Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Genetic Causes of Alzheimer’s Disease and the Neuroprotective Role of Melatonin in its Management

Author(s): Sonali Sundram, Rishabha Malviya and Rajendra Awasthi*

Volume 22, Issue 9, 2023

Published on: 23 September, 2022

Page: [1302 - 1312] Pages: 11

DOI: 10.2174/1871527321666220901125730

open access plus

Abstract

Dementia is a global health concern owing to its complexity, which also poses a great challenge to pharmaceutical scientists and neuroscientists. The global prevalence of dementia is approximately 47 million, which may increase by three times by 2050. Alzheimer’s disease (AD) is the most common cause of dementia. AD is a severe age-related neurodegenerative disorder characterized by short-term memory loss, aphasia, mood imbalance, and executive function. The etiology of AD is still unknown, and the exact origin of the disease is still under investigation. Aggregation of amyloid β (Aβ) plaques or neurotoxic Aβo oligomers outside the neuron is the most common cause of AD development. Amyloid precursor protein (APP) processing by β secretase and γ secretase produces abnormal Aβ monomers. This aggregation of Aβ and NFT is promoted by various genes like BACE1, ADAM10, PIN1, GSK-3, APOE, PPARα, etc. Identification of these genes can discover several therapeutic targets that can be useful in studying pathogenesis and underlying treatments. Melatonin modulates the activities of these genes, thereby reducing Aβ production and increasing its clearance. Melatonin also reduces the expression of APP by attenuating cAMP, thereby enhancing the nonamyloidogenic process. Present communication explored and discussed the neuroprotective role of melatonin against Aβ-dependent AD pathogenesis. The manuscript also discussed potential molecular and genetic mechanisms of melatonin in the production and clearance of Aβ that could ameliorate neurotoxicity.

Keywords: Alzheimer’s disease, neurological disorders, melatonin, genetic manipulation, hormonal disbalance, biochemical.

Graphical Abstract

[1]
Cao K, Chen-Plotkin AS, Plotkin JB, Wang LS. Age-correlated gene expression in normal and neurodegenerative human brain tissues. PLoS One 2010; 5(9): e13098.
[http://dx.doi.org/10.1371/journal.pone.0013098] [PMID: 20927326]
[2]
Singh AK, Singh SS, Rathore AS, et al. Lipid-coated MCM-41 mesoporous silica nanoparticles loaded with berberine improved inhibition of acetylcholine esterase and amyloid formation. ACS Biomater Sci Eng 2021; 7(8): 3737-53.
[http://dx.doi.org/10.1021/acsbiomaterials.1c00514] [PMID: 34297529]
[3]
Singh AK, Singh SK, Nandi MK, et al. Berberine: A plant-derived alkaloid with therapeutic potential to combat Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 2019; 19(3): 154-70.
[http://dx.doi.org/10.2174/1871524919666190820160053] [PMID: 31429696]
[4]
Usman MB, Bhardwaj S, Roychoudhury S, et al. Immunotherapy for Alzheimer’s disease: Current scenario and future perspectives. J Prev Alz Dis 2021; 8(4): 534-51.
[5]
Singh AK, Mishra G, Maurya A, et al. Role of TREM2 in Alzheimer’s disease and its consequences on β-amyloid, tau and neurofibrillary tangles. Curr Alzheimer Res 2020; 16(13): 1216-29.
[http://dx.doi.org/10.2174/1567205016666190903102822] [PMID: 31481003]
[6]
Barocco F, Spallazzi M, Concari L, Gardini S, Pelosi A, Caffarra P. The progression of Alzheimer’s Disease: Are fast decliners really fast? A four-year follow-up. J Alzheimers Dis 2017; 57(3): 775-86.
[http://dx.doi.org/10.3233/JAD-161264] [PMID: 28304306]
[7]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: Occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[8]
United Nations Organization. World population ageing. 1950-2050. New York: U.N.P.O. Ageing, United Nations 2001. Available from: www.un.org/esa/population/publications/worldageing19502050/ Accessed January, 2022
[9]
Srinivasan V, Kaur C, Pandi-Perumal S, Brown GM, Cardinali DP. Melatonin and its agonist ramelteon in Alzheimer’s disease: Possible therapeutic value. Int J Alzheimers Dis 2011; 2011: 1-15.
[http://dx.doi.org/10.4061/2011/741974] [PMID: 21197086]
[10]
Bertram L, Tanzi RE. The genetic epidemiology of neurodegenerative disease. J Clin Invest 2005; 115(6): 1449-57.
[http://dx.doi.org/10.1172/JCI24761] [PMID: 15931380]
[11]
Panmanee J, Nopparat C, Chavanich N, et al. Melatonin regulates the transcription of βAPP-cleaving secretases mediated through melatonin receptors in human neuroblastoma SH-SY5Y cells. J Pineal Res 2015; 59(3): 308-20.
[http://dx.doi.org/10.1111/jpi.12260] [PMID: 26123100]
[12]
Brion JP, Anderton BH, Authelet M, et al. Neurofibrillary tangles and tau phosphorylation. Biochem Soc Symp 2001; (67): 81-8.
[PMID: 11447842]
[13]
Hossain MF, Uddin MS, Uddin GMS, et al. Melatonin in Alzheimer’s disease: A latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol Neurobiol 2019; 56(12): 8255-76.
[http://dx.doi.org/10.1007/s12035-019-01660-3] [PMID: 31209782]
[14]
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol 2016; 56(1): 361-83.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124742] [PMID: 26514204]
[15]
Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L. Melatonin as an antioxidant: Under promises but over delivers. J Pineal Res 2016; 61(3): 253-78.
[http://dx.doi.org/10.1111/jpi.12360] [PMID: 27500468]
[16]
Reiter RJ, Paredes SD, Manchester LC, Tan DX. Reducing oxidative/nitrosative stress: A newly-discovered genre for melatonin. Crit Rev Biochem Mol Biol 2009; 44(4): 175-200.
[http://dx.doi.org/10.1080/10409230903044914] [PMID: 19635037]
[17]
Ekmekcioglu C. Melatonin receptors in humans: Biological role and clinical relevance. Biomed Pharmacother 2006; 60(3): 97-108.
[http://dx.doi.org/10.1016/j.biopha.2006.01.002] [PMID: 16527442]
[18]
Emet M, Ozcan H, Ozel L, Yayla M, Halici Z, Hacimuftuoglu A. A review of melatonin, its receptors and drugs. Eurasian J Med 2016; 48(2): 135-41.
[http://dx.doi.org/10.5152/eurasianjmed.2015.0267] [PMID: 27551178]
[19]
Pandiperumal S, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: Role of melatonin receptors and signal transduction pathways. Prog Neurobiol 2008; 85(3): 335-53.
[http://dx.doi.org/10.1016/j.pneurobio.2008.04.001] [PMID: 18571301]
[20]
Comai S, Gobbi G. Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: A novel target in psychopharmacology. J Psychiatry Neurosci 2014; 39(1): 6-21.
[http://dx.doi.org/10.1503/jpn.130009] [PMID: 23971978]
[21]
Nosjean O, Ferro M, Cogé F, et al. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J Biol Chem 2000; 275(40): 31311-7.
[http://dx.doi.org/10.1074/jbc.M005141200] [PMID: 10913150]
[22]
Boutin JA, Ferry G. Is there sufficient evidence that the melatonin binding site MT3 is quinone reductase 2? J Pharmacol Exp Ther 2019; 368(1): 59-65.
[http://dx.doi.org/10.1124/jpet.118.253260] [PMID: 30389722]
[23]
Macías M, Escames G, Leon J, et al. Calreticulin-melatonin. Eur J Biochem 2003; 270(5): 832-40.
[http://dx.doi.org/10.1046/j.1432-1033.2003.03430.x] [PMID: 12603316]
[24]
Li Y, Zhang J, Wan J, Liu A, Sun J. Melatonin regulates Aβ production/clearance balance and Aβ neurotoxicity: A potential therapeutic molecule for Alzheimer’s disease. Biomed Pharmacother 2020; 132: 110887.
[http://dx.doi.org/10.1016/j.biopha.2020.110887] [PMID: 33254429]
[25]
Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocr J 2005; 27(2): 101-10.
[http://dx.doi.org/10.1385/ENDO:27:2:101] [PMID: 16217123]
[26]
Wu YH, Zhou JN, Balesar R, et al. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J Comp Neurol 2006; 499(6): 897-910.
[http://dx.doi.org/10.1002/cne.21152] [PMID: 17072839]
[27]
Ng KY, Leong MK, Liang H, Paxinos G. Melatonin receptors: Distribution in mammalian brain and their respective putative functions. Brain Struct Funct 2017; 222(7): 2921-39.
[http://dx.doi.org/10.1007/s00429-017-1439-6] [PMID: 28478550]
[28]
Savaskan E, Jockers R, Ayoub M, et al. The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res 2007; 4(1): 47-51.
[http://dx.doi.org/10.2174/156720507779939823] [PMID: 17316165]
[29]
Deniz OG, Turkmen AP, Onger ME. Altunkaynak BZ, Kaplan S. Melatonin and melatonin receptors in neuroprotection. In: Melatonin, Neuroprotective Agents and Antidepressant Therapy López- Muñoz F, Srinivasan V, de Berardis D, Álamo C, Kato T, Eds; Springer: Berlin, Germany. 2016; pp. 65-75.
[http://dx.doi.org/10.1007/978-81-322-2803-5_5]
[30]
Pruessmeyer J, Ludwig A. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 2009; 20(2): 164-74.
[http://dx.doi.org/10.1016/j.semcdb.2008.09.005] [PMID: 18951988]
[31]
Lee HR, Shin HK, Park SY, et al. Cilostazol suppresses β-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-β. J Neurosci Res 2014; 92(11): 1581-90.
[http://dx.doi.org/10.1002/jnr.23421] [PMID: 24903973]
[32]
Julien C, Tremblay C, Émond V, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 2009; 68(1): 48-58.
[http://dx.doi.org/10.1097/NEN.0b013e3181922348] [PMID: 19104446]
[33]
Shukla M, Htoo HH, Wintachai P, et al. Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17. J Pineal Res 2015; 58(2): 151-65.
[http://dx.doi.org/10.1111/jpi.12200] [PMID: 25491598]
[34]
Murphy T, Yip A, Brayne C, et al. The BACE gene: Genomic structure and candidate gene study in late-onset Alzheimer’s disease. Neuroreport 2001; 12(3): 631-4.
[http://dx.doi.org/10.1097/00001756-200103050-00040] [PMID: 11234778]
[35]
Ho HY, Lin CW, Chien MH, et al. Melatonin suppresses TPA-induced metastasis by downregulating matrix metalloproteinase-9 expression through JNK/SP-1 signaling in nasopharyngeal carcinoma. J Pineal Res 2016; 61(4): 479-92.
[http://dx.doi.org/10.1111/jpi.12365] [PMID: 27600920]
[36]
Nowak K, Lange-Dohna C, Zeitschel U, et al. The transcription factor Yin Yang 1 is an activator of BACE1 expression. J Neurochem 2006; 96(6): 1696-707.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03692.x] [PMID: 16539685]
[37]
Sastre M, Dewachter I, Rossner S, et al. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc Natl Acad Sci USA 2006; 103(2): 443-8.
[http://dx.doi.org/10.1073/pnas.0503839103] [PMID: 16407166]
[38]
Mayo JC, Sainz RM, Tan DX, et al. Anti-inflammatory actions of melatonin and its metabolites, N1-acetyl-N2-formyl-5-methoxy-kynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), in macrophages. J Neuroimmunol 2005; 165(1-2): 139-49.
[http://dx.doi.org/10.1016/j.jneuroim.2005.05.002] [PMID: 15975667]
[39]
Liou YC, Sun A, Ryo A, et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003; 424(6948): 556-61.
[http://dx.doi.org/10.1038/nature01832] [PMID: 12891359]
[40]
Driver JA, Zhou XZ, Lu KP. Regulation of protein conformation by Pin1 offers novel disease mechanisms and therapeutic approaches in Alzheimer’s disease. Discov Med 2014; 17(92): 93-9.
[PMID: 24534472]
[41]
Lauretti E, Dincer O, Praticò D. Glycogen synthase kinase-3 signaling in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Res 2020; 1867(5): 118664.
[http://dx.doi.org/10.1016/j.bbamcr.2020.118664] [PMID: 32006534]
[42]
Pappolla M, Bozner P, Soto C, et al. Inhibition of Alzheimer beta-fibrillogenesis by melatonin. J Biol Chem 1998; 273(13): 7185-8.
[http://dx.doi.org/10.1074/jbc.273.13.7185] [PMID: 9516407]
[43]
Tarasoff-Conway JM, Carare RO, Osorio RS, et al. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11(8): 457-70.
[http://dx.doi.org/10.1038/nrneurol.2015.119] [PMID: 26195256]
[44]
Reiman EM, Quiroz YT, Fleisher AS, et al. Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: A case-control study. Lancet Neurol 2012; 11(12): 1048-56.
[http://dx.doi.org/10.1016/S1474-4422(12)70228-4] [PMID: 23137948]
[45]
Yan SD, Chen X, Fu J, et al. RAGE and amyloid-β peptide neurotoxicity in Alzheimer’s disease. Nature 1996; 382(6593): 685-91.
[http://dx.doi.org/10.1038/382685a0] [PMID: 8751438]
[46]
Han YS, Kim SM, Lee JH, Jung SK, Noh H, Lee SH. Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrP(C) -dependent enhancement of the mitochondrial function. J Pineal Res 2019; 66(1): e12535.
[http://dx.doi.org/10.1111/jpi.12535]
[47]
Hsieh MC, Ho YC, Lai CY, et al. Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain. J Pineal Res 2017; 63(4): e12436.
[http://dx.doi.org/10.1111/jpi.12436] [PMID: 28718992]
[48]
Kaufman AC, Salazar SV, Haas LT, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 2015; 77(6): 953-71.
[http://dx.doi.org/10.1002/ana.24394] [PMID: 25707991]
[49]
Hardeland R. Melatonin and microglia. Int J Mol Sci 2021; 22(15): 8296.
[http://dx.doi.org/10.3390/ijms22158296] [PMID: 34361062]
[50]
Zhou Q, Lin L, Li H, et al. Melatonin reduces neuroinflammation and improves axonal hypomyelination by modulating M1/M2 microglia polarization via JAK2-STAT3-telomerase pathway in postnatal rats exposed to lipopolysaccharide. Mol Neurobiol 2021; 58(12): 6552-76.
[http://dx.doi.org/10.1007/s12035-021-02568-7] [PMID: 34585328]
[51]
Jiang S, Wang H, Zhou Q, et al. Melatonin ameliorates axonal hypomyelination of periventricular white matter by transforming A1 to A2 astrocyte via JAK2/STAT3 pathway in septic neonatal rats. J Inflamm Res 2021; 14: 5919-37.
[http://dx.doi.org/10.2147/JIR.S337499] [PMID: 34803390]
[52]
Peters JL, Earnest BJ, Tjalkens RB, Cassone VM, Zoran MJ. Modulation of intercellular calcium signaling by melatonin in avian and mammalian astrocytes is brain region-specific. J Comp Neurol 2005; 493(3): 370-80.
[http://dx.doi.org/10.1002/cne.20779] [PMID: 16261532]
[53]
Xiang J, Zhu W, Yang F, et al. Melatonin-induced ApoE expression in mouse astrocytes protects endothelial cells from OGD-R induced injuries. Transl Psychiatry 2020; 10(1): 1-10.
[PMID: 32066695]
[54]
Olivier P, Fontaine RH, Loron G, et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009; 4(9): e7128.
[http://dx.doi.org/10.1371/journal.pone.0007128] [PMID: 19771167]
[55]
Liu D, Dong Y, Li G, et al. Melatonin attenuate white matter injury via reducing oligodendrocyte apoptosis after subarachnoid hemorrhage in mice. Turk Neurosurg 2020; 30(5): 685-92.
[PMID: 32705666]
[56]
Ghareghani M, Sadeghi H, Zibara K, Danaei N, Azari H, Ghanbari A. Melatonin increases oligodendrocyte differentiation in cultured neural stem cells. Cell Mol Neurobiol 2017; 37(7): 1319-24.
[http://dx.doi.org/10.1007/s10571-016-0450-4] [PMID: 27987059]
[57]
Anderson G, Maes M. Local melatonin regulates inflammation resolution: A common factor in neurodegenerative, psychiatric and systemic inflammatory disorders. CNS Neurol Disord Drug Targets 2014; 13(5): 817-27.
[http://dx.doi.org/10.2174/1871527313666140711091400] [PMID: 25012620]
[58]
Muhammad T, Ali T, Ikram M, Khan A, Alam SI, Kim MO. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J Neuroimmune Pharmacol 2019; 14(2): 278-94.
[http://dx.doi.org/10.1007/s11481-018-9824-3] [PMID: 30478761]
[59]
Ali T, Badshah H, Kim TH, Kim MO. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-k B/JNK signaling pathway in aging mouse model. J Pineal Res 2015; 58(1): 71-85.
[http://dx.doi.org/10.1111/jpi.12194] [PMID: 25401971]
[60]
Hoppe JB, Frozza RL, Horn AP, et al. Amyloid-β neurotoxicity in organotypic culture is attenuated by melatonin: Involvement of GSK-3β tau and neuroinflammation. J Pineal Res 2010; 48(3): 230-8.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00747.x] [PMID: 20136701]
[61]
Ali T, Rahman SU, Hao Q, et al. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2): e12667.
[http://dx.doi.org/10.1111/jpi.12667] [PMID: 32375205]
[62]
Ali T, Hao Q, Ullah N, et al. Melatonin act as an antidepressant via attenuation of neuroinflammation by targeting Sirt1/Nrf2/HO-1 signaling. Front Mol Neurosci 2020; 13: 96.
[http://dx.doi.org/10.3389/fnmol.2020.00096] [PMID: 32595452]
[63]
Tyagi E, Agrawal R, Nath C, Shukla R. Effect of melatonin on neuroinflammation and acetylcholinesterase activity induced by LPS in rat brain. Eur J Pharmacol 2010; 640(1-3): 206-10.
[http://dx.doi.org/10.1016/j.ejphar.2010.04.041] [PMID: 20450904]
[64]
Lv WJ, Liu C, Yu LZ, et al. Melatonin alleviates neuroinflammation and metabolic disorder in DSS-induced depression rats. Oxid Med Cell Longev 2020; 2020: Article ID 1241894.
[http://dx.doi.org/10.1155/2020/1241894]
[65]
Frank B, Gupta S. A review of antioxidants and Alzheimer’s disease. Ann Clin Psychiatry 2005; 17(4): 269-86.
[http://dx.doi.org/10.1080/10401230500296428] [PMID: 16402761]
[66]
Mancuso C, Bates TE, Butterfield DA, et al. Natural antioxidants in Alzheimer’s disease. Expert Opin Investig Drugs 2007; 16(12): 1921-31.
[http://dx.doi.org/10.1517/13543784.16.12.1921] [PMID: 18042001]
[67]
Srinivasan V, Pandi-Perumal SR, Cardinali DP, Poeggeler B, Hardeland R. Melatonin in Alzheimer’s disease and other neurodegenerative disorders. Behav Brain Funct 2006; 2(1): 15.
[http://dx.doi.org/10.1186/1744-9081-2-15] [PMID: 16674804]
[68]
Srinivasan V, Pandi-Perumal SR, Maestroni GJM, Esquifino AI, Hardeland R, Cardinali DP. Role of melatonin in neurodegenerative diseases. Neurotox Res 2005; 7(4): 293-318.
[http://dx.doi.org/10.1007/BF03033887] [PMID: 16179266]
[69]
Pappolla MA, Chyan YJ, Poeggeler B, et al. An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for Alzheimer’s disease. J Neural Transm (Vienna) 2000; 107(2): 203-31.
[http://dx.doi.org/10.1007/s007020050018] [PMID: 10847561]
[70]
Wade AG, Farmer M, Harari G, et al. Add-on prolonged-release melatonin for cognitive function and sleep in mild to moderate Alzheimer’s disease: A 6-month, randomized, placebo-controlled, multicenter trial. Clin Interv Aging 2014; 9: 947-61.
[PMID: 24971004]
[71]
Gehrman PR, Connor DJ, Martin JL, Shochat T, Corey-Bloom J, Ancoli-Israel S. Melatonin fails to improve sleep or agitation in double-blind randomized placebo-controlled trial of institutionalized patients with Alzheimer disease. Am J Geriatr Psychiatry 2009; 17(2): 166-9.
[http://dx.doi.org/10.1097/JGP.0b013e318187de18] [PMID: 19155748]
[72]
Dowling GA, Burr RL, Van Someren EJW, et al. Melatonin and bright-light treatment for rest-activity disruption in institutionalized patients with Alzheimer’s disease. J Am Geriatr Soc 2008; 56(2): 239-46.
[http://dx.doi.org/10.1111/j.1532-5415.2007.01543.x] [PMID: 18070004]
[73]
Anderson KN, Jamieson S, Graham AJ, Shneerson JM. REM sleep behaviour disorder treated with melatonin in a patient with Alzheimer’s disease. Clin Neurol Neurosurg 2008; 110(5): 492-5.
[http://dx.doi.org/10.1016/j.clineuro.2008.01.004] [PMID: 18299172]
[74]
Mahlberg R, Walther S. Actigraphy in agitated patients with dementia. Z Gerontol Geriatr 2007; 40(3): 178-84.
[http://dx.doi.org/10.1007/s00391-007-0420-z] [PMID: 17565435]
[75]
Mahlberg R, Kunz D, Sutej I, Kühl KP, Hellweg R. Melatonin treatment of day-night rhythm disturbances and sundowning in Alzheimer disease: An open-label pilot study using actigraphy. J Clin Psychopharmacol 2004; 24(4): 456-9.
[http://dx.doi.org/10.1097/01.jcp.0000132443.12607.fd] [PMID: 15232344]
[76]
Asayama K, Yamadera H, Ito T, Suzuki H, Kudo Y, Endo S. Double blind study of melatonin effects on the sleep-wake rhythm, cognitive and non-cognitive functions in Alzheimer type dementia. J Nippon Med Sch 2003; 70(4): 334-41.
[http://dx.doi.org/10.1272/jnms.70.334] [PMID: 12928714]
[77]
Singer C, Tractenberg RE, Kaye J, et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 2003; 26(7): 893-901.
[http://dx.doi.org/10.1093/sleep/26.7.893] [PMID: 14655926]
[78]
Cardinali DP, Brusco LI, Liberczuk C, Furio AM. The use of melatonin in Alzheimer’s disease. Neuroendocrinol Lett 2002; 23 (Suppl. 1): 20-3.
[PMID: 12019347]
[79]
Serfaty M, Kennell-Webb S, Warner J, Blizard R, Raven P. Double blind randomised placebo controlled trial of low dose melatonin for sleep disorders in dementia. Int J Geriatr Psychiatry 2002; 17(12): 1120-7.
[http://dx.doi.org/10.1002/gps.760] [PMID: 12461760]
[80]
Mishima K, Okawa M, Hozumi S, Hishikawa Y. Supplementary administration of artificial bright light and melatonin as potent treatment for disorganized circadian rest-activity and dysfunctional autonomic and neuroendocrine systems in institutionalized demented elderly persons. Chronobiol Int 2000; 17(3): 419-32.
[http://dx.doi.org/10.1081/CBI-100101055] [PMID: 10841214]
[81]
Cohen-Mansfield J, Garfinkel D, Lipson S. Melatonin for treatment of sundowning in elderly persons with dementia-a preliminary study. Arch Gerontol Geriatr 2000; 31(1): 65-76.
[http://dx.doi.org/10.1016/S0167-4943(00)00068-6] [PMID: 10989165]
[82]
Brusco LI, Marquez M, Cardinali DP. Monozygotic twins with Alzheimer’s disease treated with melatonin: Case report. J Pineal Res 1998; 25: 260-3.
[83]
Brusco LI, Marquez M, Cardinali DP. Melatonin treatment stabilizes chronobiologic and cognitive symptoms in Alzheimer’s disease. Neuroendocrinol Lett 1998; 19: 111-5.
[PMID: 11455329]
[84]
Fainstein I, Bonetto AJ, Brusco LI, Cardinali DP. Effects of melatonin in elderly patients with sleep disturbance: A pilot study. Curr Ther Res Clin Exp 1997; 58(12): 990-1000.
[http://dx.doi.org/10.1016/S0011-393X(97)80066-5]

© 2024 Bentham Science Publishers | Privacy Policy