sánchez-López, E. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics. Int. J. Mol. Sci., 2021, 22(9), 4983.
[http://dx.doi.org/10.3390/ijms22094983] [PMID: 34067151]
[133]
Esposito, E.; Nastruzzi, C.; Sguizzato, M.; Cortesi, R. Nanomedicines to treat skin pathologies with natural molecules. Curr. Pharm. Des., 2019, 25(21), 2323-2337.
[http://dx.doi.org/10.2174/1381612825666190709210703] [PMID: 31584367]
[134]
Sarac, G.; Koca, T.T.; Baglan, T. A brief summary of clinical types of psoriasis. North. Clin. Istanb., 2016, 3(1), 79-82.
[PMID: 28058392]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy