Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

An Exhaustive Compilation on the Synthesis of Heterocycles Pendant on the Fatty Acid Alkyl Chains

Author(s): Afaf Y. Khormi, Refat El-sayed, Thoraya A. Farghaly, Mohamed R. Shaaban* and Ahmad M. Farag*

Volume 20, Issue 4, 2023

Published on: 09 September, 2022

Page: [395 - 457] Pages: 63

DOI: 10.2174/1570179419666220526104154

Price: $65

Abstract

Fatty acids derived from oils and fats of different plant and animal resources are considered one of the most valuable renewable precursors of the synthetic chemical and pharmaceutical industries. On the other hand, heterocyclic compounds are well known nowadays by their constitution of many commercialized drugs due to their unique biological activities. Combination between fatty acids and heterocyclic compounds has made important advances in the construction of valuable biologically relevant molecules in pharmaceutical industry. This review casts light on the synthetic pathways for construction of the fatty acid-heterocycle hybrid up to date in a simple classification and arranged manner.

Keywords: Fatty acids, heterocycles, hybrid compounds, synthetic utilities, biological activity, Oleo-chemistry.

Graphical Abstract

[1]
Baumann, H.; Bühler, M.; Fochem, H.; Hirsinger, F.; Zoebelein, H.; Falbe, J. Natural fats and oils - renewable raw materials for the chemical industry. Angew. Chem., 1988, 100, 41-62.
[http://dx.doi.org/10.1002/ange.19881000107]
[2]
Biermann, U.; Friedt, W.; Lang, S.; Lühs, W.; Machmüller, G.; Metzger, J.O. Rüsch, gen.; Klaas, M.; Schäfer, H.J.; Schneider, M.P. New syntheses with oils and fats as renewable feedstock for the chemical industry. Angew. Chem., 2000, 112, 2292-2310.
[http://dx.doi.org/10.1002/1521-3757(20000703)112:13<2292:AID-ANGE2292>3.0.CO;2-V]
[3]
Biermann, U.; Bornscheuer, U.; Meier, M.A.; Metzger, J.O. Schäfer, H.J. New developments for the chemical utilization of oils and fats as renewable raw materials. Angew. Chem. Int. Ed., 2011, 50, 3854-3871.
[http://dx.doi.org/10.1002/anie.201002767]
[4]
Meier, M.A.; Metzger, J.O.; Schubert, U.S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev., 2007, 36(11), 1788-1802.
[http://dx.doi.org/10.1039/b703294c] [PMID: 18213986]
[5]
de Espinosa, L.M.; Meier, M.A. Plant oils: The perfect renewable resource for polymer science. Eur. Polym. J., 2011, 47(5), 837-852.
[http://dx.doi.org/10.1016/j.eurpolymj.2010.11.020]
[6]
Irby, D.; Du, C.; Li, F. Lipid-Drug conjugate for enhancing drug delivery. Mol. Pharm., 2017, 14(5), 1325-1338.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b01027] [PMID: 28080053]
[7]
Li, D.; Ng, A.; Mann, N.J.; Sinclair, A.J. Contribution of meat fat to dietary arachidonic acid. Lipids, 1998, 33(4), 437-440.
[http://dx.doi.org/10.1007/s11745-998-0225-7] [PMID: 9590632]
[8]
Geethapriya, C.; Elumalaii, K. Mannich bases: An overview of heterocyclic compound with various biological activities. Int. J. Univers. Pharm. Bio. Sci., 2021, 10(2), 1-23.
[9]
Sanu, M.C.; Joseph, J.; Chacko, D.; Vinod, B.; Daisy, P.A. A review on five membered nitrogen containing heterocyclic compounds with various biological activities. Int. J. Pharm. Sci. Rev. Res., 2021, 69(2), 64-68.
[http://dx.doi.org/10.47583/ijpsrr.2021.v69i02.010]
[10]
Zhang, K.; Tran, C.; Alami, M.; Hamze, A.; Provot, O. Synthesis and biological activities of pyrazino[1,2-a]indole and Pyrazino[1,2-a]indol-1-one Derivatives. Pharmaceuticals (Basel), 2021, 14(8), 779-803.
[http://dx.doi.org/10.3390/ph14080779] [PMID: 34451876]
[11]
Mittersteiner, M.; Bonacorso, H.G.; Martins, M.A.; Zanatta, N. Haloacetylated enol ethers: A way out for the regioselective synthesis of biologically active heterocycles. Eur. J. Org. Chem., 2021, 2021(28), 3886-3911.
[http://dx.doi.org/10.1002/ejoc.202100495]
[12]
Slivka, M.V.; Korol, N.I. Condensed pyridopyrimidines and pyridopyrazines containing a bridgehead nitrogen atom: Synthesis, chemical properties and biological activity. Curr. Org. Chem., 2021, 25(12), 1429-1440.
[http://dx.doi.org/10.2174/1385272825666210525154330]
[13]
Li Petri, G.; Raimondi, M.V. Spanٍ V.; Holl, R.; Barraja, P.; Montalbano, A. Pyrrolidine in drug discovery: A versatile scaffold for novel biologically active compounds. Top. Curr. Chem. (Cham), 2021, 379(5), 34.
[http://dx.doi.org/10.1007/s41061-021-00347-5] [PMID: 34373963]
[14]
Rodrigues, L.; Tilve, S.G.; Majik, M.S. Synthetic access to thiolane-based therapeutics and biological activity studies. Eur. J. Med. Chem., 2021, 224, 113659.
[http://dx.doi.org/10.1016/j.ejmech.2021.113659] [PMID: 34237621]
[15]
Wójcicka, A.; Redzicka, A. An overview of the biological activity of pyrrolo[3,4-c]pyridine derivatives. Pharmaceuticals (Basel), 2021, 14(4), 354-379.
[http://dx.doi.org/10.3390/ph14040354] [PMID: 33920479]
[16]
Dib, M.; Ouchetto, H.; Ouchetto, K.; Hafid, A.; Khouili, M. Recent developments of quinoline derivatives and their potential biological activities. Curr. Org. Synth., 2021, 18(3), 248-269.
[http://dx.doi.org/10.2174/1570179417666201216162055] [PMID: 33327918]
[17]
Elkanzi, N.A.A.; Zahou, F.M. Short review on pharmacological characteristics and synthesis of pyrazole. Heterocycl. lett, 2021, 11(1), 130-111.
[18]
Ojha, M.; Yadav, D.; Kumar, A.; Dasgupta, S.; Yadav, R. 1,8-Naphthyridine derivatives: A privileged scaffold for versatile biological activities. Mini Rev. Med. Chem., 2021, 21(5), 586-601.
[http://dx.doi.org/10.2174/1389557520666201009162804] [PMID: 33038911]
[19]
Chambers, G.E.; Sayan, A.E.; Brown, R.C.D. The synthesis of biologically active indolocarbazole natural products. Nat. Prod. Rep., 2021, 38(10), 1794-1820.
[http://dx.doi.org/10.1039/D0NP00096E] [PMID: 33666619]
[20]
Aly, A.A.; A., Hassan A. Makhlouf, M.M.; Bräse, S. Chemistry and biological activities of 1,2,4-triazolethiones—antiviral and anti-infective drugs. Molecules, 2020, 25(13), 3036-3090.
[http://dx.doi.org/10.3390/molecules25133036] [PMID: 32635156]
[21]
Kalinin, A.A.; Islamova, L.N.; Fazleeva, G.M. Imidazo[A]quinoxalines: New approaches to synthesis and biological activity. Chem. Heterocycl. Compd., 2020, 56(6), 663-673.
[http://dx.doi.org/10.1007/s10593-020-02716-2]
[22]
Slivka, M.V.; Korol, N.I.; Fizer, M.M. Fused bicyclic 1,2,4-triazoles with one extra sulfur atom: Synthesis, properties, and biological activity. J. Heterocycl. Chem., 2020, 57, 3236.
[http://dx.doi.org/10.1002/jhet.4044]
[23]
Haßelberg, J.; Behr, A. Saturated branched fatty compounds: Proven industrial processes and new alternatives. Eur. J. Lipid Sci. Technol., 2016, 118(1), 36-46.
[http://dx.doi.org/10.1002/ejlt.201500461]
[24]
de Espinosa, L.M.; Meier, M.A. Olefin metathesis of renewable platform chemicals. Springer, 2012, 39, 1-44.
[25]
Chikkali, S.; Mecking, S. Refining of plant oils to chemicals by olefin metathesis. Angew. Chem. Int. Ed. Engl., 2012, 51(24), 5802-5808.
[http://dx.doi.org/10.1002/anie.201107645] [PMID: 22581523]
[26]
Dixneuf, P.H.; Soulé, J.-F. Functionalizations of C(sp2 )–H bonds of heterocycles and arenes assisted with photoredox-catalysts for the c–c bond formation. Springer, 2019, 63, 225-265.
[27]
Yelchuri, V.; Srikanth, K.; Prasad, R.; Karuna, M. Olefin metathesis of fatty acids and vegetable oils. J. Chem. Sci., 2019, 131(39), 1-16.
[http://dx.doi.org/10.1007/s12039-019-1615-8]
[28]
Biermann, U.; Bornscheuer, U.T.; Feussner, I.; Meier, M.A.R.; Metzger, J.O. Fatty Acids and their derivatives as renewable platform molecules for the chemical industry. Angew. Chem. Int. Ed. Engl., 2021, 60(37), 20144-20165.
[http://dx.doi.org/10.1002/anie.202100778] [PMID: 33617111]
[29]
Venepally, V.; Reddy Jala, R.C. An insight into the biological activities of heterocyclic-fatty acid hybrid molecules. Eur. J. Med. Chem., 2017, 141, 113-137.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.069] [PMID: 29031060]
[30]
Jóźwiak, M.; Filipowska, A.; Fiorino, F.; Struga, M. Anticancer activities of fatty acids and their heterocyclic derivatives. Eur. J. Pharmacol., 2020, 871(172937), 172937.
[http://dx.doi.org/10.1016/j.ejphar.2020.172937] [PMID: 31958454]
[31]
Varshney, H.; Ahmad, A.; Rauf, A.; Husain, F.M.; Ahmad, I. Synthesis and antimicrobial evaluation of fatty chain substituted 2,5-dimethyl pyrrole and 1,3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc., 2017, 21, S394-S402.
[http://dx.doi.org/10.1016/j.jscs.2014.04.008]
[32]
Chen, J.; Wang, Z.; Lu, Y.; Dalton, J.T.; Miller, D.D.; Li, W. Synthesis and antiproliferative activity of imidazole and imidazoline analogs for melanoma. Bioorg. Med. Chem. Lett., 2008, 18(11), 3183-3187.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.073] [PMID: 18477505]
[33]
D’Oca, C.R.; Coelho, T.; Marinho, T.G.; Hack, C.R.L.; Duarte, R.C.; da Silva, P.A.; D’Oca, M.G.M. Synthesis and antituberculosis activity of new fatty acid amides. Bioorg. Med. Chem. Lett., 2010, 20(17), 5255-5257.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.149] [PMID: 20667727]
[34]
Lopes, C.R.; D’Oca, C.D.R.M.; Duarte, R.C.; Kurz, M.H.; Primel, E.G.; Clementin, R.M.; Villarreyes, J.A.M.; D’Oca, M.G.M. Synthesis of new fatty acids amides from aminolysis of fames. Quim. Nova, 2010, 33, 1335-1341.
[http://dx.doi.org/10.1590/S0100-40422010000600022]
[35]
Rodrigues, M.O.; Cantos, J.B.; D’Oca, C.R.M.; Soares, K.L.; Coelho, T.S.; Piovesan, L.A.; Russowsky, D.; da Silva, P.A.; D’Oca, M.G.M. Synthesis and antimycobacterial activity of isoniazid derivatives from renewable fatty acids. Bioorg. Med. Chem., 2013, 21(22), 6910-6914.
[http://dx.doi.org/10.1016/j.bmc.2013.09.034] [PMID: 24103427]
[36]
Duarte, R.D.C.; Ongaratto, R.; Piovesan, L.A.; de Lima, V.R.; Soldi, V.; Merlo, A.A.; D’Oca, M.G.M. New N-acylamino acids and derivatives from renewable fatty acids: Gelation of hydrocarbons and thermal properties. Tetrahedron Lett., 2012, 53(19), 2454-2460.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.015]
[37]
dos Santos, D.S.; Piovesan, L.A.; D’Oca, C.R.M.; Hack, C.R.L.; Treptow, T.G.; Rodrigues, M.O.; Vendramini-Costa, D.B.; Ruiz, A.L.T.; de Carvalho, J.E.; D’Oca, M.G.M. Antiproliferative activity of synthetic fatty acid amides from renewable resources. Bioorg. Med. Chem., 2015, 23(2), 340-347.
[http://dx.doi.org/10.1016/j.bmc.2014.11.019] [PMID: 25510639]
[38]
El‐Sayed, R.; Ahmed, S.A. Synthesis of some new thiazole, oxazole, pyrimidine and pyridazine derivatives from 2-cyano-N-octadecyl-acetamide as antimicrobial and surface active agents. J. Heterocycl. Chem., 2016, 53(1), 121-128.
[http://dx.doi.org/10.1002/jhet.2288]
[39]
Laskar, K.; Ahmad, A.; Rauf, A. Synthesis and spectral characterization of novel fatty acid chain substituted pyrazoline derivatives. Rasayan J. Chem., 2014, 7, 276-280.
[40]
Beck, P.; Santos, J.M.; Kuhn, B.L.; Moreira, D.N.; Flores, A.F.C.; Martins, M.A.P.; D’Oca, M.G.M.; Piovesan, L.A. Regiospecific synthesis of new fatty n-acyl trihalomethylated pyrazoline derivatives from fatty acid methyl esters (FAMEs). J. Braz. Chem. Soc., 2012, 23(11), 2122-2127.
[http://dx.doi.org/10.1590/S0103-50532012005000071]
[41]
Howsaway, H.O.; El-Sayed, R. Synthesis of potential pharmaceutical heterocycles as surface active agents. J. Surfactants Deterg., 2017, 20(3), 681-694.
[http://dx.doi.org/10.1007/s11743-017-1936-x]
[42]
Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A.A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2863-2865.
[http://dx.doi.org/10.1016/S0960-894X(03)00591-2] [PMID: 14611845]
[43]
Sharma, S.; Gangal, S.; Rauf, A. Convenient one-pot synthesis of novel 2-substituted benzimidazoles, tetrahydrobenzimidazoles and imidazoles and evaluation of their in vitro antibacterial and antifungal activities. Eur. J. Med. Chem., 2009, 44(4), 1751-1757.
[http://dx.doi.org/10.1016/j.ejmech.2008.03.026] [PMID: 18472189]
[44]
Ahmad, A.; Ahmad, A.; Varshney, H.; Rauf, A.; Rehan, M.; Subbarao, N.; Khan, A.U. Designing and synthesis of novel antimicrobial heterocyclic analogs of fatty acids. J. Med. Chem., 2013, 70, 887-900.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.051] [PMID: 24262381]
[45]
Amine, M.S.; Mahmoud, A.A.; Badr, S.K.; Gouda, A.S. Fatty acids in heterocyclic synthesis part xii: Synthesis of surfactants from pyrazole, isoxazole, pyrimidine and triazine, incorporating the 1,3,4-thiadiazole moiety having dyeing and antimicrobial activities. J. Surfactants Deterg., 2012, 15(2), 179-190.
[http://dx.doi.org/10.1007/s11743-011-1301-4]
[46]
Kenar, J.A.; Wetzel, A.R. Preparation of fatty 3,5-disubstituted isoxazole compounds from fa esters. J. Am. Oil Chem. Soc., 2003, 80(7), 711-716.
[http://dx.doi.org/10.1007/s11746-003-0762-5]
[47]
Kenar, J.A.; Erhan, S.Z. Synthesis of Δ2-Isoxazoline fatty acid ester heterocycles. J. Am. Oil Chem. Soc., 2001, 78(10), 1045-1050.
[http://dx.doi.org/10.1007/s11746-001-0386-9]
[48]
Amin, M.; Eissa, A.; Shaaban, A.; El-Sawy, A.; El-Sayed, R. New heterocycles having double characters; as antimicrobial and surface active agents. Part 1: Nonionic compounds from fatty acid isothiocyanate. Grasas Aceites, 2004, 55, 370-377.
[49]
Amin, M.; Eissa, A.; Shaaban, A.; El-Sawy, A.; El-Sayed, R. New heterocycles having a double characters; as antimicrobial and surface active agents. Part 2: Anionic compounds from fatty acid isothiocyanate. J. Chemistry: An Indian Journal, 2003, 1, 313-319.
[50]
Moazami, Y.; Gulledge, T.V.; Laster, S.M.; Pierce, J.G. Synthesis and biological evaluation of a series of fatty acid amides from Echinacea. Bioorg. Med. Chem. Lett., 2015, 25(16), 3091-3094.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.024] [PMID: 26105195]
[51]
Gududuru, V.; Hurh, E.; Sullivan, J.; Dalton, J.T.; Miller, D.D. SAR studies of 2-arylthiazolidine-4-carboxylic acid amides: A novel class of cytotoxic agents for prostate cancer. Bioorg. Med. Chem. Lett., 2005, 15(18), 4010-4013.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.032] [PMID: 16005217]
[52]
Lu, Y.; Wang, Z.; Li, C.M.; Chen, J.; Dalton, J.T.; Li, W.; Miller, D.D. Synthesis,in vitro structure-activity relationship, and in vivo studies of 2-arylthiazolidine-4-carboxylic acid amides as anticancer agents. Bioorg. Med. Chem., 2010, 18(2), 477-495.
[http://dx.doi.org/10.1016/j.bmc.2009.12.020] [PMID: 20056548]
[53]
Li, W.; Lu, Y.; Wang, Z.; Dalton, J.T.; Miller, D.D. Synthesis and antiproliferative activity of thiazolidine analogs for melanoma. Bioorg. Med. Chem. Lett., 2007, 17(15), 4113-4117.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.059] [PMID: 17561392]
[54]
Gududuru, V.; Hurh, E.; Dalton, J.T.; Miller, D.D. Discovery of 2-arylthiazolidine-4-carboxylic acid amides as a new class of cytotoxic agents for prostate cancer. J. Med. Chem., 2005, 48(7), 2584-2588.
[http://dx.doi.org/10.1021/jm049208b] [PMID: 15801848]
[55]
Jain, S.; Kumar, A.; Kumar, M.; Jain, N. Synthesis and antibacterial studies of 2-aryl-3-alkanamido-4H-thiazolidin-4-one derivatives. Arab. J. Chem., 2016, 9, S290-S295.
[http://dx.doi.org/10.1016/j.arabjc.2011.04.009]
[56]
Varshney, H.; Ahmad, A.; Farshori, N.N.; Ahmad, A.; Khan, A.U.; Rauf, A. Synthesis and evaluation of in vitro antimicrobial activity of novel 2,3-disubstituted-4-thiazolidinones from fatty acid hydrazides. Med. Chem. Res., 2013, 22(7), 3204-3212.
[http://dx.doi.org/10.1007/s00044-012-0326-1]
[57]
Rahman, V.P.M.; Mukhtar, S.; Ansari, W.H.; Lemiere, G. Synthesis, stereochemistry and biological activity of some novel long alkyl chain substituted thiazolidin-4-ones and thiazan-4-one from 10-undecenoic acid hydrazide. Eur. J. Med. Chem., 2005, 40(2), 173-184.
[http://dx.doi.org/10.1016/j.ejmech.2004.10.003] [PMID: 15694652]
[58]
Amin, M.S.; Eissa, A.M.F.; Shaaban, A.F.; El-Sawy, A.A.; El-Sayed, R. New heterocycles having a double character; as antimicrobial and surface-active agents. Part 3: Nonionic compounds from fatty acid hydrazide. J. Olaj, Szappan. Kozmetika, 2004, 53(2), 124-127.
[59]
Manjula, M.K.; Rai, K.M.L. Synthesis of thiazolines from fatty acids under solvothermal conditions. Organic Chem. Indian J., 2008, 4, 36-39.
[60]
Mustafa, J.; Ahmad, M., Jr; Rauf, A.; Osman, S. Synthesis of sulfur heterocycles from αβ-unsaturated carbonyl fatty acid esters. J. Am. Oil Chem. Soc., 1984, 61(5), 941-944.
[http://dx.doi.org/10.1007/BF02542172]
[61]
Ahmad, A.; Varshney, H.; Rauf, A.; Sherwani, A.; Owais, M. Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4-triazol-3-thione and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. Arab. J. Chem., 2017, 10, S3347-S3357.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.015]
[62]
Jubie, S.; Dhanabal, P.; Azam, M.A. Muruganantham, Kalirajan, N.R.; Elango, K. Synthesis and characterization of some novel fatty acid analogues: A preliminary investigation on their activity against human lung carcinoma cell line. Lipids Health Dis., 2013, 12(45), 2-5.
[63]
Jubie, S.; Ramesh, P.N.; Dhanabal, P.; Kalirajan, R.; Muruganantham, N.; Antony, A.S. Synthesis, antidepressant and antimicrobial activities of some novel stearic acid analogues. Eur. J. Med. Chem., 2012, 54, 931-935.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.025] [PMID: 22770606]
[64]
Rezaei, Z.; Khabnadideh, S.; Pakshir, K.; Hossaini, Z.; Amiri, F.; Assadpour, E. Design, synthesis, and antifungal activity of triazole and benzotriazole derivatives. Eur. J. Med. Chem., 2009, 44(7), 3064-3067.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.012] [PMID: 18760508]
[65]
Sharma, S.; Gangal, S.; Rauf, A.; Zahin, M. Synthesis, antibacterial and antifungal activity of some novel 3,5-disubstituted-1H-1,2,4-triazoles. Arch. Pharm. (Weinheim), 2008, 341(11), 714-720.
[http://dx.doi.org/10.1002/ardp.200800005] [PMID: 18720340]
[66]
Hemdan, M.M.; Abou Elmagd, W.S.; Samy, S.S.; Youssef, A.S. Dodecanoyl thiosemicarbazide derivatives as useful synthons in the synthesis of 1,2,4-triazole, 1,3,4-thiadiazole, and 1,3-benzothiazole derivatives. Synth. Commun., 2016, 46(8), 710-718.
[http://dx.doi.org/10.1080/00397911.2016.1164865]
[67]
Gad El‐Karim, I.A.; Amine, M.S.; Mahmoud, A.A.; Gouda, A.S. Fatty acids in heterocyclic synthesis. Part XIV: Synthesis of surface active agents from some novel class of oxadiazole, thiadiazole and triazole derivatives having microbiological activities. J. Surfactants Deterg., 2014, 17(3), 509-523.
[http://dx.doi.org/10.1007/s11743-013-1530-9]
[68]
Toliwal, S.; Jadav, K.; Patel, K. Synthesis and biological evaluation of fatty hydrazides of by-products of oil processing industry. Indian J. Pharm. Sci., 2009, 71(2), 144-148.
[http://dx.doi.org/10.4103/0250-474X.54282] [PMID: 20336214]
[69]
Xu, J-M.; Zhang, E.; Shi, X-J.; Wang, Y-C.; Yu, B.; Jiao, W-W.; Guo, Y-Z.; Liu, H-M. Synthesis and preliminary biological evaluation of 1,2,3-triazole-Jaspine B hybrids as potential cytotoxic agents. Eur. J. Med. Chem., 2014, 80, 593-604.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.022] [PMID: 24835817]
[70]
Menendez, C.; Chollet, A.; Rodriguez, F.; Inard, C.; Pasca, M.R.; Lherbet, C.; Baltas, M. Chemical synthesis and biological evaluation of triazole derivatives as inhibitors of InhA and antituberculosis agents. Eur. J. Med. Chem., 2012, 52, 275-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.029] [PMID: 22483635]
[71]
Ghiano, D.G.; de la Iglesia, A.; Liu, N.; Tonge, P.J.; Morbidoni, H.R.; Labadie, G.R. Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur. J. Med. Chem., 2017, 125, 842-852.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.086] [PMID: 27750201]
[72]
Labadie, G.R.; de la Iglesia, A.; Morbidoni, H.R. Targeting tuberculosis through a small focused library of 1,2,3-triazoles. Mol. Divers., 2011, 15(4), 1017-1024.
[http://dx.doi.org/10.1007/s11030-011-9319-0] [PMID: 21633789]
[73]
Kumar, D. Beena; Khare, G.; Kidwai, S.; Tyagi, A.K.; Singh, R.; Rawat, D.S. Synthesis of novel 1,2,3-triazole derivatives of isoniazid and their in vitro and in vivo antimycobacterial activity evaluation. Eur. J. Med. Chem., 2014, 81, 301-313.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.005] [PMID: 24852277]
[74]
Jie, M.S.L.K.; Pasha, M.K.; Alam, M.S. Synthesis of novel triazole fatty acid derivatives from acetylenic fatty esters. Chem. Phys. Lipids, 1998, 91(1), 71-78.
[http://dx.doi.org/10.1016/S0009-3084(97)00094-7]
[75]
Farshori, N.N.; Banday, M.R.; Ahmad, A.; Khan, A.U.; Rauf, A. Synthesis, characterization, and in vitro antimicrobial activities of 5-alkenyl/hydroxyalkenyl-2-phenylamine-1,3,4-oxadiazoles and thiadiazoles. Bioorg. Med. Chem. Lett., 2010, 20(6), 1933-1938.
[http://dx.doi.org/10.1016/j.bmcl.2010.01.126] [PMID: 20172722]
[76]
Banday, M.R.; Mattoo, R.H.; Rauf, A. Synthesis, characterization and antibacterial activity of 5-(alkenyl)-2-amino- and 2-(alkenyl)-5-phenyl-1,3,4-oxadiazoles. J. Chem. Sci., 2010, 122(2), 177-182.
[http://dx.doi.org/10.1007/s12039-010-0019-6]
[77]
Rauf, A.; Sharma, S.; Gangal, S. One-pot synthesis, antibacterial and antifungal activities of novel 2,5-disubstituted-1,3,4-oxadiazoles. Chin. Chem. Lett., 2008, 19(1), 5-8.
[http://dx.doi.org/10.1016/j.cclet.2007.11.026]
[78]
Fürmeier, S.; Metzger, J.O. Synthesis of new heterocyclic fatty compounds. Eur. J. Org. Chem., 2003, 2003(5), 885-893.
[http://dx.doi.org/10.1002/ejoc.200390134]
[79]
Navarrete-Vázquez, G.; Molina-Salinas, G.M.; Duarte-Fajardo, Z.V.; Vargas-Villarreal, J.; Estrada-Soto, S.; González-Salazar, F.; Hernández-Núñez, E.; Said-Fernández, S. Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg. Med. Chem., 2007, 15(16), 5502-5508.
[http://dx.doi.org/10.1016/j.bmc.2007.05.053] [PMID: 17562368]
[80]
Rebolledo, C.L.; Sotelo-Hitschfeld, P.; Brauchi, S. Olavarría, M.Z. Design and synthesis of conformationally restricted capsaicin analogues based in the 1, 3, 4-thiadiazole heterocycle reveal a novel family of transient receptor potential vanilloid 1 (TRPV1) antagonists. Eur. J. Med. Chem., 2013, 66, 193-203.
[http://dx.doi.org/10.1016/j.ejmech.2013.05.001] [PMID: 23796768]
[81]
Varshney, H.; Ahmad, A.; Rauf, A. Synthesis of novel 2,5-disubstituted-1,3,4-selenadiazoles from fatty acid hydrazides. Arab. J. Chem., 2018, 11(1), 143-148.
[http://dx.doi.org/10.1016/j.arabjc.2014.08.002]
[82]
Mahal, K.; Ahmad, A.; Schmitt, F. Lockhauserbäumer, J.; Starz, K.; Pradhan, R.; Padhye, S.; Sarkar, F.H.; Koko, W.S.; Schobert, R.; Ersfeld, K.; Biersack, B. Improved anticancer and antiparasitic activity of new lawsone Mannich bases. Eur. J. Med. Chem., 2017, 126, 421-431.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.043] [PMID: 27912173]
[83]
Jadhav, M.; Kalhapure, R.S.; Rambharose, S.; Mocktar, C.; Govender, T. Synthesis, characterization and antibacterial activity of novel heterocyclic quaternary ammonium surfactants. J. Ind. Eng. Chem., 2017, 47, 405-414.
[http://dx.doi.org/10.1016/j.jiec.2016.12.013]
[84]
Ha, S.; Ong, L.; Win, Y.; Sivasothy, Y.; Yeap, G.; Boey, P. The synthesis and characterization of new Schiff bases: 4-[(Pyridin-4-ylmethylene) amino] phenylalkanoates. Aust. J. Basic Appl. Sci., 2010, 4, 1146-1151.
[85]
Zaki, M.E.; Yousef, E.A.; Hassanien, A.Z.A. Fatty acid hydrazides in heterocyclic synthesis: Synthesis of 1,2-diazepine and pyridazine derivatives. Heteroatom Chem., 2007, 18(3), 259-264.
[http://dx.doi.org/10.1002/hc.20294]
[86]
Shaker, N.; Alian, N.; Bakr, M.E-S.S. Synthesis, coating and biological evaluation of ecofriendly fatty acid hydrazide derivatives. Life Sci. J., 2015, 12(11), 73-79.
[87]
Treptow, T.G. Figueiró F.; Jandrey, E.H.; Battastini, A.M.; Salbego, C.G.; Hoppe, J.B.; Taborda, P.S.; Rosa, S.B.; Piovesan, L.A.; Montes D’Oca, C.R.; Russowsky, D.; Montes D’Oca, M.G. Novel hybrid DHPM-fatty acids: Synthesis and activity against glioma cell growth in vitro. Eur. J. Med. Chem., 2015, 95, 552-562.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.062] [PMID: 25863023]
[88]
Kumarasamy, D.; Roy, B.G.; Rocha-Pereira, J.; Neyts, J.; Nanjappan, S.; Maity, S.; Mookerjee, M.; Naesens, L. Synthesis and in vitro antiviral evaluation of 4-substituted 3,4-dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2017, 27(2), 139-142.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.010] [PMID: 27979594]
[89]
Chhikara, B.S.; Mandal, D.; Parang, K. Synthesis and evaluation of fatty acyl ester derivatives of cytarabine as anti-leukemia agents. Eur. J. Med. Chem., 2010, 45(10), 4601-4608.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.024] [PMID: 20692740]
[90]
Servusova-Vanaskova, B.; Paterova, P.; Garaj, V.; Mandikova, J.; Kunes, J.; Naesens, L. Jílek, P.; Dolezal, M.; Zitko, J. Synthesis and antimicrobial evaluation of 6-alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Biol. Drug Des., 2015, 86(4), 674-681.
[http://dx.doi.org/10.1111/cbdd.12536] [PMID: 25676890]
[91]
Boukli, L.; Touaibia, M.; Meddad-Belhabich, N.; Djimdé, A.; Park, C-H.; Kim, J-J.; Yoon, J-H.; Lamouri, A.; Heymans, F. Design of new potent and selective secretory phospholipase A2 inhibitors. Part 5: Synthesis and biological activity of 1-alkyl-4-[4,5-dihydro-1,2,4-[4H]-oxadiazol-5-one-3-ylmethylbenz-4′-yl(oyl)] piperazines. Bioorg. Med. Chem., 2008, 16(3), 1242-1253.
[http://dx.doi.org/10.1016/j.bmc.2007.10.077] [PMID: 17993277]
[92]
Hu, W-X.; Rao, G-W.; Sun, Y-Q. Synthesis and antitumor activity of s-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2004, 14(5), 1177-1181.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.056] [PMID: 14980660]
[93]
Venepally, V.; Prasad, R.; Poornachandra, Y.; Kumar, C.G.; Jala, R.C.R. Synthesis of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3-carboxylate derivatives and their biological evaluation. Indian J. Chem., 2017, 56B, 531-541.
[94]
Chandrika, N.T.; Shrestha, S.K.; Ngo, H.X.; Garneau-Tsodikova, S. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg. Med. Chem., 2016, 24(16), 3680-3686.
[http://dx.doi.org/10.1016/j.bmc.2016.06.010] [PMID: 27301676]
[95]
Hosamani, K.; Hiremath, V.; Keri, R.; Harisha, R.; Halligudi, S. Synthesis of novel 2-alkyl substituted oleobenzimidazole derivatives using ethylene glycol as solvent. Can. J. Chem., 2008, 86(11), 1030-1033.
[http://dx.doi.org/10.1139/v08-152]
[96]
Rauf, A.; Ganga, S.; Sharma, S.; Zahin, M. A simple, rapid and efficient one-pot protocol for the synthesis of 2-substituted benzothiazole derivatives and their antimicrobial screening. S. Afr. J. Chem., 2008, 61, 63-67.
[97]
Yoon, S.B.; Chun, E.J.; Noh, Y.R.; Yoon, Y.J.; Lee, S-G. A convenient method for synthesis of benzo[d]thiazoles in water and solvent free condition. Bull. Korean Chem. Soc., 2013, 34(9), 2819-2821.
[http://dx.doi.org/10.5012/bkcs.2013.34.9.2819]
[98]
Boger, D.L. Miyauchi, H.; Hedrick, M.P. α-Keto heterocycle inhibitors of fatty acid amide hydrolase: Carbonyl group modification and α-substitution. Bioorg. Med. Chem. Lett., 2001, 11(12), 1517-1520.
[http://dx.doi.org/10.1016/S0960-894X(01)00211-6] [PMID: 11412972]
[99]
Ohba, Y.; Kanao, Y.; Takatsuji, M.; Ito, M.; Yabuta, N.; Nojima, H.; Kita, Y. Synthesis of N-functionalized oleamide derivatives. Tetrahedron, 2007, 63(18), 3754-3761.
[http://dx.doi.org/10.1016/j.tet.2007.02.074]
[100]
Rauf, A.; Gangal, S. Facile one-pot synthesis of N-acyl-1H-1,2,3-benzotriazoles from internal and terminal olefinic fatty acids and their antimicrobial screening. J. Oleo Sci., 2008, 57(8), 453-457.
[http://dx.doi.org/10.5650/jos.57.453] [PMID: 18622129]
[101]
Singh, D.; Silakari, O. Sodium hydrogen exchanger inhibitory activity of benzotriazole derivatives. Eur. J. Med. Chem., 2017, 126, 183-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.005] [PMID: 27750152]
[102]
Kidwai, M.; Bhushan, K.R.; Sapra, P.; Saxena, R.K.; Gupta, R. Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg. Med. Chem., 2000, 8(1), 69-72.
[http://dx.doi.org/10.1016/S0968-0896(99)00256-4] [PMID: 10968266]
[103]
Azéma, J.; Guidetti, B.; Dewelle, J.; Le Calve, B.; Mijatovic, T.; Korolyov, A.; Vaysse, J.; Malet-Martino, M.; Martino, R.; Kiss, R. 7-((4-Substituted)piperazin-1-yl) derivatives of ciprofloxacin: Synthesis and in vitro biological evaluation as potential antitumor agents. Bioorg. Med. Chem., 2009, 17(15), 5396-5407.
[http://dx.doi.org/10.1016/j.bmc.2009.06.053] [PMID: 19595598]
[104]
Malinak, D.; Dolezal, R.; Marek, J.; Salajkova, S.; Soukup, O.; Vejsova, M.; Korabecny, J.; Honegr, J.; Penhaker, M.; Musilek, K.; Kuca, K. 6-Hydroxyquinolinium salts differing in the length of alkyl side-chain: Synthesis and antimicrobial activity. Bioorg. Med. Chem. Lett., 2014, 24(22), 5238-5241.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.060] [PMID: 25442318]
[105]
da Costa Cabrera, D.; Rosa, S.B.; de Oliveira, F.S.; Marinho, M.A.; D’Oca, C.R.M.; Russowsky, D.; Horn, A.P.; D’Oca, M.G.M. Synthesis and antiproliferative activity of novel hybrid 3-substituted polyhydroquinoline-fatty acids. MedChemComm, 2016, 7(11), 2167-2176.
[http://dx.doi.org/10.1039/C6MD00425C]
[106]
Wube, A.A.; Hüfner, A.; Thomaschitz, C.; Blunder, M.; Kollroser, M.; Bauer, R.; Bucar, F. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones. Bioorg. Med. Chem., 2011, 19(1), 567-579.
[http://dx.doi.org/10.1016/j.bmc.2010.10.060] [PMID: 21106378]
[107]
Kumura, N.; Izumi, M.; Nakajima, S.; Shimizu, S.; Kim, H-S.; Wataya, Y.; Baba, N. Synthesis and biological activity of fatty acid derivatives of quinine. Biosci. Biotechnol. Biochem., 2005, 69(11), 2250-2253.
[http://dx.doi.org/10.1271/bbb.69.2250] [PMID: 16306714]
[108]
Matuszewska, I.; Leniewski, A.; Roszkowski, P.; Czarnocki, Z. Synthesis of a novel class of fatty acids-derived isoquinolines. Chem. Phys. Lipids, 2005, 135(2), 131-145.
[http://dx.doi.org/10.1016/j.chemphyslip.2005.02.008] [PMID: 15921974]
[109]
El, A.; Salam, H.A.; Shaker, N.O.; El-Telbani, E.M.; Nawwar, G.A. Facile synthesis of heterocycles having bacteriocidal activity incorporating oleic acid residues. J. Chem. Res., 2009, 2009(6), 400-404.
[http://dx.doi.org/10.3184/030823409X466023]
[110]
Amine, M.; Aly, A.; El-Sayed, R. Synthesis and surface-active properties of condensed and non-condensed quinazoline derivatives of industrial application. Indian J. Chem., 2006, 45B, 1020-1027.
[111]
Eissa, A.; El-Sayed, R. Synthesis and evaluation of α-hydroxy fatty acid derived heterocyclic compounds with potential industrial interest. Grasas Aceites, 2007, 58(1), 20-28.
[http://dx.doi.org/10.3989/gya.2007.v58.i1.4]
[112]
El‐Sayed, R.; Wasfy, A. Synthesis of heterocycles having double characters: As antimicrobial and surface-active agents. J. Chin. Chem. Soc. (Taipei), 2005, 52(1), 129-135.
[http://dx.doi.org/10.1002/jccs.200500020]
[113]
Hui, X.; Desrivot, J.; Bories, C.; Loiseau, P.M.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and antiprotozoal activity of some new synthetic substituted quinoxalines. Bioorg. Med. Chem. Lett., 2006, 16(4), 815-820.
[http://dx.doi.org/10.1016/j.bmcl.2005.11.025] [PMID: 16309903]
[114]
Ahmad, A.; Varshney, H.; Rauf, A.; Husain, F.M.; Ahmad, I. Synthesis, biological screening of novel long chain derivatives of 1,3-disubstituted-1H-pyrazol-5(4H)- one and 2-substituted-3H-1,4-phthalazin-1,4-dione: Structureactivity relationship studies. J. Saudi Chem. Soc., 2014, 26, 290-299.
[115]
Laskar, K.; Rauf, A. A novel and facile synthesis of fatty acid chain substituted benzoxadiazepine and naphthoxadiazepine derivatives. Chem. Sin, 2015, 6, 78-83.
[116]
Amine, M.; Mahmoud, A.; Badr, S.; Gouda, A. Fatty acids in heterocyclic synthesis part XI: Facile and convenient routes to synthesize eco-friendly polyfunctionalized thiadiazoles, triazole, thiadiazolo [3,2-a] pyrimidines and imidazo[2,1-b]thiadiazole for pharmaceutical and industrial purposes. Egypt. J. Chem., 2013, 56(5), 379-401.
[http://dx.doi.org/10.21608/ejchem.2013.1119]
[117]
Jubie, S.; Dhanabal, P.; Azam, M.A.; Kumar, N.S.; Ambhore, N.; Kalirajan, R. Design, synthesis and antidepressant activities of some novel fatty acid analogues. Med. Chem. Res., 2015, 24(4), 1605-1616.
[http://dx.doi.org/10.1007/s00044-014-1235-2]
[118]
Pisal, M.M.; Nawale, L.U.; Patil, M.D.; Bhansali, S.G.; Gajbhiye, J.M.; Sarkar, D.; Chavan, S.P.; Borate, H.B. Hybrids of thienopyrimidinones and thiouracils as anti-tubercular agents: SAR and docking studies. Eur. J. Med. Chem., 2017, 127, 459-469.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.009] [PMID: 28103537]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy