Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Synthesis, Characterization and Biological Activity of Benzimidazoleacrylonitrile Derivatives

Author(s): Mehtab Parveen*, Mohammad Azeem, Afroz Aslam, Mohammad Haris, Amir Khan and Mahboob Alam

Volume 20, Issue 4, 2023

Published on: 12 October, 2022

Page: [458 - 469] Pages: 12

DOI: 10.2174/1570179419666220912090458

Price: $65

Abstract

Background: Benzimidazoles have a wide range of synthetic applications in medicinal chemistry and biological activities like anti-tumor/anti-proliferative activities etc. Moreover, different heterocyclic moieties attached to the benzimidazole ring improved anticancer activities.

Methods: All the chemicals were purchased from Aldrich Chemical Company, are of AR grade and used as received. Microanalytical data (C, H, and N) were analyzed on a Carlo Erba model 1108 analyzer. Melting points were measured by the Kofler apparatus and were uncorrected. Spectroscopic data were obtained using the following instruments: Fourier transform infrared spectra (KBr discs, 4000-400 cm-1) by Shimadzu IR-408 Perkin Elmer 1800 instrument; 1H NMR and 13C NMR spectra by JEOL Resonance Inc. Tokyo, Japan, JNM-ECZ400S/L1 using DMSO-d6 as a solvent containing TMS as the internal standard. Chemical shifts (δ) are reported in parts per million (ppm), and coupling constants (J) are reported in Hertz (Hz).

Results: We chose sulfosalicylic acid as a promoter for forming benzimidazole-acrylonitrile derivatives, which is an eco-friendly reaction, and we applied a series of synthesized compounds 3a-g in nematicidal activity. The results indicate that the concentrations of all treatments significantly kill M. incognita.

Conclusion: This model reaction procedure provides a better method for preparing benzimidazoleacrylonitrile, which is superior to other methods. This protocol simplifies handling model reactions with mild reaction conditions, a short time period, a simple set-up, a fast reaction rate, and so on.

Keywords: Knoevenagel condensation, 2-benzimidazolylacrylonitriles, X-ray crystallographic study, Nematocidal activity.

Graphical Abstract

[1]
Lednicer, D. Strategies for Organic Drug Synthesis and Design; John Wiley & Sons: New York, 1998.
[2]
Silverman, R.B. The Organic Chemistry of Drug Design and Drug Action, 2nd ed; Elsevier Academic Press: Illinois, 2004.
[3]
Demeunynck, M.; Bailly, C.; Wilson, W.D. D.N.A. and R.N.A. Binders; Wiley-VCH: Weinheim, 2002.
[4]
Baraldi, P.G.; Bovero, A.; Fruttarolo, F.; Preti, D.; Tabrizi, M.A.; Pavani, M.G.; Romagnoli, R. DNA minor groove binders as potential antitumor and antimicrobial agents. Med. Res. Rev., 2004, 24(4), 475-528.
[http://dx.doi.org/10.1002/med.20000] [PMID: 15170593]
[5]
Demirayak, Ş.; Abu Mohsen, U.; Cağri Karaburun, A. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives. Eur. J. Med. Chem., 2002, 37(3), 255-260.
[http://dx.doi.org/10.1016/S0223-5234(01)01313-7] [PMID: 11900869]
[6]
Martínez, V.; Burgos, C.; Alvarez-Builla, J.; Fernández, G.; Domingo, A.; García-Nieto, R.; Gago, F.; Manzanares, I.; Cuevas, C.; Vaquero, J.J. Benzo[f]azino[2,1-a]phthalazinium cations: Novel DNA intercalating chromophores with antiproliferative activity. J. Med. Chem., 2004, 47(5), 1136-1148.
[http://dx.doi.org/10.1021/jm0310434] [PMID: 14971893]
[7]
Hranjec, M.; Starčević, K.; Piantanida, I.; Kralj, M.; Marjanović, M.; Hasani, M.; Westman, G.; Karminski-Zamola, G. Synthesis, antitumor evaluation and DNA binding studies of novel amidino-benzimidazolyl substituted derivatives of furyl-phenyl- and thienyl-phenyl-acrylates, naphthofurans and naphthothiophenes. Eur. J. Med. Chem., 2008, 43(12), 2877-2890.
[http://dx.doi.org/10.1016/j.ejmech.2008.02.010] [PMID: 18395297]
[8]
Jayasekera, M.M.K.; Onheiber, K.; Keith, J.; Venkatesan, H.; Santillan, A.; Stocking, E.M.; Tang, L.; Miller, J.; Gomez, L.; Rhead, B.; Delcamp, T.; Huang, S.; Wolin, R.; Bobkova, E.V.; Shaw, K.J. Identification of novel inhibitors of bacterial translation elongation factors. Antimicrob. Agents Chemother., 2005, 49(1), 131-136.
[http://dx.doi.org/10.1128/AAC.49.1.131-136.2005] [PMID: 15616286]
[9]
Ates-Alagoz, Z.; Yildiz, S.; Buyukbingol, E. Antimicrobial activities of some tetrahydronaphthalene-benzimidazole derivatives. Chemotherapy, 2007, 53(2), 110-113.
[http://dx.doi.org/10.1159/000100011] [PMID: 17310118]
[10]
Göker, H.; Özden, S.; Yıldız, S.; Boykin, D.W. Synthesis and potent antibacterial activity against MRSA of some novel 1,2-disubstituted- 1H-benzimidazole-N-alkylated-5-carboxamidines. Eur. J. Med. Chem., 2005, 40(10), 1062-1069.
[http://dx.doi.org/10.1016/j.ejmech.2005.05.002] [PMID: 15992965]
[11]
Göker, H.; Kuş, C.; Boykin, D.W.; Yildiz, S.; Altanlar, N. Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species. Bioorg. Med. Chem., 2002, 10(8), 2589-2596.
[http://dx.doi.org/10.1016/S0968-0896(02)00103-7] [PMID: 12057648]
[12]
Starčević, K.; Kralj, M.; Ester, K.; Sabol, I.; Grce, M.; Pavelić, K.; Karminski-Zamola, G. Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino-benzimidazoles. Bioorg. Med. Chem., 2007, 15(13), 4419-4426.
[http://dx.doi.org/10.1016/j.bmc.2007.04.032] [PMID: 17482821]
[13]
Morningstar. M.L.; Roth, T.; Farnsworth, D.W.; Kroeger Smith, M.; Watson, K.; Buckheit, R.W., Jr; Das, K.; Zhang, W.; Arnold, E.; Julias, J.G.; Hughes, S.H.; Michejda, C.J. Synthesis, biological activity, and crystal structure of potent nonnucleoside inhibitors of HIV-1 reverse transcriptase that retain activity against mutant forms of the enzyme. J. Med. Chem., 2007, 50(17), 4003-4015.
[http://dx.doi.org/10.1021/jm060103d] [PMID: 17663538]
[14]
Braña, M.F.; Castellano, J.M.; Keilhauer, G.; Machuca, A.; Martín, Y.; Redondo, C.; Schlick, E.; Walker, N. Benzimidazo[1,2-c]quinazolines: A new class of antitumor compounds. Anticancer Drug Des., 1994, 9(6), 527-538.
[PMID: 7880377]
[15]
Vivas-Mejía, P.E.; Rodríguez-Cabán, J.L.; Díaz-Velázquez, M.; Hernández-Pérez, M.G.; Cox, O.; Gonzalez, F.A. DNA binding-independent anti-proliferative action of benzazolo[3,2-α]quinolinium DNA intercalators. Mol. Cell. Biochem., 1997, 177(1/2), 69-77.
[http://dx.doi.org/10.1023/A:1006857118469] [PMID: 9450647]
[16]
Vivas-Mejía, P.E.; Cox, O.; González, F.A. Inhibition of human topoisomerase II by anti-neoplastic benzazolo[3,2-alpha]quinolinium chlorides. Mol. Cell. Biochem., 1998, 178(1/2), 203-212.
[http://dx.doi.org/10.1023/A:1006847615575] [PMID: 9546601]
[17]
Langer, R. Drugs on target. Science, 2001, 293(5527), 58-59.
[http://dx.doi.org/10.1126/science.1063273] [PMID: 11441170]
[18]
Deady, L.W.; Rodemann, T.; Finlay, G.J.; Baguley, B.C.; Denny, W.A. Synthesis and cytotoxic activity of carboxamide derivatives of benzimidazo[2,1-a]isoquinoline and pyrido[3′,2′:4,5]imidazo[2,1-a]isoquinoline. Anticancer Drug Des., 2000, 15(5), 339-346.
[PMID: 11354310]
[19]
(a) Ahmad, F.; Alam, M.J.; Alam, M.; Azaz, S.; Parveen, M.; Park, S.; Ahmad, S. Synthesis, spectroscopic, computational (DFT/B3LYP), AChE inhibition and antioxidant studies of imidazole derivative Mol. Struct., 2018, 1151, 327-342. isoforms hCA IX and XII. Bioorg. Med. Chem., 2016, 24(13), 2907-2913.
[http://dx.doi.org/10.1016/j.bmc.2016.04.061] [PMID: 27166574];
derivatives catalysed by sodium acetate: Synthesis, multispectroscopic properties, crystal structure with DFT calculations, DNA-binding studies and molecular docking studies. J. Mol. Struct., 2020, 1200, 127067..
[http://dx.doi.org/10.1016/j.molstruc.2019.127067];
biological assay and docking study of nitro acridone derivatives. J. Photochem. Photobiol. B, 2016, 161, 304-311.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.05.028] [PMID: 27295412]
[20]
Jeyakkumar, P.; Zhang, L.; Avula, S.R.; Zhou, C.H. Design, synthesis and biological evaluation of berberine-benzimidazole hybrids as new type of potentially DNA-targeting antimicrobial agents. Eur. J. Med. Chem., 2016, 122, 205-215.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.031] [PMID: 27371924]
[21]
Shah, K.; Chhabra, S.; Shrivastava, S.K.; Mishra, P. Benzimidazole: A promising pharmacophore. Med. Chem. Res., 2013, 22(11), 5077-5104.
[http://dx.doi.org/10.1007/s00044-013-0476-9]
[22]
Narasimhan, B.; Sharma, D.; Kumar, P. Benzimidazole: A medicinally important heterocyclic moiety. Med. Chem. Res., 2012, 21(3), 269-283.
[http://dx.doi.org/10.1007/s00044-010-9533-9]
[23]
Sarhan, A.A.O.; Al-Dhfyan, A.; Al-Mozaini, M.A.; Adra, C.N.; Aboul-Fadl, T. Cell cycle disruption and apoptotic activity of 3-aminothiazolo[3,2-a]benzimidazole-2-carbonitrile and its homologues. Eur. J. Med. Chem., 2010, 45(6), 2689-2694.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.025] [PMID: 20226574]
[24]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[PMID: 23190032]
[25]
Guan, Q.; Han, C.; Zuo, D.; Zhai, M.; Li, Z.; Zhang, Q.; Zhai, Y.; Jiang, X.; Bao, K.; Wu, Y.; Zhang, W. Synthesis and evaluation of benzimidazole carbamates bearing indole moieties for antiproliferative and antitubulin activities. Eur. J. Med. Chem., 2014, 87, 306-315.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.071] [PMID: 25262051]
[26]
Husain, A.; Rashid, M.; Shaharyar, M.; Siddiqui, A.A.; Mishra, R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents. Eur. J. Med. Chem., 2013, 62, 785-798.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.011] [PMID: 23333063]
[27]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin–benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[28]
Parveen, M.; Malla, A.M.; Alam, M.; Ahmad, M.; Rafiq, S. Stereoselective synthesis of Z-acrylonitrile derivatives: Catalytic and acetylcholinesterase inhibition studies. New J. Chem., 2014, 38(4), 1655-1667.
[http://dx.doi.org/10.1039/c3nj01384g]
[29]
Carta, A.; Palomba, M.; Boatto, G.; Busonera, B.; Murreddu, M.; Loddo, R. Synthesis and antiproliferative activity of 3-aryl-2-[1H(2H)-benzotriazol-1(2)-yl]acrylonitriles variously substituted: Part 4. Farmaco, 2004, 59(8), 637-644.
[http://dx.doi.org/10.1016/j.farmac.2004.03.004] [PMID: 15262533]
[30]
Hranjec, M.; Pavlović, G.; Marjanović, M.; Kralj, M.; Karminski-Zamola, G. Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a]quinolines and fluorenes: Synthesis, antitumor evaluation in vitro and crystal structure determination. Eur. J. Med. Chem., 2010, 45(6), 2405-2417.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.022] [PMID: 20207049]
[31]
Sączewski, F.; Stencel, A.; Bieńczak, A.M.; Langowska, K.A.; Michaelis, M.; Werel, W.; Hałasa, R.; Reszka, P.; Bednarski, P.J. Structure–activity relationships of novel heteroaryl-acrylonitriles as cytotoxic and antibacterial agents. Eur. J. Med. Chem., 2008, 43(9), 1847-1857.
[http://dx.doi.org/10.1016/j.ejmech.2007.11.017] [PMID: 18187237]
[32]
Sanna, P.; Carta, A.; Nikookar, M.E.R. Synthesis and antitubercular activity of 3-aryl substituted-2-(1H(2H)benzotriazol-1(2)-yl)acrylonitriles#1# Part of this work was presented as a poster communication at the 2nd European Symposium on Antimicrobial Agents, Hradec Kralove, Czech Republic, 1–4 July 1998. Eur. J. Med. Chem., 2000, 35(5), 535-543.
[http://dx.doi.org/10.1016/S0223-5234(00)00144-6] [PMID: 10889332]
[33]
Parmar, V.S.; Kumar, A.; Prasad, A.K.; Singh, S.K.; Kumar, N.; Mukherjee, S.; Raj, H.G.; Goel, S.; Errington, W.; Puar, M.S. Synthesis of E - and Z -Pyrazolylacrylonitriles and their evaluation as novel antioxidants. Bioorg. Med. Chem., 1999, 7(7), 1425-1436.
[http://dx.doi.org/10.1016/S0968-0896(99)00056-5] [PMID: 10465416]
[34]
Naruto, S.; Mizuta, H.; Yoshida, T.; Uno, H.; Kawashima, K.; Kadokawa, T.; Nishimura, H. Synthesis and spasmolytic activity of 2-substituted-3-(omega-dialkylaminoalkoxyphenyl)acrylonitriles and related compounds. Chem. Pharm. Bull. (Tokyo), 1983, 31(6), 2023-2032.
[http://dx.doi.org/10.1248/cpb.31.2023]
[35]
Grundy, J. Artificial estrogens. Chem. Rev., 1957, 57(2), 281-415.
[http://dx.doi.org/10.1021/cr50014a002]
[36]
Sanna, P.; Carta, A.; Gherardini, L.; Rahbar Nikookar, M.E.; Nikookar, R. Synthesis and antimycobacterial activity of 3-aryl-, 3-cyclohexyl- and 3-heteroaryl- substituted-2-(1H(2H)-benzotriazol-1(2)-yl)prop-2-enenitriles, prop-2-enamides and propenoic acids. II. Farmaco, 2002, 57(1), 79-87.
[http://dx.doi.org/10.1016/S0014-827X(01)01174-0] [PMID: 11902649]
[37]
Glazer, E.; Chappel, L. Pyridoquinoxaline N-oxides. 1. A new class of antitrichomonal agents. J. Med. Chem., 1982, 25(7), 766-769.
[http://dx.doi.org/10.1021/jm00349a603] [PMID: 7108893]
[38]
Thirupathi, G.; Venkatanarayana, M.; Dubey, P.K.; Kumari, Y.B. L-tyrosine catalyzed Knoevenagel condensation: Facile synthesis of cyanoacrylonitriles cyanoacrylates and cyano acrylamides in solvent-free condition under grindstone method. Der Pharma Chem., 2012, 4, 1897-1901.
[39]
Karmakar, B.; Nayak, A.; Banerji, J. A clean and expedient synthesis of spirooxindoles in aqueous media catalyzed over nanocrystalline MgO. Tetrahedron Lett., 2012, 53(37), 5004-5007.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.030]
[40]
Texier-Boullet, F.; Foucaud, A. Knoevenagel condensation catalysed by aluminium oxide. Tetrahedron Lett., 1982, 23(47), 4927-4928.
[http://dx.doi.org/10.1016/S0040-4039(00)85749-4]
[41]
Yadav, J.S.; Purushothama Rao, P.; Sreenu, D.; Rao, R.S.; Naveen Kumar, V.; Nagaiah, K.; Prasad, A.R. Sulfamic acid: An efficient, cost-effective and recyclable solid acid catalyst for the Friedlander quinoline synthesis. Tetrahedron Lett., 2005, 46(42), 7249-7253.
[http://dx.doi.org/10.1016/j.tetlet.2005.08.042]
[42]
Morrison, D.W.; Forbes, D.C.; Davis, J.H., Jr Base-promoted reactions in ionic liquid solvents. The Knoevenagel and Robinson annulation reactions. Tetrahedron Lett., 2001, 42(35), 6053-6055.
[http://dx.doi.org/10.1016/S0040-4039(01)01228-X]
[43]
Harjani, J.R.; Nara, S.J.; Salunkhe, M.M. Lewis acidic ionic liquids for the synthesis of electrophilic alkenes via the Knoevenagel condensation. Tetrahedron Lett., 2002, 43(6), 1127-1130.
[http://dx.doi.org/10.1016/S0040-4039(01)02341-3]
[44]
Tahmassebi, D.; Wilson, L.J.A.; Kieser, J.M. Knoevenagel condensation of aldehydes with Meldrum’s acid in ionic liquids. Synth. Commun., 2009, 39(14), 2605-2613.
[http://dx.doi.org/10.1080/00397910802663345]
[45]
Mulla, S.A.R.; Sudalai, A.; Pathan, M.Y.; Siddique, S.A.; Inamdar, S.M.; Chavan, S.S.; Reddy, R.S. Efficient, rapid synthesis of bis(indolyl)methane using ethyl ammonium nitrate as an ionic liquid. RSC Advances, 2012, 2(8), 3525-3529.
[http://dx.doi.org/10.1039/c2ra00849a]
[46]
Parveen, M.; Azaz, S.; Ahmad, F.; Malla, A.M.; Alam, M. Silica Bonded N-(Propylcarbamoyl)sulfamic acid (SBPCSA) Mediated Expeditious Approach to C–C Bond Formation: An Innovative Pathway for Acrylonitrile Derivatives. Catal. Lett., 2016, 146(9), 1687-1705.
[http://dx.doi.org/10.1007/s10562-016-1793-7]
[47]
Dissanayake, D.M.M.M.; Vannucci, A.K. Transition-metal-free and base-free electro synthesis of 1 H -substituted benzimidazoles. ACS Sustain. Chem. & Eng., 2018, 6(1), 690-695.
[http://dx.doi.org/10.1021/acssuschemeng.7b03029]
[48]
Li, J.S.; Yang, P.P.; Xie, X.Y.; Jiang, S.; Tao, L.; Li, Z.W.; Lu, C.H.; Liu, W.D. Catalyst‐free electrosynthesis of benzimidazolones through intramolecular oxidative C−N coupling. Adv. Synth. Catal., 2020, 362(10), 1977-1981.
[http://dx.doi.org/10.1002/adsc.202000198]
[49]
Li, A.; Li, C.; Yang, T.; Yang, Z.; Liu, Y.; Li, L.; Tang, K.; Zhou, C. Electrochemical synthesis of benzo[d]imidazole via intramolecular C(sp 3 )–H amination. J. Org. Chem., 2021, acs.joc.1c01842.
[http://dx.doi.org/10.1021/acs.joc.1c01842] [PMID: 34918925]
[50]
(a) ) Ahmad, F.; Parveen, M. Microwave-assisted expeditious approach towards benzimidazole acrylonitrile derivatives exploring a new silica supported SBPTS catalyst. New J. Chem., 2018, 42(17), 14602-14611.
[http://dx.doi.org/10.1039/C8NJ01436A];
(b) ) Parveen, M.; Aslam, A.; Nami, S.A.A.; Ahmad, M. Z-acrylonitrile derivatives: Improved synthesis, X-ray structure, and interaction with human serum albumin. Curr. Org. Synth., 2020, 16(8), 1149-1160.
[http://dx.doi.org/10.2174/1570179416666191008085806] [PMID: 31984921]
[51]
SAINTPlus Data Reduction and Correction Program, v. 6.45a; Bruker AXS: Madison, WI, 2003.
[52]
Sheldrick, G.M. SADABS: Empirical Absorption Correction Program; University of Göttingen: Göttingen, Germany, 1997.
[53]
Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst., 2012, 45(4), 849-854.
[http://dx.doi.org/10.1107/S0021889812029111]
[54]
Sheldrick, G.M. A short history of SHELX. Acta Crystallographica Section A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930]
[55]
Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst., 2006, 39(3), 453-457.
[http://dx.doi.org/10.1107/S002188980600731X]
[56]
Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr., 2009, 65(2), 148-155.
[http://dx.doi.org/10.1107/S090744490804362X] [PMID: 19171970]
[57]
El-Rokiek, K.; El-Nagdi, W. Dual effects of leaf extracts of Eucalyptus citriodora on controlling purslane and root-knot nematode in sunflower. J. Plant Prot. Res., 2011, 51(2), 121-129.
[http://dx.doi.org/10.2478/v10045-011-0021-0]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy