Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Emerging Promise of Phytochemicals in Ameliorating Neurological Disorders

Author(s): Megala Jayaraman*, Parijat Dutta, Sabari Krishnan, Khyati Arora, Diveyaa Sivakumar and Hanumanth Rao Balaji Raghavendran

Volume 22, Issue 9, 2023

Published on: 07 September, 2023

Page: [1275 - 1301] Pages: 27

DOI: 10.2174/1871527321666220701153926

open access plus

Abstract

Background: The field of medicine and synthetic drug development have advanced rapidly over the past few decades. However, research on alternative medicine, such as phytochemicals cannot be ignored. The main reason for prominent curiosity about phytochemicals stems from the belief that the usage of natural compounds are safer and have lesser detrimental side effects.

Objective: The aim of the present review was to discuss in detail several phytochemicals that have been studied or are being studied in the context of various neurological disorders, including depression, Alzheimer’s disease, Huntington’s disease and even neuroinflammatory disorders, such as encephalitis.

Methods: The potential roles of phytochemicals in treating or managing symptoms associated with neurological disorders have been included in this article. All data included in this paper have been pooled from various databases, including Google Scholar, PubMed, Science Direct, Springer, and Wiley Online Library.

Results: Phytochemicals have been widely studied for their therapeutic properties associated with neurological disorders. Using various experimental techniques for both in vivo and in vitro experiments, studies have shown that phytochemicals do have antioxidant, anti-inflammatory and neuroprotective activities, which play major roles in the treatment of neurological diseases.

Conclusion: Even though there has been compelling evidence of the therapeutic role of phytochemicals, further research is still required to evaluate the safety and efficacy of these medicines. Using previously published papers as the foundation for additional research, such as preclinical studies and clinical trials, phytochemicals can become a safer alternative to synthetic drugs for treating a spectrum of neurological diseases.

Keywords: Phytochemicals, medicinal plants, alternative medicine, neuro-psychiatric, neurological, neuro-inflammatory disorders, cancer.

Graphical Abstract

[1]
Liu RH. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J Nutr 2004; 134(12)(Suppl.): 3479S-85S.
[http://dx.doi.org/10.1093/jn/134.12.3479S] [PMID: 15570057]
[2]
Firn R. Nature’s chemicals: The natural products that shaped our world. UK: Oxford University Press 2010.
[3]
Harborne JB, Bell EA, Charlwood BV. Plant phenolics, Encyclopedia of Plant Physiology, Secondary Plant Products. Berlin, Heidelberg, New York: Springer-Verlag 1980.
[4]
Aniszewski T. Alkaloids-Secrets of Life: Aklaloid Chemistry, Biological Significance, Applications and Ecological Role. Elsevier 2007.
[5]
Goncharov N, Orekhov AN, Voitenko N, Ukolov A, Jenkins R, Avdonin P. Organosulfur Compounds as NutraceuticalsNutraceuticals. Boston: Academic Press 2016; pp. 555-68.
[http://dx.doi.org/10.1016/B978-0-12-802147-7.00041-3]
[6]
Chen H. Structure and bioactivities of polysaccharides in tea: Applications in diabetes, hyperlipidemia, coagulation, thrombosis, immunology, oxidative stress, radiation and bacterial adhesion. In: Tea in Health and Disease Prevention. USA: Academic Press 2013; pp. 225-35.
[http://dx.doi.org/10.1016/B978-0-12-384937-3.00019-7]
[7]
WHO. What are neurological disorders? 2020. Available from: [https://www.who.int/news-room/q-a-detail/what-are-neurological-disorders
[8]
Crum A, Verghese A. Patient mindset matters in healing and deserves more study, experts say. 2020. Available from: [https://med.stanford.edu/news/all-news/2017/03/health-care-providers-should-harness-power-of-mindsets.html
[9]
Eric HT, Dick GR. Text book of therapeutics: drugs and disease management. Baltimore: Williams and Wilkins Company 1996; pp. 579-95.
[10]
Spinella M. Herbal medicines and epilepsy: The potential for benefit and adverse effects. Epilepsy Behav 2001; 2(6): 524-32.
[http://dx.doi.org/10.1006/ebeh.2001.0281] [PMID: 12609386]
[11]
Haq I. Medicinal Plants: Report of Committee on Economic and Therapeutic Importance of Medicinal Plants Initiated by the Ministry of Health, Government of Pakistan. Pakistan: Hamdard Foundation Press 1983.
[12]
Prakash P, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: A short review. Indian J Physiol Pharmacol 2005; 49(2): 125-31.
[PMID: 16170979]
[13]
Kumar P, Anilakumar K, Shivanna N. Phytochemicals having neuroprotective properties from dietary sources and medicinal herbs. Pharmacogn J 2015; 2015: 1.
[http://dx.doi.org/10.5530/pj.2015.1.1]
[14]
Fleming T. PDR for herbal medicines: From Medical Economics Company. New Jersy: USA. 2000.
[15]
Cupp MJ. Toxicology and clinical pharmacology of herbal products. Springer Science & Business Media 2000.
[http://dx.doi.org/10.1385/1592590209]
[16]
Emamghoreishi M, Khasaki M, Aazam MF. Coriandrum sativum: Evaluation of its anxiolytic effect in the elevated plus-maze. J Ethnopharmacol 2005; 96(3): 365-70.
[http://dx.doi.org/10.1016/j.jep.2004.06.022] [PMID: 15619553]
[17]
Rolland A, Fleurentin J, Lanhers MC, Misslin R, Mortier F. Neurophysiological effects of an extract of Eschscholzia californica Cham. (Papaveraceae). Phytother Res 2001; 15(5): 377-81.
[http://dx.doi.org/10.1002/ptr.884] [PMID: 11507727]
[18]
Kuribara H, Weintraub ST, Yoshihama T, Maruyama Y. An anxiolytic-like effect of Ginkgo biloba extract and its constituent, ginkgolide-A, in mice. J Nat Prod 2003; 66(10): 1333-7.
[http://dx.doi.org/10.1021/np030122f] [PMID: 14575433]
[19]
Bhattacharya SK, Bhattacharya A, Sairam K, Ghosal S. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine 2000; 7(6): 463-9.
[http://dx.doi.org/10.1016/S0944-7113(00)80030-6] [PMID: 11194174]
[20]
Farzaei MH, Bahramsoltani R, Rahimi R, Abbasabadi F, Abdollahi M. A systematic review of plant-derived natural compounds for anxiety disorders. Curr Top Med Chem 2016; 16(17): 1924-42.
[http://dx.doi.org/10.2174/1568026616666160204121039] [PMID: 26845556]
[21]
Lee G, Bae H. Therapeutic effects of phytochemicals and medicinal herbs on depression. BioMed Res Int 2017; 2017: 6596241.
[http://dx.doi.org/10.1155/2017/6596241]
[22]
Bahramsoltani R, Farzaei MH, Farahani MS, Rahimi R. Phytochemical constituents as future antidepressants: A comprehensive review. Rev Neurosci 2015; 26(6): 699-719.
[http://dx.doi.org/10.1515/revneuro-2015-0009] [PMID: 26146123]
[23]
aan het Rot M, Mathew SJ, Charney DS. Neurobiological mechanisms in major depressive disorder. CMAJ 2009; 180(3): 305-13.
[http://dx.doi.org/10.1503/cmaj.080697] [PMID: 19188629]
[24]
Drevets WC, Frank E, Price JC, et al. PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 1999; 46(10): 1375-87.
[http://dx.doi.org/10.1016/S0006-3223(99)00189-4] [PMID: 10578452]
[25]
Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove-derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 2006; 9(5): 628-35.
[http://dx.doi.org/10.1038/nn1692] [PMID: 16617338]
[26]
Dong R-H, Fang Z-Z, Zhu L-L, et al. Identification of CYP isoforms involved in the metabolism of thymol and carvacrol in human liver microsomes (HLMs). Pharmazie 2012; 67(12): 1002-6.
[PMID: 23346763]
[27]
Melo FHC, Moura BA, de Sousa DP, et al. Antidepressant-like effect of carvacrol (5-Isopropyl-2-methylphenol) in mice: Involvement of dopaminergic system. Fundam Clin Pharmacol 2011; 25(3): 362-7.
[http://dx.doi.org/10.1111/j.1472-8206.2010.00850.x] [PMID: 20608992]
[28]
Xu Y, Ku B-S, Yao H-Y, et al. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav 2005; 82(1): 200-6.
[http://dx.doi.org/10.1016/j.pbb.2005.08.009] [PMID: 16171853]
[29]
Yabe T, Hirahara H, Harada N, et al. Ferulic acid induces neural progenitor cell proliferation in vitro and in vivo. Neuroscience 2010; 165(2): 515-24.
[http://dx.doi.org/10.1016/j.neuroscience.2009.10.023] [PMID: 19837139]
[30]
Afzal M, Safer AM, Menon M. Green tea polyphenols and their potential role in health and disease. Inflammopharmacology 2015; 23(4): 151-61.
[http://dx.doi.org/10.1007/s10787-015-0236-1] [PMID: 26164000]
[31]
Zhu W-L, Shi H-S, Wei Y-M, et al. Green tea polyphenols produce antidepressant-like effects in adult mice. Pharmacol Res 2012; 65(1): 74-80.
[http://dx.doi.org/10.1016/j.phrs.2011.09.007] [PMID: 21964320]
[32]
Nikfarjam M, Parvin N, Assarzadegan N, Asghari S. The effects of Lavandula angustifolia mill infusion on depression in patients using citalopram: A comparison study. Iran Red Crescent Med J 2013; 15(8): 734-9.
[http://dx.doi.org/10.5812/ircmj.4173] [PMID: 24578844]
[33]
Effati-Daryani F, Mohammad-Alizadeh-Charandabi S, Mirghafourvand M, Taghizadeh M, Mohammadi A. Effect of lavender cream with or without foot-bath on anxiety, stress and depression in pregnancy: A randomized placebo-controlled trial. J Caring Sci 2015; 4(1): 63-73.
[PMID: 25821760]
[34]
Conrad P, Adams C. The effects of clinical aromatherapy for anxiety and depression in the high risk postpartum woman - A pilot study. Complement Ther Clin Pract 2012; 18(3): 164-8.
[http://dx.doi.org/10.1016/j.ctcp.2012.05.002] [PMID: 22789792]
[35]
Kumar V. Potential medicinal plants for CNS disorders: An overview. Phytother Res 2006; 20(12): 1023-35.
[http://dx.doi.org/10.1002/ptr.1970] [PMID: 16909441]
[36]
Renard J, Norris C, Rushlow W, Laviolette SR. Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: Implications for novel schizophrenia treatments. Neurosci Biobehav Rev 2017; 75: 157-65.
[http://dx.doi.org/10.1016/j.neubiorev.2017.02.006] [PMID: 28185872]
[37]
Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: Implications for neuropsychiatric pathology. Psychopharmacology (Berl) 2018; 235(2): 447-58.
[http://dx.doi.org/10.1007/s00213-017-4766-7] [PMID: 29063964]
[38]
Sofic E, Rustembegovic A, Kroyer G, Cao G. Serum antioxidant capacity in neurological, psychiatric, renal diseases and cardiomyopathy. J Neural Transm (Vienna) 2002; 109(5-6): 711-9.
[http://dx.doi.org/10.1007/s007020200059] [PMID: 12111462]
[39]
Machado AK, Andreazza AC, da Silva TM, Boligon AA, do Nascimento V, Scola G. Neuroprotective effects of açaí (Euterpe oleracea Mart.) against rotenone in vitro exposure. Oxidative medicine and cellular longevity 2016.
[40]
Ong WY, Farooqui T, Kokotos G, Farooqui AA. Synthetic and natural inhibitors of phospholipases A2: Their importance for understanding and treatment of neurological disorders. ACS Chem Neurosci 2015; 6(6): 814-31.
[http://dx.doi.org/10.1021/acschemneuro.5b00073] [PMID: 25891385]
[41]
Brisch R, Saniotis A, Wolf R, et al. The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: Old fashioned, but still in vogue. Front Psychiatry 2014; 5: 47.
[PMID: 24904434]
[42]
Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv Rev Psychiatry 2018; 26(2): 57-69.
[http://dx.doi.org/10.1097/HRP.0000000000000167] [PMID: 29016379]
[43]
Boudiar T, Lozano-Sánchez J, Harfi B, Del Mar Contreras M, Segura-Carretero A. Phytochemical characterization of bioactive compounds composition of Rosmarinus eriocalyx by RP-HPLC-ESI-QTOF-MS. Nat Prod Res 2019; 33(15): 2208-14.
[http://dx.doi.org/10.1080/14786419.2018.1495635] [PMID: 30453758]
[44]
Oladimeji AV, Valan MF. Phytochemical profile of cannabis plant: A review. J Pharmacogn Phytochem 2020; 9(3): 680-7.
[http://dx.doi.org/10.22271/phyto.2020.v9.i3k.11350]
[45]
Jeon J-P, Buono RJ, Han BG, et al. Proteomic and behavioral analysis of response to isoliquiritigenin in brains of acute cocaine treated rats. J Proteome Res 2008; 7(12): 5094-102.
[http://dx.doi.org/10.1021/pr800237s] [PMID: 19367698]
[46]
Zhang XG, Zhang H, Tan R, Peng JC, Liang XL, Liu Q. Mechanism of earthquake simulation as a prenatal stressor retarding rat offspring development and Chinese medicine correcting the retardation: Hormones and gene-expression alteration. Evid-Based Compl Altern Med 2012; 2012: 670362.
[http://dx.doi.org/10.1155/2012/670362]
[47]
Kolasani A, Xu H, Millikan M. Determination and comparison of mineral elements in traditional Chinese herbal formulae at different decoction times used to improve kidney function - Chemometric approach. Afr J Tradit Complement Altern Med 2011; 8(5)(Suppl.): 191-7.
[PMID: 22754074]
[48]
Zhang H, Peng SH, Liang XL, Wang HY, Zhang XG, Jiang XJ. Ntf3 hypermethylation in antenatal PTSD and preventive effect of the Chinese herbal medicine Jin Kui Shen Qi Wan. Biotechnol Biotechnol Equip 2018; 32(3): 663-70.
[http://dx.doi.org/10.1080/13102818.2017.1421101]
[49]
Hari V, Stockwell J. Fortified cbd oil for treatment of ptsd. Google Patents 2020.
[50]
Asalgoo S, Jahromi GP, Hatef B, Sahraei H. The effect of saffron aqueous extract and crocin on PTSD rat models: The focus on learning and spatial memory. J Adv Med Biomed Res 2018; 26(119): 34-42.
[http://dx.doi.org/10.30699/jambs.26.119.34]
[51]
Asalgoo S, Jahromi GP, Meftahi GH, Sahraei H. Posttraumatic stress disorder (ptsd): Mechanisms and possible treatments. Neurophysiology 2015; 47(6): 482-9.
[http://dx.doi.org/10.1007/s11062-016-9559-9]
[52]
Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology 2013; 80(19): 1778-83.
[http://dx.doi.org/10.1212/WNL.0b013e31828726f5] [PMID: 23390181]
[53]
Wood JG, Mirra SS, Pollock NJ, Binder LI. Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau (tau). Proc Natl Acad Sci USA 1986; 83(11): 4040-3.
[http://dx.doi.org/10.1073/pnas.83.11.4040] [PMID: 2424015]
[54]
Esch FS, Keim PS, Beattie EC, et al. Cleavage of amyloid beta peptide during constitutive processing of its precursor. Science 1990; 248(4959): 1122-4.
[http://dx.doi.org/10.1126/science.2111583] [PMID: 2111583]
[55]
Han XJ, Hu YY, Yang ZJ, et al. Amyloid β-42 induces neuronal apoptosis by targeting mitochondria. Mol Med Rep 2017; 16(4): 4521-8.
[http://dx.doi.org/10.3892/mmr.2017.7203] [PMID: 28849115]
[56]
Xie C-W. Calcium-regulated signaling pathways: Role in amyloid beta-induced synaptic dysfunction. Neuromolecular Med 2004; 6(1): 53-64.
[http://dx.doi.org/10.1385/NMM:6:1:053] [PMID: 15781976]
[57]
Davies P, Maloney AJF. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet 1976; 2(8000): 1403.
[http://dx.doi.org/10.1016/S0140-6736(76)91936-X] [PMID: 63862]
[58]
Bell KFS, Ducatenzeiler A, Ribeiro-da-Silva A, Duff K, Bennett DA, Cuello AC. The amyloid pathology progresses in a neurotransmitter-specific manner. Neurobiol Aging 2006; 27(11): 1644-57.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.034] [PMID: 16271419]
[59]
Zheng K, Dai X, Xiao N, et al. Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-Amyloid pathology in 5× FAD transgenic mice. Mol Neurobiol 2017; 54(3): 1967-77.
[http://dx.doi.org/10.1007/s12035-016-9802-9] [PMID: 26910813]
[60]
Garcia-Alloza M, Borrelli LA, Rozkalne A, Hyman BT, Bacskai BJ. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 2007; 102(4): 1095-104.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04613.x] [PMID: 17472706]
[61]
Maiti P, Rossignol J, Dunbar GL. Curcumin modulates molecular chaperones and autophagy-lysosomal pathways. In Vitro 2017; 7: 299.
[62]
Sabogal-Guáqueta AM, Muñoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 2015; 93: 134-45.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]
[63]
Jiménez-Aliaga K, Bermejo-Bescós P, Benedí J, Martín-Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril-disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci 2011; 89(25-26): 939-45.
[http://dx.doi.org/10.1016/j.lfs.2011.09.023] [PMID: 22008478]
[64]
Kanninen K, Malm TM, Jyrkkänen H-K, et al. Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci 2008; 39(3): 302-13.
[http://dx.doi.org/10.1016/j.mcn.2008.07.010] [PMID: 18706502]
[65]
Arredondo F, Echeverry C, Abin-Carriquiry JA, et al. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med 2010; 49(5): 738-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.05.020] [PMID: 20554019]
[66]
Abbas S, Wink M. Epigallocatechin gallate inhibits beta amyloid oligomerization in Caenorhabditis elegans and affects the daf-2/insulin-like signaling pathway. Phytomedicine 2010; 17(11): 902-9.
[http://dx.doi.org/10.1016/j.phymed.2010.03.008] [PMID: 20382008]
[67]
Lee JW, Lee YK, Ban JO, et al. Green tea (-)-epigallocatechin-3-gallate inhibits β-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009; 139(10): 1987-93.
[http://dx.doi.org/10.3945/jn.109.109785] [PMID: 19656855]
[68]
Du K, Liu M, Zhong X, et al. Epigallocatechin gallate reduces amyloid β-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Mol Nutr Food Res 2018; 62(8): e1700890.
[http://dx.doi.org/10.1002/mnfr.201700890] [PMID: 29446867]
[69]
Moon HE, Paek SH. Mitochondrial dysfunction in Parkinson’s disease. Exp Neurobiol 2015; 24(2): 103-16.
[http://dx.doi.org/10.5607/en.2015.24.2.103] [PMID: 26113789]
[70]
Henchcliffe C, Beal MF. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 2008; 4(11): 600-9.
[http://dx.doi.org/10.1038/ncpneuro0924] [PMID: 18978800]
[71]
Sato S, Uchihara T, Fukuda T, et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep 2018; 8(1): 2813.
[http://dx.doi.org/10.1038/s41598-018-21325-w] [PMID: 29434298]
[72]
Yang W, Hamilton JL, Kopil C, Beck JC, Tanner CM, Albin RL. Current and projected future economic burden of Parkinson’s disease in the US. NPJ Parkinsons Dis 2020; 6(1): 1-9.
[73]
Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a008888.
[http://dx.doi.org/10.1101/cshperspect.a008888] [PMID: 22315721]
[74]
Bachoud-Lévi A-C, Ferreira J, Massart R, et al. International guidelines for the treatment of Huntington’s disease. Front Neurol 2019; 10: 710.
[http://dx.doi.org/10.3389/fneur.2019.00710] [PMID: 31333565]
[75]
Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci 2010; 11(1): 57.
[http://dx.doi.org/10.1186/1471-2202-11-57] [PMID: 20433710]
[76]
Pandey N, Strider J, Nolan WC, Yan SX, Galvin JE. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathol 2008; 115(4): 479-89.
[http://dx.doi.org/10.1007/s00401-007-0332-4] [PMID: 18189141]
[77]
Xu Q, Langley M, Kanthasamy AG, Reddy MB. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. J Nutr 2017; 147(10): 1926-31.
[http://dx.doi.org/10.3945/jn.117.255034] [PMID: 28835392]
[78]
Jha NN, Kumar R, Panigrahi R, et al. Comparison of α-synuclein fibril inhibition by four different amyloid inhibitors. ACS Chem Neurosci 2017; 8(12): 2722-33.
[http://dx.doi.org/10.1021/acschemneuro.7b00261] [PMID: 28872299]
[79]
Vogele AC. Effect of environmental factors upon the color of the tomato and the watermelon. Plant Physiol 1937; 12(4): 929-55.
[http://dx.doi.org/10.1104/pp.12.4.929] [PMID: 16653464]
[80]
Kaur H, Chauhan S, Sandhir R. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson’s disease. Neurochem Res 2011; 36(8): 1435-43.
[http://dx.doi.org/10.1007/s11064-011-0469-3] [PMID: 21484267]
[81]
Prema A, Janakiraman U, Manivasagam T, Thenmozhi AJ. Neuroprotective effect of lycopene against MPTP induced experimental Parkinson’s disease in mice. Neurosci Lett 2015; 599: 12-9.
[http://dx.doi.org/10.1016/j.neulet.2015.05.024] [PMID: 25980996]
[82]
Zhang LF, Yu XL, Ji M, et al. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food Funct 2018; 9(12): 6414-26.
[http://dx.doi.org/10.1039/C8FO00964C] [PMID: 30462117]
[83]
Inoue E, Shimizu Y, Masui R, et al. Effects of saffron and its constituents, crocin-1, crocin-2, and crocetin on α-synuclein fibrils. J Nat Med 2018; 72(1): 274-9.
[http://dx.doi.org/10.1007/s11418-017-1150-1] [PMID: 29147836]
[84]
Ahmad AS, Ansari MA, Ahmad M, et al. Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 2005; 81(4): 805-13.
[http://dx.doi.org/10.1016/j.pbb.2005.06.007] [PMID: 16005057]
[85]
Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM. Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res Int 2018; 25(5): 4904-14.
[http://dx.doi.org/10.1007/s11356-017-0842-0] [PMID: 29204935]
[86]
Khotimah H, Ali M, Sumitro SB, Widodo MA. Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac J Trop Biomed 2015; 5(11): 948-54.
[http://dx.doi.org/10.1016/j.apjtb.2015.07.024]
[87]
Teerapattarakan N, Benya-Aphikul H, Tansawat R, Wanakhachornkrai O, Tantisira MH, Rodsiri R. Neuroprotective effect of a standardized extract of Centella asiatica ECa233 in rotenone-induced parkinsonism rats. Phytomedicine 2018; 44: 65-73.
[http://dx.doi.org/10.1016/j.phymed.2018.04.028] [PMID: 29895494]
[88]
Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol 2014; 50: 95-105.
[http://dx.doi.org/10.1016/j.exger.2013.11.012] [PMID: 24316034]
[89]
Heng Y, Zhang Q-S, Mu Z, Hu J-F, Yuan Y-H, Chen N-H. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP-probenecid-induced parkinsonism mouse model by targeting α-synuclein abnormalities in the substantia nigra. Toxicol Lett 2016; 243: 7-21.
[http://dx.doi.org/10.1016/j.toxlet.2015.12.005] [PMID: 26723869]
[90]
Exuzides A, Crowell V, Reddy SR, Chang E, Yohrling G. Epidemiology of Huntington’s Disease (HD) in the US Medicare Population (670). AAN Enterprises 2022. [Epub ahead of print].
[91]
Rubinsztein DC, Leggo J, Coles R, et al. Phenotypic characterization of individuals with 30-40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36-39 repeats. Am J Hum Genet 1996; 59(1): 16-22.
[PMID: 8659522]
[92]
Wexler NS, Lorimer J, Porter J, et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc Natl Acad Sci USA 2004; 101(10): 3498-503.
[http://dx.doi.org/10.1073/pnas.0308679101] [PMID: 14993615]
[93]
Young JC, Widom CS. Long-term effects of child abuse and neglect on emotion processing in adulthood. Child Abuse Negl 2014; 38(8): 1369-81.
[http://dx.doi.org/10.1016/j.chiabu.2014.03.008] [PMID: 24747007]
[94]
Hickey MA, Zhu C, Medvedeva V, et al. Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington’s disease. Mol Neurodegener 2012; 7(1): 12.
[http://dx.doi.org/10.1186/1750-1326-7-12] [PMID: 22475209]
[95]
Chongtham A, Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci Rep 2016; 6: 18736.
[http://dx.doi.org/10.1038/srep18736] [PMID: 26728250]
[96]
Elifani F, Amico E, Pepe G, et al. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum Mol Genet 2019; 28(23): 4012-21.
[http://dx.doi.org/10.1093/hmg/ddz247] [PMID: 31630202]
[97]
Verma M, Sharma A, Naidu S, Bhadra AK, Kukreti R, Taneja V. Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS One 2012; 7(8): e42923.
[http://dx.doi.org/10.1371/journal.pone.0042923] [PMID: 22880132]
[98]
Gu M, Gash MT, Mann VM, Javoy-Agid F, Cooper JM, Schapira AHV. Mitochondrial defect in Huntington’s disease caudate nucleus. Ann Neurol 1996; 39(3): 385-9.
[http://dx.doi.org/10.1002/ana.410390317] [PMID: 8602759]
[99]
Polidori MC, Mecocci P, Browne SE, Senin U, Beal MF. Oxidative damage to mitochondrial DNA in Huntington’s disease parietal cortex. Neurosci Lett 1999; 272(1): 53-6.
[http://dx.doi.org/10.1016/S0304-3940(99)00578-9] [PMID: 10507541]
[100]
Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med 2014; 16(1): 106-18.
[http://dx.doi.org/10.1007/s12017-013-8261-y] [PMID: 24008671]
[101]
Liao L, Shi J, Jiang C, et al. Activation of anti-oxidant of curcumin pyrazole derivatives through preservation of mitochondria function and Nrf2 signaling pathway. Neurochem Int 2019; 125: 82-90.
[http://dx.doi.org/10.1016/j.neuint.2019.01.026] [PMID: 30771374]
[102]
Tulsulkar J, Shah ZA. Ginkgo biloba prevents transient global ischemia-induced delayed hippocampal neuronal death through antioxidant and anti-inflammatory mechanism. Neurochem Int 2013; 62(2): 189-97.
[http://dx.doi.org/10.1016/j.neuint.2012.11.017] [PMID: 23228346]
[103]
Schwarzkopf TM, Koch KA, Klein J. Neurodegeneration after transient brain ischemia in aged mice: Beneficial effects of bilobalide. Brain Res 2013; 1529: 178-87.
[http://dx.doi.org/10.1016/j.brainres.2013.07.003] [PMID: 23850645]
[104]
DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: Basic studies and clinical applications. Curr Drug Targets 2000; 1(1): 25-58.
[http://dx.doi.org/10.2174/1389450003349380] [PMID: 11475535]
[105]
Stark M, Behl C. The Ginkgo biloba extract EGb 761 modulates proteasome activity and polyglutamine protein aggregation. Evid- Based Complement Altern Med 2014; 2014: 940186.
[106]
Panov AV, Gutekunst C-A, Leavitt BR, et al. Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 2002; 5(8): 731-6.
[http://dx.doi.org/10.1038/nn884] [PMID: 12089530]
[107]
Oliveira JMA. Nature and cause of mitochondrial dysfunction in Huntington’s disease: Focusing on huntingtin and the striatum. J Neurochem 2010; 114(1): 1-12.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06741.x] [PMID: 20403078]
[108]
Jin YN, Yu YV, Gundemir S, et al. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin. PLoS One 2013; 8(3): e57932.
[http://dx.doi.org/10.1371/journal.pone.0057932] [PMID: 23469253]
[109]
Eckert A, Keil U, Kressmann S, Schindowski K, Leutner S, Leutz S. Effects of EGb 761® Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry 2003; 36(1): 15-23.
[110]
Eckert A, Keil U, Scherping I, Hauptmann S, Müller WE. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N Y Acad Sci 2005; 1056(1): 474-85.
[http://dx.doi.org/10.1196/annals.1352.023] [PMID: 16387710]
[111]
Abdel-Kader R, Hauptmann S, Keil U, et al. Stabilization of mitochondrial function by Ginkgo biloba extract (EGb 761). Pharmacol Res 2007; 56(6): 493-502.
[http://dx.doi.org/10.1016/j.phrs.2007.09.011] [PMID: 17977008]
[112]
Rausch WD, Liu S, Gille G, Radad K. Neuroprotective effects of ginsenosides. Acta Neurobiol Exp (Warsz) 2006; 66(4): 369-75.
[PMID: 17265697]
[113]
Radad K, Gille G, Liu L, Rausch W-D. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006; 100(3): 175-86.
[http://dx.doi.org/10.1254/jphs.CRJ05010X] [PMID: 16518078]
[114]
Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J Neurosci Res 2009; 87(8): 1904-12.
[http://dx.doi.org/10.1002/jnr.22017] [PMID: 19185022]
[115]
Lian XY, Zhang Z, Stringer JL. Protective effects of ginseng components in a rodent model of neurodegeneration. Ann Neurol 2005; 57(5): 642-8.
[http://dx.doi.org/10.1002/ana.20450] [PMID: 15852378]
[116]
Kim J-H, Kim S, Yoon I-S, et al. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 2005; 48(5): 743-56.
[http://dx.doi.org/10.1016/j.neuropharm.2004.12.013] [PMID: 15814108]
[117]
Hauser SL, Bhan AK, Gilles F, Kemp M, Kerr C, Weiner HL. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 1986; 19(6): 578-87.
[http://dx.doi.org/10.1002/ana.410190610] [PMID: 3524414]
[118]
Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlén C, Goverman J. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 2001; 194(5): 669-76.
[http://dx.doi.org/10.1084/jem.194.5.669] [PMID: 11535634]
[120]
Ghanaatian N, Lashgari NA, Abdolghaffari AH, et al. Curcumin as a therapeutic candidate for multiple sclerosis: Molecular mechanisms and targets. J Cell Physiol 2019; 234(8): 12237-48.
[http://dx.doi.org/10.1002/jcp.27965] [PMID: 30536381]
[121]
Xie L, Li XK, Funeshima-Fuji N, et al. Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. Int Immunopharmacol 2009; 9(5): 575-81.
[http://dx.doi.org/10.1016/j.intimp.2009.01.025] [PMID: 19539560]
[122]
Wölfle U, Seelinger G, Schempp CM. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta medica 2014; 80(2/3): 109-20.
[123]
Süntar IP, Akkol EK, Yilmazer D, et al. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J Ethnopharmacol 2010; 127(2): 468-77.
[http://dx.doi.org/10.1016/j.jep.2009.10.011] [PMID: 19833187]
[124]
Nosratabadi R, Rastin M, Sankian M, et al. St. John’s wort and its component hyperforin alleviate experimental autoimmune encephalomyelitis through expansion of regulatory T-cells. J Immunotoxicol 2016; 13(3): 364-74.
[http://dx.doi.org/10.3109/1547691X.2015.1101512] [PMID: 26634391]
[125]
Jafarzadeh A, Mohammadi-Kordkhayli M, Ahangar-Parvin R, et al. Ginger extracts influence the expression of IL-27 and IL-33 in the central nervous system in experimental autoimmune encephalomyelitis and ameliorates the clinical symptoms of disease. J Neuroimmunol 2014; 276(1-2): 80-8.
[http://dx.doi.org/10.1016/j.jneuroim.2014.08.614] [PMID: 25175065]
[126]
Johnson SK, Diamond BJ, Rausch S, Kaufman M, Shiflett SC, Graves L. The effect of Ginkgo biloba on functional measures in multiple sclerosis: A pilot randomized controlled trial. Explore (NY) 2006; 2(1): 19-24.
[http://dx.doi.org/10.1016/j.explore.2005.10.007] [PMID: 16781604]
[127]
Noroozian M, Mohebbi-Rasa S, Tasviechi AK, Sahraian MA, Karamghadiri N, Akhondzadeh S. Ginkgo biloba for improvement of memory and quality of life in multiple sclerosis: An open trial. J Med Plants 2011; 2011: 33-42.
[128]
Lovera JF, Kim E, Heriza E, et al. Ginkgo biloba does not improve cognitive function in MS: A randomized placebo-controlled trial. Neurology 2012; 79(12): 1278-84.
[http://dx.doi.org/10.1212/WNL.0b013e31826aac60] [PMID: 22955125]
[129]
Etemadifar M, Sayahi F, Abtahi S-H, et al. Ginseng in the treatment of fatigue in multiple sclerosis: A randomized, placebo-controlled, double-blind pilot study. Int J Neurosci 2013; 123(7): 480-6.
[http://dx.doi.org/10.3109/00207454.2013.764499] [PMID: 23301896]
[130]
Hwang I, Ahn G, Park E, Ha D, Song J-Y, Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol Lett 2011; 138(2): 169-78.
[http://dx.doi.org/10.1016/j.imlet.2011.04.005] [PMID: 21524666]
[131]
Wikipedia. Prion Structure. 2020. Available from: https://en.wikipedia.org/w/index.php?title=Prion&oldid=984408154
[133]
Caughey B, Raymond LD, Raymond GJ, Maxson L, Silveira J, Baron GS. Inhibition of protease-resistant prion protein accumulation in vitro by curcumin. J Virol 2003; 77(9): 5499-502.
[http://dx.doi.org/10.1128/JVI.77.9.5499-5502.2003] [PMID: 12692251]
[134]
Demaimay R, Harper J, Gordon H, Weaver D, Chesebro B, Caughey B. Structural aspects of Congo red as an inhibitor of protease-resistant prion protein formation. J Neurochem 1998; 71(6): 2534-41.
[http://dx.doi.org/10.1046/j.1471-4159.1998.71062534.x] [PMID: 9832153]
[135]
Milhavet O, Lehmann S. Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res Brain Res Rev 2002; 38(3): 328-39.
[http://dx.doi.org/10.1016/S0165-0173(01)00150-3] [PMID: 11890980]
[136]
Kastenholz B. Phytochemical approach and bioanalytical strategy to develop chaperone-based medications. Nat Prec 2008; 2: 44-8.
[137]
Bate C, Salmona M, Williams A. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-β1-42. J Neuroinflammation 2004; 1(1): 4.
[http://dx.doi.org/10.1186/1742-2094-1-4] [PMID: 15285798]
[138]
Moon JH, Park SY. Baicalein prevents human prion protein-induced neuronal cell death by regulating JNK activation. Int J Mol Med 2015; 35(2): 439-45.
[http://dx.doi.org/10.3892/ijmm.2014.2010] [PMID: 25435015]
[139]
Na J-Y, Kim S, Song K, Kwon J. Rutin alleviates prion peptide-induced cell death through inhibiting apoptotic pathway activation in dopaminergic neuronal cells. Cell Mol Neurobiol 2014; 34(7): 1071-9.
[http://dx.doi.org/10.1007/s10571-014-0084-3] [PMID: 25048806]
[140]
Khan A, Jahan S, Imtiyaz Z, et al. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines 2020; 8(8): 284.
[http://dx.doi.org/10.3390/biomedicines8080284] [PMID: 32806490]
[141]
Jeong JK, Moon MH, Bae BC, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 2012; 73(2): 99-105.
[http://dx.doi.org/10.1016/j.neures.2012.03.005] [PMID: 22465415]
[142]
Moon JH, Lee JH, Lee YJ, Park SY. Hinokitiol protects primary neuron cells against prion peptide-induced toxicity via autophagy flux regulated by hypoxia inducing factor-1. Oncotarget 2016; 7(21): 29944-57.
[http://dx.doi.org/10.18632/oncotarget.8670] [PMID: 27074563]
[143]
Spinocerebellar ataxia Phenotypic Series - PS164400. Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore MD). Available from: https://omim.org/phenotypicSeries/PS164400
[144]
Lee G-C, Lin C-H, Tao Y-C, et al. The potential of lactulose and melibiose, two novel trehalase-indigestible and autophagy-inducing disaccharides, for polyQ-mediated neurodegenerative disease treatment. Neurotoxicology 2015; 48: 120-30.
[http://dx.doi.org/10.1016/j.neuro.2015.03.009] [PMID: 25800379]
[145]
Chen C-M, Weng Y-T, Chen W-L, et al. Aqueous extract of Glycyrrhiza inflata inhibits aggregation by upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. Free Radic Biol Med 2014; 71: 339-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.03.023] [PMID: 24675225]
[146]
Maurmann N, de Farias CB, Schwartsmann G, Roesler R, Delgado-Hernández R, Pardo-Andreu GL. Mangifera indica L. extract (Vimang) improves the aversive memory in spinocerebellar ataxia type 2 transgenic mice. J Pharm Pharmacogn Res 2014; 2(3): 63-72.
[147]
Ogino S, Wilson RB. Genetic testing and risk assessment for spinal muscular atrophy (SMA). Hum Genet 2002; 111(6): 477-500.
[http://dx.doi.org/10.1007/s00439-002-0828-x] [PMID: 12436240]
[148]
Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371(9630): 2120-33.
[http://dx.doi.org/10.1016/S0140-6736(08)60921-6] [PMID: 18572081]
[149]
Baek J, Jeong H, Ham Y, et al. Improvement of spinal muscular atrophy via correction of the SMN2 splicing defect by Brucea javanica (L.) Merr. extract and Bruceine D. Phytomedicine 2019; 65: 153089.
[http://dx.doi.org/10.1016/j.phymed.2019.153089] [PMID: 31563042]
[150]
Hsu Y-Y, Jong Y-J, Tsai H-H, Tseng Y-T, An L-M, Lo Y-C. Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMA-like mice. Br J Pharmacol 2012; 166(3): 1114-26.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01829.x] [PMID: 22220673]
[151]
Medugu AN, Yakubu J, Medugu UN, Marte HI, Tata FY, Balami VM. Phytochemical and anti-epileptic studies of ethanol extract of Boswellia dalzielii (Frankincense Tree) stem bark. European J Med Plants 2020; 94-100.
[http://dx.doi.org/10.9734/ejmp/2020/v31i830262]
[152]
Beghi E. The epidemiology of epilepsy. Neuroepidemiology 2020; 54(2): 185-91.
[http://dx.doi.org/10.1159/000503831] [PMID: 31852003]
[153]
Fisher RS, van Emde Boas W, Blume W, et al. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005; 46(4): 470-2.
[http://dx.doi.org/10.1111/j.0013-9580.2005.66104.x] [PMID: 15816939]
[154]
Mittal P, Kaushik D, Kaushik P, Gupta V, Ghaiye P, Krishan P. Therapeutic efficacy of phytochemicals as anti-epileptic- A review. Pharmacol Online 2011; 1: 246-71.
[155]
Arzimanoglou A, Hirsch E, Nehlig A, Castelnau P, Gressens P, Pereira de Vasconcelos A. Epilepsy and neuroprotection: An illustrated review. Epileptic Disord 2002; 4(3): 173-82.
[PMID: 12446219]
[156]
Rang HP. Rang and Dale’s Pharmacology. London: Churchill Livingstone 2005.
[157]
Brunton L, Chabner BA, Knollmann BC. Goodman and Gilman’s the pharmacological basis of therapeutics Twelfth. New York, NY: McGraw-Hill 2011.
[158]
Löscher W. Basic pharmacology of valproate: A review after 35 years of clinical use for the treatment of epilepsy. CNS Drugs 2002; 16(10): 669-94.
[http://dx.doi.org/10.2165/00023210-200216100-00003] [PMID: 12269861]
[159]
Schmidt D. The clinical impact of new antiepileptic drugs after a decade of use in epilepsy. Epilepsy Res 2002; 50(1-2): 21-32.
[http://dx.doi.org/10.1016/S0920-1211(02)00065-7] [PMID: 12151114]
[160]
Zhu HL, Wan JB, Wang YT, et al. Medicinal compounds with antiepileptic/anticonvulsant activities. Epilepsia 2014; 55(1): 3-16.
[http://dx.doi.org/10.1111/epi.12463] [PMID: 24299155]
[161]
Ameri A. The effects of Aconitum alkaloids on the central nervous system. Prog Neurobiol 1998; 56(2): 211-35.
[http://dx.doi.org/10.1016/S0301-0082(98)00037-9] [PMID: 9760702]
[162]
Ameri A. Structure-dependent inhibitory action of the Aconitum alkaloids 14-benzoyltalitasamine and talitasamine in rat hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 1998; 357(6): 585-92.
[http://dx.doi.org/10.1007/PL00005212] [PMID: 9686933]
[163]
Ameri A. Structure-dependent differences in the effects of the Aconitum alkaloids lappaconitine, N-desacetyllappaconitine and lappaconidine in rat hippocampal slices. Brain Res 1997; 769(1): 36-43.
[http://dx.doi.org/10.1016/S0006-8993(97)00664-1] [PMID: 9374271]
[164]
Ameri A. Inhibition of rat hippocampal excitability by the plant alkaloid 3-acetylaconitine mediated by interaction with voltage-dependent sodium channels. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(2): 273-80.
[http://dx.doi.org/10.1007/PL00004943] [PMID: 9050023]
[165]
Ameri A. Inhibition of rat hippocampal excitability by the Aconitum alkaloid, 1-benzoylnapelline, but not by napelline. Eur J Pharmacol 1997; 335(2-3): 145-52.
[http://dx.doi.org/10.1016/S0014-2999(97)01205-3] [PMID: 9369367]
[166]
Ameri A. Effects of the alkaloids 6-benzoylheteratisine and heteratisine on neuronal activity in rat hippocampal slices. Neuropharmacology 1997; 36(8): 1039-46.
[http://dx.doi.org/10.1016/S0028-3908(97)00095-6] [PMID: 9294968]
[167]
Ameri A, Metzmeier P, Peters T. Frequency-dependent inhibition of neuronal activity by lappaconitine in normal and epileptic hippocampal slices. Br J Pharmacol 1996; 118(3): 577-84.
[http://dx.doi.org/10.1111/j.1476-5381.1996.tb15440.x] [PMID: 8762080]
[168]
Ameri A, Gleitz J, Peters T. Aconitine inhibits epileptiform activity in rat hippocampal slices. Naunyn Schmiedebergs Arch Pharmacol 1996; 354(1): 80-5.
[http://dx.doi.org/10.1007/BF00168710] [PMID: 8832592]
[169]
Bhutada P, Mundhada Y, Bansod K, Dixit P, Umathe S, Mundhada D. Anticonvulsant activity of berberine, an isoquinoline alkaloid in mice. Epilepsy Behav 2010; 18(3): 207-10.
[http://dx.doi.org/10.1016/j.yebeh.2010.03.007] [PMID: 20638957]
[170]
Lin M-T, Wang J-J, Young M-S. The protective effect of dl-tetrahydropalmatine against the development of amygdala kindling seizures in rats. Neurosci Lett 2002; 320(3): 113-6.
[http://dx.doi.org/10.1016/S0304-3940(01)02508-3] [PMID: 11852175]
[171]
da Silva AFS, de Andrade JP, Bevilaqua LRM, et al. Anxiolytic-, antidepressant- and anticonvulsant-like effects of the alkaloid montanine isolated from Hippeastrum vittatum. Pharmacol Biochem Behav 2006; 85(1): 148-54.
[http://dx.doi.org/10.1016/j.pbb.2006.07.027] [PMID: 16950504]
[172]
da Cruz GMP, Felipe CFB, Scorza FA, et al. Piperine decreases pilocarpine-induced convulsions by GABAergic mechanisms. Pharmacol Biochem Behav 2013; 104: 144-53.
[http://dx.doi.org/10.1016/j.pbb.2013.01.002] [PMID: 23313550]
[173]
Felipe FCB, Filho JTS, de Oliveira Souza LE, et al. Piplartine, an amide alkaloid from Piper tuberculatum, presents anxiolytic and antidepressant effects in mice. Phytomedicine 2007; 14(9): 605-12.
[http://dx.doi.org/10.1016/j.phymed.2006.12.015] [PMID: 17399971]
[174]
Zhao Z, He X, Ma C, et al. Excavating anticonvulsant compounds from prescriptions of traditional Chinese medicine in the treatment of epilepsy. Am J Chin Med 2018; 46(4): 707-37.
[http://dx.doi.org/10.1142/S0192415X18500374] [PMID: 29737210]
[175]
Chen K, Kokate TG, Donevan SD, Carroll FI, Rogawski MA. Ibogaine block of the NMDA receptor: In vitro and in vivo studies. Neuropharmacology 1996; 35(4): 423-31.
[http://dx.doi.org/10.1016/0028-3908(96)84107-4] [PMID: 8793904]
[176]
Kang T-H, Murakami Y, Matsumoto K, et al. Rhynchophylline and isorhynchophylline inhibit NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 2002; 455(1): 27-34.
[http://dx.doi.org/10.1016/S0014-2999(02)02581-5] [PMID: 12433591]
[177]
de Sousa DP, Gonçalves JCR, Quintans-Júnior L, Cruz JS, Araújo DAM, de Almeida RN. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents. Neurosci Lett 2006; 401(3): 231-5.
[http://dx.doi.org/10.1016/j.neulet.2006.03.030] [PMID: 16650577]
[178]
de Sousa DP, Quintans L Jr, de Almeida RN. Evolution of the anticonvulsant activity of α-terpineol. Pharm Biol 2007; 45(1): 69-70.
[http://dx.doi.org/10.1080/13880200601028388]
[179]
Hosseinzadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 2005; 76(7-8): 722-4.
[http://dx.doi.org/10.1016/j.fitote.2005.07.008] [PMID: 16253437]
[180]
Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 2017; 55(3): 206-13.
[http://dx.doi.org/10.5114/fn.2017.70485] [PMID: 28984113]
[181]
Quintans-Júnior LJ, Guimarães AG, Araújo BES, et al. Carvacrol,(-)-borneol and citral reduce convulsant activity in rodents. Afr J Biotechnol 2010; 9(39): 6566-72.
[182]
Huang C-W, Chow JC, Tsai J-J, Wu S-N. Characterizing the effects of Eugenol on neuronal ionic currents and hyperexcitability. Psychopharmacology (Berl) 2012; 221(4): 575-87.
[http://dx.doi.org/10.1007/s00213-011-2603-y] [PMID: 22160139]
[183]
Costa JP, Ferreira PB, De Sousa DP, Jordan J, Freitas RM. Anticonvulsant effect of phytol in a pilocarpine model in mice. Neurosci Lett 2012; 523(2): 115-8.
[http://dx.doi.org/10.1016/j.neulet.2012.06.055] [PMID: 22750154]
[184]
Talevi A, Cravero MS, Castro EA, Bruno-Blanch LE. Discovery of anticonvulsant activity of abietic acid through application of linear discriminant analysis. Bioorg Med Chem Lett 2007; 17(6): 1684-90.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.098] [PMID: 17234417]
[185]
Kazmi I, Gupta G, Afzal M, Anwar F. Anticonvulsant and depressant-like activity of ursolic acid stearoyl glucoside isolated from Lantana camara L. (verbanaceae). Asian Pac J Trop Dis 2012; 2: S453-6.
[http://dx.doi.org/10.1016/S2222-1808(12)60202-3]
[186]
Yu Y-H, Xie W, Bao Y, Li H-M, Hu S-J, Xing J-L. Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PLoS One 2012; 7(11): e50694.
[http://dx.doi.org/10.1371/journal.pone.0050694] [PMID: 23209812]
[187]
Pandey R, Gupta S, Tandon S, Wolkenhauer O, Vera J, Gupta SK. Baccoside A suppresses epileptic-like seizure/convulsion in Caenorhabditis elegans. Seizure 2010; 19(7): 439-42.
[http://dx.doi.org/10.1016/j.seizure.2010.06.005] [PMID: 20598917]
[188]
Sasaki K, Hatta S, Haga M, Ohshika H. Effects of bilobalide on γ-aminobutyric acid levels and glutamic acid decarboxylase in mouse brain. Eur J Pharmacol 1999; 367(2-3): 165-73.
[http://dx.doi.org/10.1016/S0014-2999(98)00968-6] [PMID: 10078989]
[189]
Sasaki K, Hatta S, Wada K, Ohshika H, Haga M. Bilobalide prevents reduction of γ-aminobutyric acid levels and glutamic acid decarboxylase activity induced by 4-O-methylpyridoxine in mouse hippocampus. Life Sci 2000; 67(6): 709-15.
[http://dx.doi.org/10.1016/S0024-3205(00)00657-3] [PMID: 12659176]
[190]
Mu QZ, Lu JR, Zhou QL. Two new antiepilepsy compounds--otophyllosides A and B. Sci Sin [B] 1986; 29(3): 295-301.
[PMID: 3764407]
[191]
Woo T-S, Yoon S-Y, Pena ICD, et al. Anticonvulsant effect of Artemisia capillaris Herba in mice. Biomol Ther (Seoul) 2011; 19(3): 342-7.
[http://dx.doi.org/10.4062/biomolther.2011.19.3.342]
[192]
Luszczki JJ, Glowniak K, Czuczwar SJ. Time-course and dose-response relationships of imperatorin in the mouse maximal electroshock seizure threshold model. Neurosci Res 2007; 59(1): 18-22.
[http://dx.doi.org/10.1016/j.neures.2007.05.004] [PMID: 17602770]
[193]
Wikipedia Encephalitis. 2020. Available from: https://en.wikipedia.org/w/index.php?title=Encephalitis&oldid=964063039
[194]
Wikipedia. Japanese encephalitis. 2020. Available from: https://en.wikipedia.org/w/index.php?title=Japanese_encephalitis&oldid=970213096
[195]
ECDC. acts about Japanese Encephalitis. 2020. Available from: https://www.ecdc.europa.eu/en/Japanese-encephalitis/facts
[196]
Whitley RJ. Herpes simplex encephalitis: Adolescents and adults. Antiviral Res 2006; 71(2-3): 141-8.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.002] [PMID: 16675036]
[197]
Grover A, Agrawal V, Shandilya A, Bisaria VS, Sundar D. Non-nucleosidic inhibition of Herpes simplex virus DNA polymerase: Mechanistic insights into the anti-herpetic mode of action of herbal drug withaferin A. BMC Bioinformatics 2011; 12 (Suppl. 13): S22.
[198]
Martorana F, Guidotti G, Brambilla L, Rossi D, Withaferin A. Withaferin A inhibits nuclear factor-κB-dependent pro-inflammatory and stress response pathways in the astrocytes. Neural Plast 2015; 2015: 381964.
[http://dx.doi.org/10.1155/2015/381964] [PMID: 26266054]
[199]
Zhang D, Zheng N, Liu X. The role and mechanism of NF-κB in viral encephalitis of children. Exp Ther Med 2017; 13(6): 3489-93.
[http://dx.doi.org/10.3892/etm.2017.4396] [PMID: 28587430]
[200]
Byler KG, Collins JT, Ogungbe IV, Setzer WN. Alphavirus protease inhibitors from natural sources: A homology modeling and molecular docking investigation. Comput Biol Chem 2016; 64: 163-84.
[http://dx.doi.org/10.1016/j.compbiolchem.2016.06.005] [PMID: 27387412]
[201]
Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. Alphavirus RNA synthesis and non-structural protein functions. J Gen Virol 2015; 96(9): 2483-500.
[http://dx.doi.org/10.1099/jgv.0.000249] [PMID: 26219641]
[202]
Nisar A, Malik AH, Zargar MA. Atropa acuminata Royle Ex Lindl. blunts production of pro-inflammatory mediators eicosanoids., leukotrienes, cytokines in vitro and in vivo models of acute inflammatory responses. J Ethnopharmacol 2013; 147(3): 584-94.
[http://dx.doi.org/10.1016/j.jep.2013.03.038] [PMID: 23528361]
[203]
Zhu HT, Bian C, Yuan JC, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation 2014; 11: 59.
[http://dx.doi.org/10.1186/1742-2094-11-59] [PMID: 24669820]
[204]
Petrera E, Níttolo AG, Alché LE. Antiviral action of synthetic stigmasterol derivatives on herpes simplex virus replication in nervous cells in vitro. BioMed Res Int 2014; 2014: 947560.
[http://dx.doi.org/10.1155/2014/947560] [PMID: 25147828]
[205]
Bruyn HB, Sexton HM, Brainerd HD. Mumps meningoencephalitis; a clinical review of 119 cases with one death. Calif Med 1957; 86(3): 153-60.
[PMID: 13404512]
[206]
Malayan J, Selvaraj B, Warrier A, Shanmugam S, Mathayan M, Menon T. Anti-mumps virus activity by extracts of Mimosa pudica, a unique Indian medicinal plant. Indian J Virol 2013; 24(2): 166-73.
[http://dx.doi.org/10.1007/s13337-013-0143-2] [PMID: 24426272]
[207]
Hadas E, Ozarowski M, Derda M, et al. The use of extracts from Passiflora spp. in helping the treatment of acanthamoebiasis. Acta Pol Pharm 2017; 74(3): 921-8.
[PMID: 29513962]
[208]
Anwar A, Ting ELS, Anwar A, et al. Antiamoebic activity of plant-based natural products and their conjugated silver nanoparticles against Acanthamoeba castellanii (ATCC 50492). AMB Express 2020; 10(1): 24.
[http://dx.doi.org/10.1186/s13568-020-0960-9] [PMID: 32016777]
[209]
Sáez-Llorens X, McCracken GH Jr. Bacterial meningitis in children. Lancet 2003; 361(9375): 2139-48.
[http://dx.doi.org/10.1016/S0140-6736(03)13693-8] [PMID: 12826449]
[210]
Meng FC, Wu ZF, Yin ZQ, Lin LG, Wang R, Zhang QW. Coptidis rhizoma and its main bioactive components: Recent advances in chemical investigation, quality evaluation and pharmacological activity. Chin Med 2018; 13: 13.
[http://dx.doi.org/10.1186/s13020-018-0171-3] [PMID: 29541156]
[211]
Odak JA, Manguro LOA, Wong KC. New compounds with antimicrobial activities from Elaeodendron buchananii stem bark. J Asian Nat Prod Res 2018; 20(6): 510-24.
[http://dx.doi.org/10.1080/10286020.2017.1420648] [PMID: 29338355]
[212]
Huang HI, Chio CC, Lin JY. Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 2018; 13(1): e0191617.
[http://dx.doi.org/10.1371/journal.pone.0191617] [PMID: 29370243]
[213]
Tiwari M, Kumar P, Tejavath KK, Tiwari V. Assessment of molecular mechanism of gallate-polyvinylpyrrolidone-capped hybrid silver nanoparticles against carbapenem-resistant Acinetobacter baumannii. ACS Omega 2020; 5(2): 1206-13.
[http://dx.doi.org/10.1021/acsomega.9b03644] [PMID: 31984278]
[214]
Mbosso Teinkela JE, Siwe Noundou X, Zeh Mimba JE, et al. Compound isolation and biological activities of Piptadeniastrum africanum (hook.f.) Brennan roots. J Ethnopharmacol 2020; 255: 112716.
[http://dx.doi.org/10.1016/j.jep.2020.112716] [PMID: 32151754]
[215]
Yang M, Wang Y, Fan Z, et al. Acute and sub-acute toxicological evaluations of bioactive alkaloidal extract from Melodinus henryi and their main chemical constituents. Nat Prod Bioprospect 2020; 10(4): 227-41.
[http://dx.doi.org/10.1007/s13659-020-00252-2] [PMID: 32519306]
[216]
Aaron PA, Vu K, Gelli A. An antivirulence approach for preventing Cryptococcus neoformans from crossing the blood-brain barrier via novel natural product inhibitors of a Fungal metalloprotease. MBio 2020; 11(4): e01249-20.
[http://dx.doi.org/10.1128/mBio.01249-20] [PMID: 32694141]
[217]
Wikipedia. Multiple Sclerosis. 2020. Available from : https://en.wikipedia.org/w/index.php?title=Multiple_sclerosis&oldid=970404208
[218]
Natarajan C, Bright JJ. Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 2002; 168(12): 6506-13.
[http://dx.doi.org/10.4049/jimmunol.168.12.6506] [PMID: 12055272]
[219]
Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ. Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem 2012; 23(11): 1498-507.
[http://dx.doi.org/10.1016/j.jnutbio.2011.10.002] [PMID: 22402368]
[220]
Morris G, Anderson G, Dean O, et al. The glutathione system: A new drug target in neuroimmune disorders. Mol Neurobiol 2014; 50(3): 1059-84.
[http://dx.doi.org/10.1007/s12035-014-8705-x] [PMID: 24752591]
[221]
Ozgun-Acar O, Celik-Turgut G, Gazioglu I, et al. Capparis ovata treatment suppresses inflammatory cytokine expression and ameliorates experimental allergic encephalomyelitis model of multiple sclerosis in C57BL/6 mice. J Neuroimmunol 2016; 298: 106-16.
[http://dx.doi.org/10.1016/j.jneuroim.2016.07.010] [PMID: 27609283]
[222]
Valerio M, Liu HB, Heffner R, et al. Phytosterols ameliorate clinical manifestations and inflammation in experimental autoimmune encephalomyelitis. Inflamm Res 2011; 60(5): 457-65.
[http://dx.doi.org/10.1007/s00011-010-0288-z] [PMID: 21136279]
[223]
Rajan TS, Giacoppo S, Iori R, et al. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia 2016; 112: 104-15.
[http://dx.doi.org/10.1016/j.fitote.2016.05.008] [PMID: 27215129]
[224]
Giacoppo S, Soundara Rajan T, De Nicola GR, Iori R, Bramanti P, Mazzon E. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis. Drug Des Devel Ther 2016; 10: 3291-304.
[http://dx.doi.org/10.2147/DDDT.S110514] [PMID: 27784989]
[225]
Healthline.com Sulforaphane: Benefits, side effects, and food sources. 2019. Available from :https://www.healthline.com/nutrition/sulforaphane#what-it-is
[226]
Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, Ahn SW. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197.
[http://dx.doi.org/10.3346/jkms.2019.34.e197] [PMID: 31327180]
[227]
Ghosh A, Chowdhury N, Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res 2012; 135(5): 581-98.
[PMID: 22771587]
[228]
Rawani A, Chowdhury N, Ghosh A, Laskar S, Chandra G. Mosquito larvicidal activity of Solanum nigrum berry extracts. Indian J Med Res 2013; 137(5): 972-6.
[PMID: 23760385]
[229]
Rawani A, Ray AS, Ghosh A, Sakar M, Chandra G. Larvicidal activity of phytosteroid compounds from leaf extract of Solanum nigrum against Culex vishnui group and Anopheles subpictus. BMC Res Notes 2017; 10(1): 135.
[http://dx.doi.org/10.1186/s13104-017-2460-9] [PMID: 28330500]
[230]
Rawani A, Ghosh A, Chandra G. Laboratory evaluation of molluscicidal & mosquito larvicidal activities of leaves of Solanum nigrum L. Indian J Med Res 2014; 140(2): 285-95.
[PMID: 25297363]
[231]
Kumar D, Kumar P, Singh H, Agrawal V. Biocontrol of mosquito vectors through herbal-derived silver nanoparticles: Prospects and challenges. Environ Sci Pollut Res Int 2020; 27(21): 25987-6024.
[http://dx.doi.org/10.1007/s11356-020-08444-6] [PMID: 32385820]
[232]
Migraine. 2020. Available from: https://en.wikipedia.org/wiki/Migraine
[233]
Shaheen S, Jaffer M, Khalid S, et al. Microscopic techniques used for the identification of medicinal plants: A case study of Senna. Microsc Res Tech 2019; 82(10): 1660-7.
[http://dx.doi.org/10.1002/jemt.23332] [PMID: 31267600]
[234]
Park HJ, Kwak M, Baek SH. Neuroprotective effects of Dendropanax morbifera leaves on glutamate-induced oxidative cell death in HT22 mouse hippocampal neuronal cells. J Ethnopharmacol 2020; 251: 112518.
[http://dx.doi.org/10.1016/j.jep.2019.112518] [PMID: 31884031]
[235]
Jin GL, Su YP, Liu M, et al. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales) - A review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol 2014; 152(1): 33-52.
[http://dx.doi.org/10.1016/j.jep.2014.01.003] [PMID: 24434844]
[236]
Wang L, Zhang J, Hong Y, Feng Y, Chen M, Wang Y. Phytochemical and pharmacological review of da chuanxiong formula: A famous herb pair composed of Chuanxiong rhizoma and Gastrodiae rhizoma for headache. Evid Based Complement Alternat Med 2013; 2013: 425369.
[http://dx.doi.org/10.1155/2013/425369] [PMID: 24066012]
[237]
Wu S, Guo L, Qiu F, Gong M. Anti-migraine effect of the herbal combination of Chuanxiong rhizoma and Cyperi rhizoma and UPLC-MS/MS method for the simultaneous quantification of the active constituents in rat serum and cerebral cortex. Molecules 2019; 24(12): E2230.
[http://dx.doi.org/10.3390/molecules24122230] [PMID: 31207980]
[238]
Apel L, Kammerer DR, Stintzing FC, Spring O. Comparative metabolite profiling of triterpenoid saponins and flavonoids in flower color mutations of Primula veris L. Int J Mol Sci 2017; 18(1): E153.
[http://dx.doi.org/10.3390/ijms18010153] [PMID: 28098796]
[239]
Koirala N, Dhakal C, Munankarmi NN, et al. Vitex negundo Linn.: Phytochemical composition, nutritional analysis, and antioxidant and antimicrobial activity. Cell Mol Biol 2020; 66(4): 1-7.
[http://dx.doi.org/10.14715/cmb/2020.66.4.1] [PMID: 32583767]
[240]
Donkor PO, Chen Y, Ding L, Qiu F. Locally and traditionally used Ligusticum species - A review of their phytochemistry, pharmacology and pharmacokinetics. J Ethnopharmacol 2016; 194: 530-48.
[http://dx.doi.org/10.1016/j.jep.2016.10.012] [PMID: 27729283]
[241]
Uprety Y, Lacasse A, Asselin H. Traditional uses of medicinal plants from the Canadian boreal forest for the management of chronic pain syndromes. Pain Pract 2016; 16(4): 459-66.
[http://dx.doi.org/10.1111/papr.12284] [PMID: 25776550]
[242]
Turner NJ. Indigenous Peoples’ Medicine in Canada. 2020. Available from : https://www.thecanadianencyclopedia.ca/en/article/native-medicines
[243]
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int 2018; 105: 305-23.
[http://dx.doi.org/10.1016/j.foodres.2017.11.019] [PMID: 29433220]
[244]
Baron EP. Medicinal properties of cannabinoids, terpenes, and flavonoids in cannabis, and benefits in migraine, headache, and pain: An update on current evidence and cannabis science. Headache 2018; 58(7): 1139-86.
[http://dx.doi.org/10.1111/head.13345] [PMID: 30152161]
[245]
Abraham A, Samuel S, Mathew L. Phytochemical analysis of Pathyashadangam kwath and its standardization by HPLC and HPTLC. J Ayurveda Integr Med 2020; 11(2): 153-8.
[http://dx.doi.org/10.1016/j.jaim.2017.10.011] [PMID: 30446379]
[246]
Radice M, Tasambay A, Pérez A, et al. Ethnopharmacology, phytochemistry and pharmacology of the genus Hedyosmum (Chlorantaceae): A review. J Ethnopharmacol 2019; 244: 111932.
[http://dx.doi.org/10.1016/j.jep.2019.111932] [PMID: 31128149]
[247]
Goschorska M, Gutowska I, Baranowska-Bosiacka I, Barczak K, Chlubek D. The use of antioxidants in the treatment of migraine. Antioxidants 2020; 9(2): 116.
[http://dx.doi.org/10.3390/antiox9020116] [PMID: 32012936]
[248]
Moscano F, Guiducci M, Maltoni L, et al. An observational study of fixed-dose Tanacetum parthenium nutraceutical preparation for prophylaxis of pediatric headache. Ital J Pediatr 2019; 45(1): 36.
[http://dx.doi.org/10.1186/s13052-019-0624-z] [PMID: 30871574]
[249]
Kilinc E, Tore F, Dagistan Y, Bugdayci G. Thymoquinone inhibits neurogenic inflammation underlying migraine through modulation of calcitonin gene-related peptide release and stabilization of meningeal mast cells in glyceryltrinitrate-induced migraine model in rats. Inflammation 2020; 43(1): 264-73.
[http://dx.doi.org/10.1007/s10753-019-01115-w] [PMID: 31707574]
[250]
Rodrigues MRA, Kanazawa LKS. ,das Neves TL, et al Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol 2012; 139(2): 519-26.
[http://dx.doi.org/10.1016/j.jep.2011.11.042] [PMID: 22154965]

© 2024 Bentham Science Publishers | Privacy Policy