Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Heterocycles in Breast Cancer Treatment: The Use of Pyrazole Derivatives

Author(s): Sandra Ardevines, Eugenia Marqués-López* and Raquel P. Herrera*

Volume 30, Issue 10, 2023

Published on: 25 October, 2022

Page: [1145 - 1174] Pages: 30

DOI: 10.2174/0929867329666220829091830

Price: $65

Abstract

Among the aromatic heterocycle rings, pyrazole –a five-membered ring with two adjacent nitrogen atoms in its structure has been postulated as a potent candidate in the pharmacological context. This moiety is an interesting therapeutic target covering a broad spectrum of biological activities due to its presence in many natural substances.

Hence, the potential of the pyrazole derivatives as antitumor agents has been explored in many investigations, showing promising results in some cases. In this sense, breast cancer, which is already the leading cause of cancer mortality in women in some countries, has been the topic selected for this review, which covers a range of different research from the earliest studies published in 2003 to the most recent ones in 2021.

Keywords: breast, cancer, heterocycle, in vitro, pyrazole, tumor

[1]
Miller, K.D.; Nogueira, L.; Mariotto, A.B.; Rowland, J.H.; Yabroff, K.R.; Alfano, C.M.; Jemal, A.; Kramer, J.L.; Siegel, R.L. Cancer treatment and survivorship statistics, 2019. CA Cancer J. Clin., 2019, 69(5), 363-385.
[http://dx.doi.org/10.3322/caac.21565] [PMID: 31184787]
[2]
Wu, Q.; Yang, Z.; Nie, Y.; Shi, Y.; Fan, D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett., 2014, 347(2), 159-166.
[http://dx.doi.org/10.1016/j.canlet.2014.03.013] [PMID: 24657660]
[3]
Brown, S.B.; Brown, E.A.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol., 2004, 5(8), 497-508.
[http://dx.doi.org/10.1016/S1470-2045(04)01529-3] [PMID: 15288239]
[4]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[5]
Dasari, S.; Tchounwou, P.B. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.025] [PMID: 25058905]
[6]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[7]
Zhao, J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol. Ther., 2016, 160, 145-158.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.008] [PMID: 26899500]
[8]
Keibler, M.A.; Wasylenko, T.M.; Kelleher, J.K.; Iliopoulos, O.; Vander Heiden, M.G.; Stephanopoulos, G. Metabolic requirements for cancer cell proliferation. Cancer Metab., 2016, 4, 16.
[http://dx.doi.org/10.1186/s40170-016-0156-6] [PMID: 27540483]
[9]
Nilsson, A.; Nielsen, J. Genome scale metabolic modeling of cancer. Metab. Eng., 2017, 43(Pt B), 103-112.
[http://dx.doi.org/10.1016/j.ymben.2016.10.022] [PMID: 27825806]
[10]
Hason, M.; Bartůněk, P. Zebrafish models of cancer-new insights on modeling human cancer in a non-mammalian vertebrate. Genes (Basel), 2019, 10(11), 935.
[http://dx.doi.org/10.3390/genes10110935] [PMID: 31731811]
[11]
Andrei, L.; Kasas, S.; Ochoa Garrido, I.; Stanković, T.; Suárez Korsnes, M.; Vaclavikova, R.; Assaraf, Y.G.; Pešić, M. Advanced technological tools to study multidrug resistance in cancer. Drug Resist. Updat., 2020, 48, 100658.
[http://dx.doi.org/10.1016/j.drup.2019.100658] [PMID: 31678863]
[12]
Afshar, N.; English, D.R.; Thursfield, V.; Mitchell, P.L.; Te Marvelde, L.; Farrugia, H.; Giles, G.G.; Milne, R.L. Differences in cancer survival by sex: A population-based study using cancer registry data. Cancer Causes Control, 2018, 29(11), 1059-1069.
[http://dx.doi.org/10.1007/s10552-018-1079-z] [PMID: 30194549]
[13]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[14]
Jeon, J.S.; Bersini, S.; Gilardi, M.; Dubini, G.; Charest, J.L.; Moretti, M.; Kamm, R.D. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation. Proc. Natl. Acad. Sci. USA, 2015, 112(1), 214-219.
[http://dx.doi.org/10.1073/pnas.1417115112] [PMID: 25524628]
[15]
Kaushik, A.K.; De Berardinis, R.J. Applications of metabolomics to study cancer metabolism. Rev. Can., 2018, 1870(1), 2-14.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.009]
[16]
WHO. Who report on cancer: Setting priorities, investing wisely and providing care for all. 2020. Available from: https://www.who.int/publications/i/item/9789240001299
[17]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[18]
Ziegler, R.G.; Hoover, R.N.; Pike, M.C.; Hildesheim, A.; Nomura, A.M.; West, D.W.; Wu-Williams, A.H.; Kolonel, L.N.; Horn-Ross, P.L.; Rosenthal, J.F.; Hyer, M.B. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst., 1993, 85(22), 1819-1827.
[http://dx.doi.org/10.1093/jnci/85.22.1819] [PMID: 8230262]
[19]
Brinton, L.A.; Gaudet, M.M.; Gierach, G.L. Breast cancer. In: Cancer Epidemiology and Prevention, 4th ed; Thun, M.J.; Linet, M.S.; Cerhan, J.R.; Haiman, C.A.; Schottenfeld, D., Eds.; Oxford University Press:: New York, 2018; pp. 861-888.
[http://dx.doi.org/10.1093/oso/9780190238667.003.0045]
[20]
Bray, F.; McCarron, P.; Parkin, D.M. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res., 2004, 6(6), 229-239.
[http://dx.doi.org/10.1186/bcr932] [PMID: 15535852]
[21]
Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.A.; Howard, B.V.; Johnson, K.C.; Kotchen, J.M.; Ockene, J. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA, 2002, 288(3), 321-333.
[http://dx.doi.org/10.1001/jama.288.3.321] [PMID: 12117397]
[22]
Ali, I.; Lone, M.N.; Al-Othman, Z.A.; Al-Warthan, A.; Sanagi, M.M. Heterocyclic scaffolds: Centrality in anticancer drug development. Curr. Drug Targets, 2015, 16(7), 711-734.
[http://dx.doi.org/10.2174/1389450116666150309115922] [PMID: 25751009]
[23]
Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891.
[http://dx.doi.org/10.3390/molecules200916852] [PMID: 26389876]
[24]
Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168.
[http://dx.doi.org/10.2174/1871520620666200705214917] [PMID: 32628593]
[25]
Auria-Luna, F.; Marqués-López, E.; Romanos, E.; Fernández-Moreira, V.; Gimeno, M.C.; Marzo, I.; Herrera, R.P. Novel ureido-dihydropyridine scaffolds as theranostic agents. Bioorg. Chem., 2020, 105, 104364.
[http://dx.doi.org/10.1016/j.bioorg.2020.104364] [PMID: 33113409]
[26]
Rodrigues, J.M.; Calhelha, R.C.; Nogueira, A.; Ferreira, I.C.F.R.; Barros, L.; Queiroz, M.R.P. Synthesis of novel methyl 7-[(hetero)arylamino]thieno[2,3-b]pyrazine-6-carboxylates and antitumor activity evaluation: Effects in human tumor cells growth, cell cycle analysis, apoptosis and toxicity in non-tumor cells. Molecules, 2021, 26(16), 4823.
[http://dx.doi.org/10.3390/molecules26164823] [PMID: 34443411]
[27]
Lenis-Rojas, O.A.; Cordeiro, S.; Horta-Meireles, M.; Fernández, J.A.A.; Fernández Vila, S.; Rubiolo, J.A.; Cabezas-Sainz, P.; Sanchez, L.; Fernandes, A.R.; Royo, B. N- Heterocyclic carbene iron complexes as anticancer agents: In vitro and in vivo biological studies. Molecules, 2021, 26(18), 5535.
[http://dx.doi.org/10.3390/molecules26185535] [PMID: 34577006]
[28]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[29]
Shih, S-R.; Chu, T-Y.; Reddy, G.R.; Tseng, S-N.; Chen, H-L.; Tang, W-F.; Wu, M-S.; Yeh, J-Y.; Chao, Y-S.; Hsu, J.T.; Hsieh, H-P.; Horng, J-T. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity. J. Biomed. Sci., 2010, 17(13), 13.
[http://dx.doi.org/10.1186/1423-0127-17-13] [PMID: 20178582]
[30]
Hashem, A.I.; Youssef, A.S.A.; Kandeel, K.A.; Abou-Elmagd, W.S.I. Conversion of some 2(3H)-furanones bearing a pyrazolyl group into other heterocyclic systems with a study of their antiviral activity. Eur. J. Med. Chem., 2007, 42(7), 934-939.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.032] [PMID: 17321008]
[31]
Rashad, A.E.; Hegab, M.I.; Abdel-Megeid, R.E.; Micky, J.A.; Abdel-Megeid, F.M.E. Synthesis and antiviral evaluation of some new pyrazole and fused pyrazolopyrimidine derivatives. Bioorg. Med. Chem., 2008, 16(15), 7102-7106.
[http://dx.doi.org/10.1016/j.bmc.2008.06.054] [PMID: 18635363]
[32]
Morsy, A.R.I.; Ramadan, S.K.; Elsafty, M.M. Synthesis and antiviral activity of some pyrrolonyl substituted heterocycles as additives to enhance inactivated Newcastle disease vaccine. Med. Chem. Res., 2020, 29, 979-988.
[http://dx.doi.org/10.1007/s00044-020-02538-z]
[33]
Chandna, N.; Kumar, S.; Kaushik, P.; Kaushik, D.; Roy, S.K.; Gupta, G.K.; Jachak, S.M.; Kapoor, J.K.; Sharma, P.K. Synthesis of novel celecoxib analogues by bioisosteric replacement of sulfonamide as potent anti-inflammatory agents and cyclooxygenase inhibitors. Bioorg. Med. Chem., 2013, 21(15), 4581-4590.
[http://dx.doi.org/10.1016/j.bmc.2013.05.029] [PMID: 23769654]
[34]
Steinbach, G.; Lynch, P.M.; Phillips, R.K.; Wallace, M.H.; Hawk, E.; Gordon, G.B.; Wakabayashi, N.; Saunders, B.; Shen, Y.; Fujimura, T.; Su, L.K.; Levin, B.; Godio, L.; Patterson, S.; Rodriguez-Bigas, M.A.; Jester, S.L.; King, K.L.; Schumacher, M.; Abbruzzese, J.; DuBois, R.N.; Hittelman, W.N.; Zimmerman, S.; Sherman, J.W.; Kelloff, G. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med., 2000, 342(26), 1946-1952.
[http://dx.doi.org/10.1056/NEJM200006293422603] [PMID: 10874062]
[35]
Padmaja, A.; Payani, T.; Reddy, G.D.; Padmavathi, V. Synthesis, antimicrobial and antioxidant activities of substituted pyrazoles, isoxazoles, pyrimidine and thioxopyrimidine derivatives. Eur. J. Med. Chem., 2009, 44(11), 4557-4566.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.024] [PMID: 19631423]
[36]
Ramadan, S.K.; El-Helw, E.A.E. Synthesis and antimicrobial activity evaluation of some novel heterocycles derived from chromonyl-2(3H)-furanone. J. Chem. Res., 2018, 42(6), 332-336.
[http://dx.doi.org/10.3184/174751918X15295796734379]
[37]
Bronson, J.; Dhar, M.; Ewing, W.; Lonberg, N. Chapter thirty-one -to market, to market-2011. Annu. Rep. Med. Chem., 2012, 47, 499-569.
[http://dx.doi.org/10.1016/B978-0-12-396492-2.00031-X]
[38]
Hsu, A-L.; Ching, T-T.; Wang, D-S.; Song, X.; Rangnekar, V.M.; Chen, C-S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J. Biol. Chem., 2000, 275(15), 11397-11403.
[http://dx.doi.org/10.1074/jbc.275.15.11397] [PMID: 10753955]
[39]
Williams, C.S.; Watson, A.J.; Sheng, H.; Helou, R.; Shao, J.; DuBois, R.N. Celecoxib prevents tumor growth in vivo without toxicity to normal gut: Lack of correlation between in vitro and in vivo models. Cancer Res., 2000, 60(21), 6045-6051.
[PMID: 11085526]
[40]
Kulp, S.K.; Yang, Y-T.; Hung, C-C.; Chen, K-F.; Lai, J-P.; Tseng, P-H.; Fowble, J.W.; Ward, P.J.; Chen, C-S. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res., 2004, 64(4), 1444-1451.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2396] [PMID: 14973075]
[41]
Nitulescu, G.M.; Draghici, C.; Missir, A.V. Synthesis of new pyrazole derivatives and their anticancer evaluation. Eur. J. Med. Chem., 2010, 45(11), 4914-4919.
[http://dx.doi.org/10.1016/j.ejmech.2010.07.064] [PMID: 20728965]
[42]
Ramadan, S.K.; El-Helw, E.A.E.; Sallam, H.A. Cytotoxic and antimicrobial activities of some novel heterocycles employing 6-(1,3-diphenyl-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile. Heterocycl. Commun., 2019, 25(1), 107-115.
[http://dx.doi.org/10.1515/hc-2019-0008]
[43]
FDA. Drug approval date and data were obtained from the following sources., Available from: https://www.ema. europa.eu/
[44]
Torre, L.A.; Islami, F.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer in women: Burden and trends. Cancer Epidemiol. Biomarkers Prev., 2017, 26(4), 444-457.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0858] [PMID: 28223433]
[45]
Manning, G.; Whyte, D.B.; Martinez, R.; Hunter, T.; Sudarsanam, S. The protein kinase complement of the human genome. Science, 2002, 298(5600), 1912-1934.
[http://dx.doi.org/10.1126/science.1075762] [PMID: 12471243]
[46]
Noble, M.E.M.; Endicott, J.A.; Johnson, L.N. Protein kinase inhibitors: Insights into drug design from structure. Science, 2004, 303(5665), 1800-1805.
[http://dx.doi.org/10.1126/science.1095920] [PMID: 15031492]
[47]
Cherry, M.; Williams, D.H. Recent kinase and kinase inhibitor X-ray structures: Mechanisms of inhibition and selectivity insights. Curr. Med. Chem., 2004, 11(6), 663-673.
[http://dx.doi.org/10.2174/0929867043455792] [PMID: 15032722]
[48]
Furet, P.; Meyer, T.; Strauss, A.; Raccuglia, S.; Rondeau, J-M. Structure-based design and protein X-ray analysis of a protein kinase inhibitor. Bioorg. Med. Chem. Lett., 2002, 12(2), 221-224.
[http://dx.doi.org/10.1016/S0960-894X(01)00715-6] [PMID: 11755359]
[49]
Ikuta, M.; Kamata, K.; Fukasawa, K.; Honma, T.; Machida, T.; Hirai, H.; Suzuki-Takahashi, I.; Hayama, T.; Nishimura, S. Crystallographic approach to identification of cyclin-dependent kinase 4 (CDK4)-specific inhibitors by using CDK4 mimic CDK2 protein. J. Biol. Chem., 2001, 276(29), 27548-27554.
[http://dx.doi.org/10.1074/jbc.M102060200] [PMID: 11335721]
[50]
Sawyer, J.S.; Beight, D.W.; Britt, K.S.; Anderson, B.D.; Campbell, R.M.; Goodson, T., Jr; Herron, D.K.; Li, H-Y.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.; Wagner, J.R.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4H-pyrrolo[1,2-b]pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. Bioorg. Med. Chem. Lett., 2004, 14(13), 3581-3584.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.007] [PMID: 15177479]
[51]
Sawyer, J.S.; Anderson, B.D.; Beight, D.W.; Campbell, R.M.; Jones, M.L.; Herron, D.K.; Lampe, J.W.; McCowan, J.R.; McMillen, W.T.; Mort, N.; Parsons, S.; Smith, E.C.R.; Vieth, M.; Weir, L.C.; Yan, L.; Zhang, F.; Yingling, J.M. Synthesis and activity of new aryl- and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J. Med. Chem., 2003, 46(19), 3953-3956.
[http://dx.doi.org/10.1021/jm0205705] [PMID: 12954047]
[52]
El-Gamal, M.I.; Zaraei, S-O.; Madkour, M.M.; Anbar, H.S. Evaluation of substituted pyrazole-based kinase inhibitors in one decade (2011-2020): Current status and future prospects. Molecules, 2022, 27(1), 330.
[http://dx.doi.org/10.3390/molecules27010330] [PMID: 35011562]
[53]
Persson, T.; Yde, C.W.; Rasmussen, J.E.; Rasmussen, T.L.; Guerra, B.; Issinger, O-G.; Nielsen, J. Pyrazole carboxamides and carboxylic acids as protein kinase inhibitors in aberrant eukaryotic signal transduction: Induction of growth arrest in MCF-7 cancer cells. Org. Biomol. Chem., 2007, 5(24), 3963-3970.
[http://dx.doi.org/10.1039/b711279c] [PMID: 18043801]
[54]
El-Deeb, I.M.; Lee, S.H. Design and synthesis of new potent anticancer pyrazoles with high FLT3 kinase inhibitory selectivity. Bioorg. Med. Chem., 2010, 18(11), 3961-3973.
[http://dx.doi.org/10.1016/j.bmc.2010.04.029] [PMID: 20472440]
[55]
Shankar, D.B.; Li, J.; Tapang, P.; Owen McCall, J.; Pease, L.J.; Dai, Y.; Wei, R-Q.; Albert, D.H.; Bouska, J.J.; Osterling, D.J.; Guo, J.; Marcotte, P.A.; Johnson, E.F.; Soni, N.; Hartandi, K.; Michaelides, M.R.; Davidsen, S.K.; Priceman, S.J.; Chang, J.C.; Rhodes, K.; Shah, N.; Moore, T.B.; Sakamoto, K.M.; Glaser, K.B. ABT-869, a multitargeted receptor tyrosine kinase inhibitor: Inhibition of FLT3 phosphorylation and signaling in acute myeloid leukemia. Blood, 2007, 109(8), 3400-3408.
[http://dx.doi.org/10.1182/blood-2006-06-029579] [PMID: 17209055]
[56]
Schmidt-Arras, D.; Schwäble, J.; Böhmer, F-D.; Serve, H. Flt3 receptor tyrosine kinase as a drug target in leukemia. Curr. Pharm. Des., 2004, 10(16), 1867-1883.
[http://dx.doi.org/10.2174/1381612043384394] [PMID: 15180525]
[57]
Gazit, A.; Yee, K.; Uecker, A.; Böhmer, F-D.; Sjöblom, T.; Östman, A.; Waltenberger, J.; Golomb, G.; Banai, S.; Heinrich, M.C.; Levitzki, A. Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg. Med. Chem., 2003, 11(9), 2007-2018.
[http://dx.doi.org/10.1016/S0968-0896(03)00048-8] [PMID: 12670652]
[58]
Mahboobi, S.; Uecker, A.; Cénac, C.; Sellmer, A.; Eichhorn, E.; Elz, S.; Böhmer, F-D.; Dove, S. Inhibition of FLT3 and PDGFR tyrosine kinase activity by bis(benzo[b]furan-2-yl)methanones. Bioorg. Med. Chem., 2007, 15(5), 2187-2197.
[http://dx.doi.org/10.1016/j.bmc.2006.12.011] [PMID: 17210255]
[59]
Woodburn, J.R. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol. Ther., 1999, 82(2-3), 241-250.
[http://dx.doi.org/10.1016/S0163-7258(98)00045-X] [PMID: 10454201]
[60]
Wells, A. Tumor invasion: Role of growth factor-induced cell motility. Adv. Cancer Res., 2000, 78, 31-101.
[http://dx.doi.org/10.1016/S0065-230X(08)61023-4] [PMID: 10547668]
[61]
Bridges, A.J. The rationale and strategy used to develop a series of highly potent, irreversible, inhibitors of the epidermal growth factor receptor family of tyrosine kinases. Curr. Med. Chem., 1999, 6(9), 825-843.
[http://dx.doi.org/10.2174/092986730609220401151141] [PMID: 10495354]
[62]
Boschelli, D.H. Small molecule inhibitors of receptor tyrosine kinases. Drugs Future, 1999, 24(5), 515-537.
[http://dx.doi.org/10.1358/dof.1999.024.05.858622]
[63]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[64]
Prossnitz, E.R.; Arterburn, J.B.; Smith, H.O.; Oprea, T.I.; Sklar, L.A.; Hathaway, H.J. Estrogen signaling through the transmembrane G protein-coupled receptor GPR30. Annu. Rev. Physiol., 2008, 70, 165-190.
[http://dx.doi.org/10.1146/annurev.physiol.70.113006.100518] [PMID: 18271749]
[65]
Sawai, A.; Chandarlapaty, S.; Greulich, H.; Gonen, M.; Ye, Q.; Arteaga, C.L.; Sellers, W.; Rosen, N.; Solit, D.B. Inhibition of Hsp90 down-regulates mutant epidermal growth factor receptor (EGFR) expression and sensitizes EGFR mutant tumors to paclitaxel. Cancer Res., 2008, 68(2), 589-596.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1570] [PMID: 18199556]
[66]
Wei, F.; Zhao, B-X.; Huang, B.; Zhang, L.; Sun, C-H.; Dong, W-L.; Shin, D-S.; Miao, J-Y. Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(2′-hydroxy-3′-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate. Bioorg. Med. Chem. Lett., 2006, 16(24), 6342-6347.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.008] [PMID: 17000107]
[67]
Das, J.; Pany, S.; Panchal, S.; Majhi, A.; Rahman, G.M. Binding of isoxazole and pyrazole derivatives of curcumin with the activator binding domain of novel protein kinase C. Bioorg. Med. Chem., 2011, 19(21), 6196-6202.
[http://dx.doi.org/10.1016/j.bmc.2011.09.011] [PMID: 21975067]
[68]
Xie, Y-S.; Pan, X-H.; Zhao, B-X.; Liu, J-T.; Shin, D-S.; Zhang, J-H.; Zheng, L-W.; Zhao, J.; Miao, J-Y. Synthesis, structure characterization and preliminary biological evaluation of novel 5-alkyl-2-ferrocenyl-6,7-dihydropyrazolo [1,5-a]pyrazin-4(5H)-one derivatives. J. Organomet. Chem., 2008, 693(7), 1367-1374.
[http://dx.doi.org/10.1016/j.jorganchem.2008.01.043]
[69]
Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonía, R.; Nogueras, M.; Sanchez, A.; Cobo, J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg. Med. Chem., 2010, 18(14), 4965-4974.
[http://dx.doi.org/10.1016/j.bmc.2010.06.013] [PMID: 20594863]
[70]
Li, D-D.; Lv, P-C.; Zhang, H.; Zhang, H-J.; Hou, Y-P.; Liu, K.; Ye, Y-H.; Zhu, H-L. The combination of 4-anilinoquinazoline and cinnamic acid: A novel mode of binding to the epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem., 2011, 19(16), 5012-5022.
[http://dx.doi.org/10.1016/j.bmc.2011.06.044] [PMID: 21763148]
[71]
Cárdenas, M.; Marder, M.; Blank, V.C.; Roguin, L.P. Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorg. Med. Chem., 2006, 14(9), 2966-2971.
[http://dx.doi.org/10.1016/j.bmc.2005.12.021] [PMID: 16412650]
[72]
Dallavalle, S.; Cincinelli, R.; Nannei, R.; Merlini, L.; Morini, G.; Penco, S.; Pisano, C.; Vesci, L.; Barbarino, M.; Zuco, V.; De Cesare, M.; Zunino, F. Design, synthesis, and evaluation of biphenyl-4-yl-acrylohydroxamic acid derivatives as histone deacetylase (HDAC) inhibitors. Eur. J. Med. Chem., 2009, 44(5), 1900-1912.
[http://dx.doi.org/10.1016/j.ejmech.2008.11.005] [PMID: 19084294]
[73]
Qian, Y.; Zhang, H-J.; Zhang, H.; Xu, C.; Zhao, J.; Zhu, H-L. Synthesis, molecular modeling, and biological evaluation of cinnamic acid metronidazole ester derivatives as novel anticancer agents. Bioorg. Med. Chem., 2010, 18(14), 4991-4996.
[http://dx.doi.org/10.1016/j.bmc.2010.06.003] [PMID: 20594859]
[74]
Zhang, W-M.; Xing, M.; Zhao, T-T.; Ren, Y-J.; Yang, X-H.; Yang, Y-S.; Lv, P-C.; Zhu, H-L. Synthesis, molecular modeling and biological evaluation of cinnamic acid derivatives with pyrazole moieties as novel anticancer agents. RSC Advances, 2014, 4(70), 37197-37207.
[http://dx.doi.org/10.1039/C4RA05257A]
[75]
Ashourpour, M.; Mostafavi Hosseini, F.; Amini, M.; Saeedian Moghadam, E.; Kazerouni, F.; Arman, S.Y.; Shahsavari, Z. Pyrazole derivatives induce apoptosis via ROS generation in the triple negative breast cancer cells, MDA-MB-468. Asian Pac. J. Cancer Prev., 2021, 22(7), 2079-2087.
[http://dx.doi.org/10.31557/APJCP.2021.22.7.2079] [PMID: 34319030]
[76]
Tao, Z.; Shi, A.; Lu, C.; Song, T.; Zhang, Z.; Zhao, J. Breast cancer: Epidemiology and etiology. Cell Biochem. Biophys., 2015, 72(2), 333-338.
[http://dx.doi.org/10.1007/s12013-014-0459-6] [PMID: 25543329]
[77]
Hong, Y.; Cho, M.; Yuan, Y-C.; Chen, S. Molecular basis for the interaction of four different classes of substrates and inhibitors with human aromatase. Biochem. Pharmacol., 2008, 75(5), 1161-1169.
[http://dx.doi.org/10.1016/j.bcp.2007.11.010] [PMID: 18184606]
[78]
Leonard, G.D.; Swain, S.M. Ductal carcinoma in situ, complexities and challenges. J. Natl. Cancer Inst., 2004, 96(12), 906-920.
[http://dx.doi.org/10.1093/jnci/djh164] [PMID: 15199110]
[79]
Gusberg, S.B. Tamoxifen for breast cancer: Associated endometrial cancer. Cancer, 1990, 65(7), 1463-1464.
[http://dx.doi.org/10.1002/1097-0142(19900401)65:7<1463:AID-CNCR2820650702>3.0.CO;2-S] [PMID: 2311060]
[80]
Neven, P.; Vergote, I. Should tamoxifen users be screened for endometrial lesions? Lancet, 1998, 351(9097), 155-157.
[http://dx.doi.org/10.1016/S0140-6736(05)78216-7] [PMID: 9449866]
[81]
Wiseman, L.R.; Goa, K.L. Toremifene. A review of its pharmacological properties and clinical efficacy in the management of advanced breast cancer. Drugs, 1997, 54(1), 141-160.
[http://dx.doi.org/10.2165/00003495-199754010-00014] [PMID: 9211086]
[82]
Diasio, R.B. The role of dihydropyrimidine dehydrogenase (DPD) modulation in 5-FU pharmacology. Oncology (Williston Park), 1998, 12(10)(Suppl. 7), 23-27.
[PMID: 9830621]
[83]
Naruse, T.; Nishida, Y.; Ishiguro, N. Synergistic effects of meloxicam and conventional cytotoxic drugs in human MG-63 osteosarcoma cells. Biomed. Pharmacother., 2007, 61(6), 338-346.
[http://dx.doi.org/10.1016/j.biopha.2007.02.011] [PMID: 17395421]
[84]
Dang, C.T.; Dannenberg, A.J.; Subbaramaiah, K.; Dickler, M.N.; Moasser, M.M.; Seidman, A.D.; D’Andrea, G.M.; Theodoulou, M.; Panageas, K.S.; Norton, L.; Hudis, C.A.; Phase, I.I. Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin. Cancer Res., 2004, 10(12 Pt 1), 4062-4067.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0463] [PMID: 15217939]
[85]
Reardon, D.A.; Quinn, J.A.; Vredenburgh, J.; Rich, J.N.; Gururangan, S.; Badruddoja, M.; Herndon, J.E., II; Dowell, J.M.; Friedman, A.H.; Friedman, H.S. Phase II trial of irinotecan plus celecoxib in adults with recurrent malignant glioma. Cancer, 2005, 103(2), 329-338.
[http://dx.doi.org/10.1002/cncr.20776] [PMID: 15558802]
[86]
Csiki, I.; Morrow, J.D.; Sandler, A.; Shyr, Y.; Oates, J.; Williams, M.K.; Dang, T.; Carbone, D.P.; Johnson, D.H. Targeting cyclooxygenase-2 in recurrent non-small cell lung cancer: A phase II trial of celecoxib and docetaxel. Clin. Cancer Res., 2005, 11(18), 6634-6640.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0436] [PMID: 16166442]
[87]
Farag, A.M.; Mayhoub, A.S.; Eldebss, T.M.A.; Amr, A-G.E.; Ali, K.A.K.; Abdel-Hafez, N.A.; Abdulla, M.M. Synthesis and structure-activity relationship studies of pyrazole-based heterocycles as antitumor agents. Arch. Pharm. (Weinheim), 2010, 343(7), 384-396.
[http://dx.doi.org/10.1002/ardp.200900176] [PMID: 20397210]
[88]
Weil, C.S. Tables for convenient calculation of median-effective dose (LD50 or ED50) and instructions in their use. Biometrics, 1952, 8(3), 249-263.
[http://dx.doi.org/10.2307/3001557]
[89]
Giuliano, M.; Hu, H.; Wang, Y-C.; Fu, X.; Nardone, A.; Herrera, S.; Mao, S.; Contreras, A.; Gutiérrez, C.; Wang, T.; Hilsenbeck, S.G.; De Angelis, C.; Wang, N.J.; Heiser, L.M.; Gray, J.W.; López-Tarruella, S.; Pavlick, A.C.; Trivedi, M.V.; Chamness, G.C.; Chang, J.C.; Osborne, C.K.; Rimawi, M.F.; Schiff, R. Upregulation of ER signaling as an adaptive mechanism of cell survival in HER2-positive breast tumors treated with anti-HER2 therapy. Clin. Cancer Res., 2015, 21(17), 3995-4003.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2728] [PMID: 26015514]
[90]
Dunnwald, L.K.; Rossing, M.A.; Li, C.I. Hormone receptor status, tumor characteristics, and prognosis: A prospective cohort of breast cancer patients. Breast Cancer Res., 2007, 9(1), R6.
[http://dx.doi.org/10.1186/bcr1639] [PMID: 17239243]
[91]
Ali, S.; Coombes, R.C. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 271-281.
[http://dx.doi.org/10.1023/A:1009594727358] [PMID: 14973389]
[92]
Raju, H.; Chandrappa, S.; Prasanna, D.S.; Ananda, H.; Nagamani, T.S.; Byregowda, S.M.; Rangappa, K.S. Synthesis, characterization and in-vitro antiproliferative effects of novel 5-amino pyrazole derivatives against breast cancer cell lines. Anti-Cancer Drug Discov., 2011, 6(2), 186-195.
[http://dx.doi.org/10.2174/157489211795328459] [PMID: 21247401]
[93]
Ananda, H.; Sharath Kumar, K.S.; Nishana, M.; Hegde, M.; Srivastava, M.; Byregowda, R.; Choudhary, B.; Raghavan, S.C.; Rangappa, K.S. Regioselective synthesis and biological studies of novel 1-aryl-3, 5-bis (het) aryl pyrazole derivatives as potential antiproliferative agents. Mol. Cell. Biochem., 2017, 426(1-2), 149-160.
[http://dx.doi.org/10.1007/s11010-016-2887-7] [PMID: 27882441]
[94]
Ananda, H.; Sharath Kumar, K.S.; Sudhanva, M.S.; Rangappa, S.; Rangappa, K.S. A trisubstituted pyrazole derivative reduces DMBA-induced mammary tumor growth in rats by inhibiting estrogen receptor-α expression. Mol. Cell. Biochem., 2018, 449(1-2), 137-144.
[http://dx.doi.org/10.1007/s11010-018-3350-8] [PMID: 29777335]
[95]
Vajdos, F.F.; Hoth, L.R.; Geoghegan, K.F.; Simons, S.P.; LeMotte, P.K.; Danley, D.E.; Ammirati, M.J.; Pandit, J. The 2.0 A crystal structure of the ERalpha ligand-binding domain complexed with lasofoxifene. Protein Sci., 2007, 16(5), 897-905.
[http://dx.doi.org/10.1110/ps.062729207] [PMID: 17456742]
[96]
Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med., 1971, 285(21), 1182-1186.
[http://dx.doi.org/10.1056/NEJM197111182852108] [PMID: 4938153]
[97]
Liekens, S.; De Clercq, E.; Neyts, J. Angiogenesis: Regulators and clinical applications. Biochem. Pharmacol., 2001, 61(3), 253-270.
[http://dx.doi.org/10.1016/S0006-2952(00)00529-3] [PMID: 11172729]
[98]
Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 2005, 438(7070), 932-936.
[http://dx.doi.org/10.1038/nature04478] [PMID: 16355210]
[99]
Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[100]
Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med., 1995, 1(1), 27-31.
[http://dx.doi.org/10.1038/nm0195-27] [PMID: 7584949]
[101]
Wu, Y.; Sun, W.L.; Feng, J.F. Antiangiogenic therapy in the management of breast cancer. Asia Pac. J. Clin. Oncol., 2013, 9(2), 110-116.
[http://dx.doi.org/10.1111/j.1743-7563.2012.01569.x] [PMID: 22898270]
[102]
Kerbel, R.S. Clinical trials of antiangiogenic drugs: Opportunities, problems, and assessment of initial results. J. Clin. Oncol., 2001, 19(18)(Suppl.), 45S-51S.
[PMID: 11560971]
[103]
Leahy, K.M.; Koki, A.T.; Masferrer, J.L. Role of cyclooxygenases in angiogenesis. Curr. Med. Chem., 2000, 7(11), 1163-1170.
[http://dx.doi.org/10.2174/0929867003374336] [PMID: 11032965]
[104]
Connolly, E.M.; Harmey, J.H.; O’Grady, T.; Foley, D.; Roche-Nagle, G.; Kay, E.; Bouchier-Hayes, D.J. Cyclo-oxygenase inhibition reduces tumour growth and metastasis in an orthotopic model of breast cancer. Br. J. Cancer, 2002, 87(2), 231-237.
[http://dx.doi.org/10.1038/sj.bjc.6600462] [PMID: 12107848]
[105]
Blanke, C.D. Celecoxib with chemotherapy in colorectal cancer. Oncology (Williston Park), 2002, 16(4)(Suppl. 3), 17-21.
[PMID: 12014863]
[106]
Abadi, A.H.; Eissa, A.A.H.; Hassan, G.S. Synthesis of novel 1,3,4-trisubstituted pyrazole derivatives and their evaluation as antitumor and antiangiogenic agents. Chem. Pharm. Bull. (Tokyo), 2003, 51(7), 838-844.
[http://dx.doi.org/10.1248/cpb.51.838] [PMID: 12843591]
[107]
Boyd, M.R.; Paull, K.D. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev. Res., 1995, 34(2), 91-109.
[http://dx.doi.org/10.1002/ddr.430340203]
[108]
Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Natl. Cancer Inst., 1991, 83(11), 757-766.
[http://dx.doi.org/10.1093/jnci/83.11.757] [PMID: 2041050]
[109]
Grever, M.R.; Schepartz, S.A.; Chabner, B.A. The National Cancer Institute: Cancer drug discovery and development program. Semin. Oncol., 1992, 19(6), 622-638.
[PMID: 1462164]
[110]
Christodoulou, M.S.; Liekens, S.; Kasiotis, K.M.; Haroutounian, S.A. Novel pyrazole derivatives: Synthesis and evaluation of anti-angiogenic activity. Bioorg. Med. Chem., 2010, 18(12), 4338-4350.
[http://dx.doi.org/10.1016/j.bmc.2010.04.076] [PMID: 20493716]
[111]
Elmegeed, G.A.; Khalil, W.K.B.; Mohareb, R.M.; Ahmed, H.H.; Abd-Elhalim, M.M.; Elsayed, G.H. Cytotoxicity and gene expression profiles of novel synthesized steroid derivatives as chemotherapeutic anti-breast cancer agents. Bioorg. Med. Chem., 2011, 19(22), 6860-6872.
[http://dx.doi.org/10.1016/j.bmc.2011.09.033] [PMID: 22000946]
[112]
El-Far, M.; Elmegeed, G.A.; Eskander, E.F.; Rady, H.M.; Tantawy, M.A. Novel modified steroid derivatives of androstanolone as chemotherapeutic anti-cancer agents. Eur. J. Med. Chem., 2009, 44(10), 3936-3946.
[http://dx.doi.org/10.1016/j.ejmech.2009.04.020] [PMID: 19447526]
[113]
Chiang, K-C.; Yeh, C-N.; Chen, H-Y.; Lee, J.M.; Juang, H-H.; Chen, M-F.; Takano, M.; Kittaka, A.; Chen, T.C. 19-Nor-2α-(3-hydroxypropyl)-1α,25-dihydroxyvitamin D3 (MART-10) is a potent cell growth regulator with enhanced chemotherapeutic potency in liver cancer cells. Steroids, 2011, 76(13), 1513-1519.
[http://dx.doi.org/10.1016/j.steroids.2011.08.006] [PMID: 21888924]
[114]
Troisi, L.; Florio, S.; Granito, C. Chemoselective construction of novel steroid derivatives. Steroids, 2002, 67(8), 687-693.
[http://dx.doi.org/10.1016/S0039-128X(02)00032-6] [PMID: 12117615]
[115]
Mohareb, R.M.; Elmegeed, G.A.; Abdel-Salam, O.M.E.; Doss, S.H.; William, M.G. Synthesis of modified steroids as a novel class of non-ulcerogenic, anti-inflammatory and anti-nociceptive agents. Steroids, 2011, 76(10-11), 1190-1203.
[http://dx.doi.org/10.1016/j.steroids.2011.05.011] [PMID: 21664368]
[116]
Banday, A.H.; Mir, B.P.; Lone, I.H.; Suri, K.A.; Kumar, H.M. Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 2010, 75(12), 805-809.
[http://dx.doi.org/10.1016/j.steroids.2010.02.014] [PMID: 20206644]
[117]
Shinkawa, T.; Nakajima, H.; Nishijima, K.; Yamasaki, F.; Kato, K.; Ohzawa, N.; Mizota, M. A novel quinolinone diuretic, M12285, and its activation mechanism through sulfate conjugation. Eur. J. Pharmacol., 1992, 219(2), 217-224.
[http://dx.doi.org/10.1016/0014-2999(92)90299-J] [PMID: 1330606]
[118]
Maurice, T.; Urani, A.; Phan, V-L.; Romieu, P. The interaction between neuroactive steroids and the σ1 receptor function: Behavioral consequences and therapeutic opportunities. Brain Res. Brain Res. Rev., 2001, 37(1-3), 116-132.
[http://dx.doi.org/10.1016/S0165-0173(01)00112-6] [PMID: 11744080]
[119]
Vajda, F.J.E. Neuroprotection and neurodegenerative disease. J. Clin. Neurosci., 2002, 9(1), 4-8.
[http://dx.doi.org/10.1054/jocn.2001.1027] [PMID: 11749009]
[120]
Mohareb, R.M.; Al-Omran, F. Reaction of pregnenolone with cyanoacetylhydrazine: Novel synthesis of hydrazide-hydrazone, pyrazole, pyridine, thiazole, thiophene derivatives and their cytotoxicity evaluations. Steroids, 2012, 77(14), 1551-1559.
[http://dx.doi.org/10.1016/j.steroids.2012.09.007] [PMID: 23064008]
[121]
Mohareb, R.M.; Wardakhan, W.W.; Elmegeed, G.A.; Ashour, R.M.S. Heterocyclizations of pregnenolone: Novel synthesis of thiosemicarbazone, thiophene, thiazole, thieno[2,3-b]pyridine derivatives and their cytotoxicity evaluations. Steroids, 2012, 77(14), 1560-1569.
[http://dx.doi.org/10.1016/j.steroids.2012.09.004] [PMID: 23064007]
[122]
Stetler-Stevenson, W.G.; Aznavoorian, S.; Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol., 1993, 9, 541-573.
[http://dx.doi.org/10.1146/annurev.cb.09.110193.002545] [PMID: 8280471]
[123]
Van Aken, E.; De Wever, O.; Correia da Rocha, A.S.; Mareel, M. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch., 2001, 439(6), 725-751.
[http://dx.doi.org/10.1007/s004280100516] [PMID: 11787845]
[124]
Parmar, V.S.; Sharma, N.K.; Husain, M.; Watterson, A.C.; Kumar, J.; Samuelson, L.A.; Cholli, A.L.; Prasad, A.K.; Kumar, A.; Malhotra, S.; Kumar, N.; Jha, A.; Singh, A.; Singh, I. Himanshu; Vats, A.; Shakil, N.A.; Trikha, S.; Mukherjee, S.; Sharma, S.K.; Singh, S.K.; Kumar, A.; Jha, H.N.; Olsen, C.E.; Stove, C.P.; Bracke, M.E.; Mareel, M.M. Synthesis, characterization and in vitro anti-invasive activity screening of polyphenolic and heterocyclic compounds. Bioorg. Med. Chem., 2003, 11(6), 913-929.
[http://dx.doi.org/10.1016/S0968-0896(02)00539-4] [PMID: 12614877]
[125]
Mareel, M.M.; De Mets, M. Effect of microtubule inhibitors on invasion and on related activities of tumor cells. Int. Rev. Cytol., 1984, 90, 125-168.
[http://dx.doi.org/10.1016/S0074-7696(08)61489-8] [PMID: 6389412]
[126]
Takeichi, M. Morphogenetic roles of classic cadherins. Curr. Opin. Cell Biol., 1995, 7(5), 619-627.
[http://dx.doi.org/10.1016/0955-0674(95)80102-2] [PMID: 8573335]
[127]
Birchmeier, W.; Behrens, J. Cadherin expression in carcinomas: Role in the formation of cell junctions and the prevention of invasiveness. Biochim. Biophys. Acta, 1994, 1198(1), 11-26.
[http://dx.doi.org/10.1016/0304-419X(94)90003-5] [PMID: 8199193]
[128]
Rostom, S.A.F.; Shalaby, M.A.; El-Demellawy, M.A. Polysubstituted pyrazoles, part 5. Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents. Eur. J. Med. Chem., 2003, 38(11-12), 959-974.
[http://dx.doi.org/10.1016/j.ejmech.2003.08.003] [PMID: 14642328]
[129]
Park, H-J.; Lee, K.; Park, S-J.; Ahn, B.; Lee, J-C.; Cho, H.; Lee, K-I. Identification of antitumor activity of pyrazole oxime ethers. Bioorg. Med. Chem. Lett., 2005, 15(13), 3307-3312.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.082] [PMID: 15922597]
[130]
Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 1990, 82(13), 1113-1118.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[131]
Krapcho, A.P.; Menta, E.; Oliva, A.; Di Domenico, R.; Fiocchi, L.; Maresch, M.E.; Gallagher, C.E.; Hacker, M.P.; Beggiolin, G.; Giuliani, F.C.; Pezzoni, G.; Spinelli, S. Synthesis and antitumor evaluation of 2,5-disubstituted-indazolo[4, 3-gh]isoquinolin-6(2H)-ones (9-aza-anthrapyra-zoles). J. Med. Chem., 1998, 41(27), 5429-5444.
[http://dx.doi.org/10.1021/jm9804432] [PMID: 9876113]
[132]
Bontemps-Gracz, M.M.; Kupiec, A.; Antonini, I.; Borowski, E. The ability to overcome multidrug resistance of tumor cell lines by novel acridine cytostatics with condensed heterocyclic rings. Acta Biochim. Pol., 2002, 49(1), 87-92.
[http://dx.doi.org/10.18388/abp.2002_3824] [PMID: 12136960]
[133]
Stefańska, B.; Bontemps-Gracz, M.M.; Antonini, I.; Martelli, S.; Arciemiuk, M.; Piwkowska, A.; Rogacka, D.; Borowski, E. 2,7-Dihydro-3H-pyridazino[5,4,3-kl]acridin-3-one derivatives, novel type of cytotoxic agents active on multidrug-resistant cell lines. Synthesis and biological evaluation. Bioorg. Med. Chem., 2005, 13(6), 1969-1975.
[http://dx.doi.org/10.1016/j.bmc.2005.01.023] [PMID: 15727851]
[134]
Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Gaignard, D.H.; Atassi, G. Synthesis and conformational analysis of some new Pyrano[2,3-c]xanthen-7-one and Pyrano[3,2-b]xanthen-6-one derivatives with cytotoxic activity. Heterocycles, 2000, 53(1), 93-106.
[http://dx.doi.org/10.3987/COM-99-8727]
[135]
Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Atassi, G.; Caignard, D.H. Design and synthesis of some new pyranoxanthenones with cytotoxic activity. J. Heterocycl. Chem., 2001, 38(1), 147-152.
[http://dx.doi.org/10.1002/jhet.5570380121]
[136]
Kostakis, I.K.; Pouli, N.; Marakos, P.; Mikros, E.; Skaltsounis, A-L.; Leonce, S.; Atassi, G.; Renard, P. Synthesis, cytotoxic activity, NMR study and stereochemical effects of some new pyrano[3,2-b]thioxanthen-6-ones and pyrano[2,3-c]thioxanthen-7-ones. Bioorg. Med. Chem., 2001, 9(11), 2793-2802.
[http://dx.doi.org/10.1016/S0968-0896(01)00130-4] [PMID: 11597459]
[137]
Svoboda, G.H.; Poore, G.A.; Simpson, P.J.; Boder, G.B. Alkaloids of Acronychia baueri schott I. isolation of the alkaloids and a study of the antitumor and other biological properties of acronycine. J. Pharm. Sci., 1966, 55(8), 758-768.
[http://dx.doi.org/10.1002/jps.2600550803] [PMID: 5975286]
[138]
Michel, S.; Gaslonde, T.; Tillequin, F. Benzo[b]acronycine derivatives: A novel class of antitumor agents. Eur. J. Med. Chem., 2004, 39(8), 649-655.
[http://dx.doi.org/10.1016/j.ejmech.2004.05.001] [PMID: 15276298]
[139]
Elomri, A.; Mitaku, S.; Michel, S.; Skaltsounis, A-L.; Tillequin, F.; Koch, M.; Pierré, A.; Guilbaud, N.; Léonce, S.; Kraus-Berthier, L.; Rolland, Y.; Atassi, G. Synthesis and cytotoxic and antitumor activity of esters in the 1,2-dihydroxy-1,2-dihydroacronycine series. J. Med. Chem., 1996, 39(24), 4762-4766.
[http://dx.doi.org/10.1021/jm9602975] [PMID: 8941390]
[140]
Kostakis, I.; Ghirtis, K.; Pouli, N.; Marakos, P.; Skaltsounis, A-L.; Leonce, S.; Caignard, D.H.; Atassi, G. Synthesis and cytotoxic activity of 2-dialkylaminoethylamino substituted xanthenone and thioxanthenone derivatives. Farmaco, 2000, 55(6-7), 455-460.
[http://dx.doi.org/10.1016/S0014-827X(00)00068-9] [PMID: 11204746]
[141]
Kostakis, I.K.; Magiatis, P.; Pouli, N.; Marakos, P.; Skaltsounis, A.L.; Pratsinis, H.; Léonce, S.; Pierré, A. Design, synthesis, and antiproliferative activity of some new pyrazole-fused amino derivatives of the pyranoxanthenone, pyranothioxanthenone, and pyranoacridone ring systems: A new class of cytotoxic agents. J. Med. Chem., 2002, 45(12), 2599-2609.
[http://dx.doi.org/10.1021/jm011117g] [PMID: 12036369]
[142]
Giannouli, V.; Kostakis, I.K.; Pouli, N.; Marakos, P.; Kousidou, O.Ch.; Tzanakakis, G.N.; Karamanos, N.K. Design, synthesis, and evaluation of the antiproliferative activity of a series of novel fused xanthenone aminoderivatives in human breast cancer cells. J. Med. Chem., 2007, 50(7), 1716-1719.
[http://dx.doi.org/10.1021/jm061410m] [PMID: 17335189]
[143]
Bandgar, B.P.; Totre, J.V.; Gawande, S.S.; Khobragade, C.N.; Warangkar, S.C.; Kadam, P.D. Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents. Bioorg. Med. Chem., 2010, 18(16), 6149-6155.
[http://dx.doi.org/10.1016/j.bmc.2010.06.046] [PMID: 20638287]
[144]
Dengler, W.A.; Schulte, J.; Berger, D.P.; Mertelsmann, R.; Fiebig, H.H. Development of a Propidium Iodide fluorescence assay for proliferation and cytotoxicity assays. Anticancer Drugs, 1995, 6(4), 522-532.
[http://dx.doi.org/10.1097/00001813-199508000-00005] [PMID: 7579556]
[145]
Hu, P.; Zhao, K-Q.; Xu, H-B. (4-Hydroxybenzylidene)-4-ferrocenylaniline. Molecules, 2001, 6(12), M251.
[http://dx.doi.org/10.3390/M251]
[146]
Togni, A.; Halterman, R.L. Eds.; Metallocenes; Wiley-VCH Verlag GmbH: Weinheim, Germany, 1998.
[http://dx.doi.org/10.1002/9783527619542]
[147]
Drent, E. Ferrocene: Homogenous catalysis, organic synthesis, material; VCH: Weinheim, 1995.
[148]
Stepnicka, P. Ed.; Ferrocenes: Ligands, Material and Biomolecules; John Wiley and Sons: NJ, USA, 2008.
[149]
Bruijnincx, P.C.A.; Sadler, P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol., 2008, 12(2), 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[150]
Yu, H.; Shao, L.; Fang, J. Synthesis and biological activity research of novel ferrocenyl-containing thiazole imine derivatives. J. Organomet. Chem., 2007, 692(5), 991-996.
[http://dx.doi.org/10.1016/j.jorganchem.2006.10.059]
[151]
Tabbì, G.; Cassino, C.; Cavigiolio, G.; Colangelo, D.; Ghiglia, A.; Viano, I.; Osella, D. Water stability and cytotoxic activity relationship of a series of ferrocenium derivatives. ESR insights on the radical production during the degradation process. J. Med. Chem., 2002, 45(26), 5786-5796.
[http://dx.doi.org/10.1021/jm021003k] [PMID: 12477361]
[152]
Hillard, E.; Vessières, A.; Thouin, L.; Jaouen, G.; Amatore, C. Ferrocene-mediated proton-coupled electron transfer in a series of ferrocifen-type breast-cancer drug candidates. Angew. Chem. Int. Ed., 2005, 45(2), 285-290.
[http://dx.doi.org/10.1002/anie.200502925] [PMID: 16312004]
[153]
Hamels, D.; Dansette, P.M.; Hillard, E.A.; Top, S.; Vessières, A.; Herson, P.; Jaouen, G.; Mansuy, D. Ferrocenyl quinone methides as strong antiproliferative agents: Formation by metabolic and chemical oxidation of ferrocenyl phenols. Angew. Chem. Int. Ed. Engl., 2009, 48(48), 9124-9126.
[http://dx.doi.org/10.1002/anie.200903768] [PMID: 19876986]
[154]
van Staveren, D.R.; Metzler-Nolte, N. Bioorganometallic chemistry of ferrocene. Chem. Rev., 2004, 104(12), 5931-5985.
[http://dx.doi.org/10.1021/cr0101510] [PMID: 15584693]
[155]
Köpf-Maier, P.; Köpf, H.; Neuse, E.W. Ferrocenium salts—the first antineoplastic iron compounds. Angew. Chem. Int. Ed. Engl., 1984, 23(6), 456-457.
[http://dx.doi.org/10.1002/anie.198404561]
[156]
Sun, M-L.; Ruan, B-F.; Zhang, Q.; Liu, Z-D.; Li, S-L.; Wu, J-Y.; Jin, B-K.; Yang, J-X.; Zhang, S-Y.; Tian, Y-P. Synthesis, crystal structures, electrochemical studies and anti-tumor activities of three polynuclear organotin(IV) carboxylates containing ferrocenyl moiety. J. Organomet. Chem., 2011, 696(20), 3180-3185.
[http://dx.doi.org/10.1016/j.jorganchem.2011.06.045]
[157]
Huang, X-F.; Tang, J-F.; Ji, J-L.; Wang, X-L.; Ruan, B-F. Synthesis, characterization and antitumor activity of novel amide derivatives containing ferrocenyl pyrazol-moiety. J. Organomet. Chem., 2012, 706-707, 113-123.
[http://dx.doi.org/10.1016/j.jorganchem.2012.02.001]
[158]
Huang, X-F.; Wang, L-Z.; Tang, L.; Lu, Y-X.; Wang, F.; Song, G-Q.; Ruan, B-F. Synthesis, characterization and antitumor activity of novel ferrocene derivatives containing pyrazolyl-moiety. J. Organomet. Chem., 2014, 749, 157-162.
[http://dx.doi.org/10.1016/j.jorganchem.2013.08.043]
[159]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A.M. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[160]
Gediya, L.K.; Njar, V.C. Promise and challenges in drug discovery and development of hybrid anticancer drugs. Expert Opin. Drug Discov., 2009, 4(11), 1099-1111.
[http://dx.doi.org/10.1517/17460440903341705] [PMID: 23480431]
[161]
Shah, K.; Chhabra, S.; Shirvastava, S.K.; Mishra, P. Benzimidazole: A promising pharmacophore. Med. Chem. Res., 2013, 22, 5077-5104.
[http://dx.doi.org/10.1007/s00044-013-0476-9]
[162]
Sarhan, A.A.O.; Al-Dhfyan, A.; Al-Mozaini, M.A.; Adra, C.N.; Aboul-Fadl, T. Cell cycle disruption and apoptotic activity of 3-aminothiazolo[3,2-a]benzimidazole-2-carboni-trile and its homologues. Eur. J. Med. Chem., 2010, 45(6), 2689-2694.
[http://dx.doi.org/10.1016/j.ejmech.2010.02.025] [PMID: 20226574]
[163]
El Rashedy, A.A.; Aboul-Enein, H.Y. Benzimidazole derivatives as potential anticancer agents. Mini Rev. Med. Chem., 2013, 13(3), 399-407.
[http://dx.doi.org/10.2174/138955713804999847] [PMID: 23190032]
[164]
Husain, A.; Rashid, M.; Shaharyar, M.; Siddiqui, A.A.; Mishra, R. Benzimidazole clubbed with triazolo-thiadiazoles and triazolo-thiadiazines: New anticancer agents. Eur. J. Med. Chem., 2013, 62, 785-798.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.011] [PMID: 23333063]
[165]
Paul, K.; Bindal, S.; Luxami, V. Synthesis of new conjugated coumarin-benzimidazole hybrids and their anticancer activity. Bioorg. Med. Chem. Lett., 2013, 23(12), 3667-3672.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.071] [PMID: 23642480]
[166]
Reddy, T.S.; Kulhari, H.; Reddy, V.G.; Bansal, V.; Kamal, A.; Shukla, R. Design, synthesis and biological evaluation of 1,3-diphenyl-1H-pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur. J. Med. Chem., 2015, 101, 790-805.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.031] [PMID: 26231080]
[167]
Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer, 2009, 9(7), 501-507.
[http://dx.doi.org/10.1038/nrc2663] [PMID: 19550425]
[168]
Aggarwal, R.; Kumar, R.; Kumar, S.; Garg, G.; Mahajan, R.; Sharma, J. Synthesis and antibacterial activity of some 5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazol-1-thiocar-boxamides, 3-trifluoromethylpyrazol-1-thiocarboxamides and 4-aryl-2-(5(3)-trifluoromethyl-1-pyrazolyl)thiazoles. J. Fluor. Chem., 2011, 132(11), 965-972.
[http://dx.doi.org/10.1016/j.jfluchem.2011.07.029]
[169]
Usachev, B.I.; Obydennov, D.L.; Röschenthaler, G-V.; Sosnovskikh, V.Y. 2-Cyano-6-(trifluoromethyl)-4H-pyran-4-one: A novel versatile CF3-containing building block. J. Fluor. Chem., 2012, 137, 22-26.
[http://dx.doi.org/10.1016/j.jfluchem.2012.01.006]
[170]
Aggarwal, R.; Bansal, A.; Mittal, A. Synthesis and antimicrobial activity of 3-(2-thienyl)-4-arylazo-5-hydroxy-5-trifluoromethyl-Δ2-isoxazolines and 3-(2-thienyl)-4-aryla-zo-5-trifluoromethylisoxazoles. J. Fluor. Chem., 2013, 145, 95-101.
[http://dx.doi.org/10.1016/j.jfluchem.2012.10.005]
[171]
Fayed, E.A.; Eissa, S.I.; Bayoumi, A.H.; Gohar, N.A.; Mehany, A.B.M.; Ammar, Y.A. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol. Divers., 2019, 23(1), 165-181.
[http://dx.doi.org/10.1007/s11030-018-9865-9] [PMID: 30099687]
[172]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[173]
Lu, W.; Li, P.; Shan, Y.; Su, P.; Wang, J.; Shi, Y.; Zhang, J. Discovery of biphenyl-based VEGFR-2 inhibitors. Part 3: Design, synthesis and 3D-QSAR studies. Bioorg. Med. Chem., 2015, 23(5), 1044-1054.
[http://dx.doi.org/10.1016/j.bmc.2015.01.006] [PMID: 25637123]
[174]
Kamal, A.; Faazil, S.; Ramaiah, M.J.; Ashraf, M.; Balakrishna, M.; Pushpavalli, S.N.C.V.L.; Patel, N.; Pal-Bhadra, M. Synthesis and study of benzothiazole conjugates in the control of cell proliferation by modulating Ras/MEK/ERK-dependent pathway in MCF-7 cells. Bioorg. Med. Chem. Lett., 2013, 23(20), 5733-5739.
[http://dx.doi.org/10.1016/j.bmcl.2013.07.068] [PMID: 23999041]
[175]
Wang, M.; Xu, S.; Lei, H.; Wang, C.; Xiao, Z.; Jia, S.; Zhi, J.; Zheng, P.; Zhu, W. Design, synthesis and antitumor activity of Novel Sorafenib derivatives bearing pyrazole scaffold. Bioorg. Med. Chem., 2017, 25(20), 5754-5763.
[http://dx.doi.org/10.1016/j.bmc.2017.09.003] [PMID: 28927801]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy