Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Sydnone: Synthesis, Reactivity and Biological Activities

Author(s): Souad Zerbib, Mostafa Khouili, Marco Catto* and Latifa Bouissane*

Volume 30, Issue 10, 2023

Published on: 03 October, 2022

Page: [1122 - 1144] Pages: 23

DOI: 10.2174/0929867329666220620123050

Price: $65

Abstract

Sydnones are among the most well-known mesoionic compounds. Since their synthesis in 1935 by Earl and Mecknay, numerous researches have shown that the chemical behavior, physical and biological properties of sydnones make them the most useful compounds in organic chemistry. Sydnones undergo thermal 1,3-dipolar cycloaddition reaction with dipolarophiles (alkynes or alkenes) to give exclusively derivatives containing a pyrazole moiety exhibiting numerous applications, such as pharmaceuticals and agrochemicals. However, the sydnone cycloaddition reaction with alkynes requires harsh conditions, like high temperatures and long reaction times, giving poor regioselectivity to the resulting products. To overcome these constraints, new reactions named CuSAC (Copper- Catalyzed Sydnone-Alkyne Cycloaddition) and SPSAC (Strain-Promoted Sydnone- Alkyne Cycloaddition) have been developed, leading to pyrazoles with interesting constant kinetics.

Keywords: Sydnone, mesoionic, heterocycles, functionalization, 1, 3-dipolar cycloaddition, biorthogonal reaction, biological activities, applications.

[1]
Earl, J.C.; Mackney, A.W. 204. The action of acetic anhydride on N-nitrosophenylglycine and some of its derivatives. J. Chem. Soc., 1935, 899-900.
[http://dx.doi.org/10.1039/jr9350000899]
[2]
Badami, B.V. Mesoionic compounds. Resonance, 2006, 11(10), 40-48.
[http://dx.doi.org/10.1007/BF02835674]
[3]
Raymond, C.F.J.; Martin, J.N. In synthetic applications of 1,3-Dipolar cycloaddition chemistry toward heterocycles and natural products John Wiley & Sons: New York, 2002; 59, pp. 1-81.
[4]
Patel, Y.M.; Patel, K.C. Synthesis and biological evaluation of new sydnone based derivatives. J. Saudi Chem. Soc., 2015, 19(2), 193-199.
[http://dx.doi.org/10.1016/j.jscs.2012.02.005]
[5]
Shih, M.H.; Xu, Y.Y.; Yang, Y.S.; Lin, G.L. A facile synthesis and antimicrobial activity evaluation of sydnonyl-substituted thiazolidine derivatives. Molecules, 2015, 20(4), 6520-6532.
[http://dx.doi.org/10.3390/molecules20046520] [PMID: 25871371]
[6]
Dunkley, C.S.; Thoman, C.J. Synthesis and biological evaluation of a novel phenyl substituted sydnone series as potential antitumor agents. Bioorg. Med. Chem. Lett., 2003, 13(17), 2899-2901.
[http://dx.doi.org/10.1016/S0960-894X(03)00487-6] [PMID: 14611853]
[7]
Taj, T.; Kamble, R.R.; Gireesh, T.M.; Hunnur, R.K.; Margankop, S.B. One-pot synthesis of pyrazoline derivatised carbazoles as antitubercular, anticancer agents, their DNA cleavage and antioxidant activities. Eur. J. Med. Chem., 2011, 46(9), 4366-4373.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.007] [PMID: 21802797]
[8]
Shih, M.H.; Chen, J.C.; Lin, G.L.; Lin, T.T.; Sun, M.H. Novel synthesis of palladium (II) complexes derived from 3-arylsydnone-4-carbaldehyde N(4)-phenylthiosemicarba-zones and biological activity. J. Pharm. Pharmacol., 2014, 66(1), 73-83.
[http://dx.doi.org/10.1111/jphp.12157] [PMID: 24164544]
[9]
Decuypère, E.; Plougastel, L.; Audisio, D.; Taran, F. Sydnone-alkyne cycloaddition: Applications in synthesis and bioconjugation. Chem. Commun. (Camb.), 2017, 53(84), 11515-11527.
[http://dx.doi.org/10.1039/C7CC06405E] [PMID: 28959814]
[10]
Küçükgüzel, Ş.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97, 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[11]
Liu, X.; Xiang, L.; Li, J.; Wu, Y.; Zhang, K. Stoichiometric imbalance-promoted step-growth polymerization based on self-accelerating 1, 3-dipolar cycloaddition click reactions. Polym. Chem., 2020, 11(1), 125-134.
[http://dx.doi.org/10.1039/C9PY01362H]
[12]
Kacprzak, K.; Skiera, I.; Piasecka, M.; Paryzek, Z. Alkaloids and isoprenoids modification by copper (I)-catalyzed Huisgen 1,3-dipolar cycloaddition (click chemistry): Toward new functions and molecular architectures. Chem. Rev., 2016, 116(10), 5689-5743.
[http://dx.doi.org/10.1021/acs.chemrev.5b00302] [PMID: 27115045]
[13]
Estupinan, D.; Gegenhuber, T.; Blinco, J.P.; Barner-Kowollik, C.; Barner, L. Self-reporting fluorescent step-growth raft polymers based on nitrile imine-mediated tetrazole-ene cycloaddition chemistry. ACS Macro Lett., 2017, 6(3), 229-234.
[http://dx.doi.org/10.1021/acsmacrolett.7b00024]
[14]
Hodgson, S.M.; Bakaic, E.; Stewart, S.A.; Hoare, T.; Adronov, A. Properties of poly (ethylene glycol)hydrogels cross-linked via strain-promoted alkyne–azide cycloaddition (SPAAC). Biomacromolecules, 2016, 17(3), 1093-1100.
[http://dx.doi.org/10.1021/acs.biomac.5b01711] [PMID: 26842783]
[15]
Boutureira, O.; Bernardes, G.J. Advances in chemical protein modification. Chem. Rev., 2015, 115(5), 2174-2195.
[http://dx.doi.org/10.1021/cr500399p] [PMID: 25700113]
[16]
An, P.; Lewandowski, T.M.; Erbay, T.G.; Liu, P.; Lin, Q. Sterically shielded, stabilized nitrile imine for rapid bioorthogonal protein labeling in live cells. J. Am. Chem. Soc., 2018, 140(14), 4860-4868.
[http://dx.doi.org/10.1021/jacs.8b00126] [PMID: 29565582]
[17]
Albota, F.; Drăghici, C.; Caira, M.R.; Dumitrascu, F. 1,3-Dipolar cycloaddition between acetylenic dipolarophiles and sydnone-N-ylides as bis (1, 3-dipoles). Tetrahedron, 2015, 71(48), 9095-9100.
[http://dx.doi.org/10.1016/j.tet.2015.10.021]
[18]
Baker, W.; Ollis, W.D. Meso-ionic compounds. Q. Rev. Chem. Soc., 1957, 11(1), 15-29.
[http://dx.doi.org/10.1039/qr9571100015]
[19]
Stewart, F.H.C. The chemistry of the sydnones. Chem. Rev., 1964, 64(2), 129-147.
[http://dx.doi.org/10.1021/cr60228a004]
[20]
Baker, W.; Ollis, W.D.; Poole, V.D. Cyclic mesoionic compounds. Part I. The structure of the sydnones and related compounds. J. Chem. Soc., 1949, 307-314.
[http://dx.doi.org/10.1039/jr9490000307]
[21]
Bantreil, X.; Pétry, N.; Lamaty, F. Coordination complexes involving sydnones as ligands. Dalton Trans., 2019, 48(42), 15753-15761.
[http://dx.doi.org/10.1039/C9DT03115D] [PMID: 31593195]
[22]
Kier, L.B.; Roche, E.B. Molecular orbital calculations of the electronic structure of the sydnones. J. Pharm. Sci., 1966, 55(8), 807-812.
[http://dx.doi.org/10.1002/jps.2600550811]
[23]
Browne, D.L.; Harrity, J.P. Recent developments in the chemistry of sydnones. Tetrahedron, 2010, 66(3), 553-568.
[http://dx.doi.org/10.1016/j.tet.2009.10.085]
[24]
Ollis, W.D.; Ramsden, C.A. Meso-ionic compounds. Adv. Heterocycl. Chem., 1976, 19, 1-122.
[http://dx.doi.org/10.1016/S0065-2725(08)60230-5]
[25]
Baker, W.; Ollis, W.D.; Poole, V.D. Cyclicy; meso-ionic compounds. Part III. Further properties of the sydnones and the mechanism of their formation. J. Chem. Soc., 1950, 1542-1551.
[http://dx.doi.org/10.1039/jr9500001542]
[26]
Rai, N.S.; Kalluraya, B.; Lingappa, B.; Shenoy, S.; Puranic, V.G. Convenient access to 1,3,4-trisubstituted pyrazoles carrying 5-nitrothiophene moiety via 1,3-dipolar cycloaddition of sydnones with acetylenic ketones and their antimicrobial evaluation. Eur. J. Med. Chem., 2008, 43(8), 1715-1720.
[http://dx.doi.org/10.1016/j.ejmech.2007.08.002] [PMID: 17923171]
[27]
Pétry, N.; Vanderbeeken, T.; Malher, A.; Bringer, Y.; Retailleau, P.; Bantreil, X.; Lamaty, F. Mechanosynthesis of sydnone-containing coordination complexes. Chem. Commun. (Camb.), 2019, 55(64), 9495-9498.
[http://dx.doi.org/10.1039/C9CC04673A] [PMID: 31328215]
[28]
Butković, K.; Vuk, D.; Marinić, Ž.; Penić, J.; Šindler-Kulyk, M. Synthesis and photochemistry of 3-(o-stilbeneyl)-4-H/Me/Ph-sydnones; intramolecular cyclization to 1, 2-benzodiazepines and/or quinolines. Tetrahedron, 2010, 66(48), 9356-9362.
[http://dx.doi.org/10.1016/j.tet.2010.10.013]
[29]
Favre, C.; Friscourt, F. Fluorogenic sydnone-modified coumarins switched-on by copper-free click chemistry. Org. Lett., 2018, 20(14), 4213-4217.
[http://dx.doi.org/10.1021/acs.orglett.8b01587] [PMID: 29995429]
[30]
Decuypère, E.; Riomet, M.; Sallustrau, A.; Bregant, S.; Thai, R.; Pieters, G.; Clavier, G.; Audisio, D.; Taran, F. Sydnone-coumarins as clickable turn-on fluorescent sensors for molecular imaging. Chem. Commun. (Camb.), 2018, 54(76), 10758-10761.
[http://dx.doi.org/10.1039/C8CC06070C] [PMID: 30198046]
[31]
Shao, Z.; Zhang, C.; Zhu, X.; Wang, Y.; Xu, W.; Chen, Y.; Liang, Y. Design of a 1,8-naphthalimide-based Off-On type bioorthogonal reagent for fluorescent imaging in live cells. Chin. Chem. Lett., 2019, 30(12), 2169-2172.
[http://dx.doi.org/10.1016/j.cclet.2019.06.023]
[32]
Dumitrascu, F.; Draghici, C.; Vuluga, D.; Caproiu, M.T. New pyrazoles by 1,3-dipolar cycloaddition reactions between sydnones and activated alkynes. Rev. Roum. Chim., 2006, 51(4), 255.
[33]
Il’ya, A.C.; Moiseev, S.K. Recent developments in the chemistry of sydnones and sydnone imines. Adv. Heterocycl. Chem., 2020, 131, 49-164.
[http://dx.doi.org/10.1016/bs.aihch.2019.11.003]
[34]
Tien, H.J.; Nonaka, T.; Sekine, T. Anodic chlorination and bromination of 3-substituted sydnone compounds. Chem. Lett., 1979, 8(3), 283-286.
[http://dx.doi.org/10.1246/cl.1979.283]
[35]
Aleem, A.S.; Turnbull, K. Halogenation of 3-(3, 5-dimethoxyphenyl)sydnone. Org. Prep. Proced. Int., 2015, 47(1), 87-93.
[http://dx.doi.org/10.1080/00304948.2015.983810]
[36]
Bose, A.; Mal, P. Electrophilic aryl-halogenation using N-halosuccinimides under ball-milling. Tetrahedron Lett., 2014, 55(13), 2154-2156.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.064]
[37]
Parrino, F.; Camera Roda, G.; Loddo, V.; Palmisano, L. Elemental bromine production by TiO2 photocatalysis and/or ozonation. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10391-10395.
[http://dx.doi.org/10.1002/anie.201603635] [PMID: 27461437]
[38]
Ding, M.F.; Cheng, K.F.; Chen, Y.N.; Lin, S.T. The electrophilic substitution of sydnones:The reaction with 3-aryl-4-phenylsydnones, 3-arylmethylsydnones and 3-phenyle-thylsydnone. Univ. J. Chem., 2013, 1(3), 113-120.
[http://dx.doi.org/10.13189/ujc.2013.010306]
[39]
Kale, S.B.; Jori, P.K.; Thatikonda, T.; Gonnade, R.G.; Das, U. 1,6-Conjugate-addition-induced [2+1] annulation of para-quinone methides and pyrazolones: Synthesis of bis-spiro compounds with contiguous quaternary spiro-centers. Org. Lett., 2019, 21(19), 7736-7740.
[http://dx.doi.org/10.1021/acs.orglett.9b02641] [PMID: 31544462]
[40]
Zysman-Colman, E.; Arias, K.; Siegel, J.S. Synthesis of arylbromides from arenes and N-bromosuccinimide (NBS) in acetonitrile. A convenient method for aromatic bromination. Can. J. Chem., 2009, 87(2), 440-447.
[http://dx.doi.org/10.1139/V08-176]
[41]
Bovonsombat, P.; Teecomegaet, P.; Kulvaranon, P.; Pandey, A.; Chobtumskul, K.; Tungsirisurp, S.; Choosakoonkriang, S. Regioselective monobromination of aromatics via a halogen bond acceptor-donor interaction of catalytic thioamide and N-bromosuccinimide. Tetrahedron, 2017, 73(46), 6564-6572.
[http://dx.doi.org/10.1016/j.tet.2017.10.005]
[42]
Han, B.; Zheng, Z.; Wu, F.; Wang, A. One-pot synthesis of α-bromoacetals of ketones from secondary alcohols and 1,3-dibromo-5, 5-dimethylhydantoin (DBDMH) in ethylene glycol. Synth. Commun., 2017, 47(24), 2387-2394.
[http://dx.doi.org/10.1080/00397911.2017.1378681]
[43]
Taj, T.; Raikar, S.V.; Kamble, R.R. Synthetic utility of sydnones to couple pharmacologically important heterocycles for antitubercular activity. Arab. J. Chem., 2014, 7(6), 900-905.
[http://dx.doi.org/10.1016/j.arabjc.2011.01.029]
[44]
Brown, D.C.; Turnbull, K. Improved method for the iodination of sydnones. Synth. Commun., 2013, 43(23), 3233-3237.
[http://dx.doi.org/10.1080/00397911.2013.779713]
[45]
Nashashibi, I.F.; Tumey, J.M.; Owens, B.L.; Turnbull, K. Chlorination of 3-arylsydnones with iodine monochloride. Org. Prep. Proced. Int., 2017, 49(1), 59-63.
[http://dx.doi.org/10.1080/00304948.2017.1260398]
[46]
Dumitraşcu, F.; Mitan, C.I.; Drăghici, C.; Barbu, L. Liebigs Ann., 1997, 197, 2613-2616.
[http://dx.doi.org/10.1002/jlac.199719971229]
[47]
Turnbull, K.; Sun, C.; Krein, D.M. The sydnone ring as an ortho-director of lithiation. 2.1 Dilithiation of 3-phenylsydnone and regiospecific o-aryl acylation using N-methoxy-N-methylamides. Tetrahedron Lett., 1998, 39(12), 1509-1512.
[http://dx.doi.org/10.1016/S0040-4039(98)00069-0]
[48]
Turnbull, K.; Krein, D.M. ortho-(Substituted silyl) phenylsydnones via a novel sydnone to phenyl ring, lithiation-induced silicon migration. Synth. Commun., 2003, 33(12), 2061-2067.
[http://dx.doi.org/10.1081/SCC-120021032]
[49]
Turnbull, K.; Nashashibi, I.F. 4‐Substituted ortho‐(silylated phenyl)sydnones via a lithiation‐induced silicon migration and subsequent reaction with electrophiles. Synth. Commun., 2007, 37(6), 915-919.
[http://dx.doi.org/10.1080/00397910601163562]
[50]
Fuchigami, T.; Chen, C-S.; Nonaka, T.; Yeh, M-Y.; Tien, H-J. Synthesis of sydnone compounds substituted by heteroatom groups at the 4-position. Bull. Chem. Soc. Jpn., 1986, 59(2), 483-486.
[http://dx.doi.org/10.1246/bcsj.59.483]
[51]
Tien, H-J.; Fang, G-M.; Lin, S-T.; Tien, L-L. A Facile One-pot synthesis of 4-acyl and 4-(1-hydroxyethyl)sydnones. J. Chin. Chem. Soc. (Taipei), 1992, 39(1), 107-110.
[http://dx.doi.org/10.1002/jccs.199200017]
[52]
Tegginamath, G.; Kamble, R.R.; Taj, T.; Kattimani, P.P.; Meti, G.Y. Synthesis of novel imidazo [2,1-b][1,3,4]thiadiazoles appended to sydnone as anticancer agents. Med. Chem. Res., 2013, 22(9), 4367-4375.
[http://dx.doi.org/10.1007/s00044-012-0441-z]
[53]
Dorababu, A.; Kamble, R.; Kattimani, P.; Kariduraganavar, M.; Kamble, A. Ceric ammonium nitrate catalysed stereoselective synthesis of β-aminoketones using 3-aryl-4-formylsydnones. Lett. Org. Chem., 2014, 11(4), 244-249.
[http://dx.doi.org/10.2174/1570178611999140221163716]
[54]
Gireesh, T.; Kamble, R.R.; Kattimani, P.P.; Dorababu, A.; Manikantha, M.; Hoskeri, J.H. Synthesis of sydnone substituted Biginelli derivatives as hyaluronidase inhibitors. Arch. Pharm. (Weinheim), 2013, 346(9), 645-653.
[http://dx.doi.org/10.1002/ardp.201300118] [PMID: 23908008]
[55]
Kamble, A.A.; Kamble, R.R.; Kumbar, M.N.; Tegginamath, G. Pyridine-catalyzed synthesis of quinoxalines as anticancer and anti-tubercular agents. Med. Chem. Res., 2016, 25(6), 1163-1174.
[http://dx.doi.org/10.1007/s00044-016-1558-2]
[56]
Ghasemnejad-Bosra, H.; Haghdadi, M.; Gholampour-Azizi, I. N-Bromosuccinimide (NBS) as promoter for acylation of sydnones in the presence of acetic anhydride under neutral conditions. Heterocycles, 2008, 75(2), 391-395.
[http://dx.doi.org/10.3987/COM-07-11185]
[57]
Azarifar, D.; Bosra, H.G.; Tajbaksh, M. 1,3‐Dibromo‐5,5‐dimethylhydantoin (DBH) as an efficient promoter for acetylation of 3‐arylsydnones in the presence of acetic anhydride under neutral conditions. J. Heterocycl. Chem., 2007, 44(2), 467-469.
[http://dx.doi.org/10.1002/jhet.5570440231]
[58]
Turnbull, K.; George, J.C. Acylation of sydnones with acetic anhydride in the presence of montmorillonite K-10. Synth. Commun., 1996, 26(14), 2757-2764.
[http://dx.doi.org/10.1080/00397919608004593]
[59]
Rumple, A.C. Routes to acylated sydnones utilizing microwave chemistry, a Thesis. Wright State University: OhioLINK 2010.
[60]
Balaguer, A.M. Routes to Acylated Sydnone Esters, A thesis. Wright State University: OhioLINK 2011.
[61]
Balaguer, A.; Selhorst, R.; Turnbull, K. Metal triflate-catalyzed Friedel-Crafts acetylation of 3-phenylsydnone. Synth. Commun., 2013, 43(12), 1626-1632.
[http://dx.doi.org/10.1080/00397911.2012.657384]
[62]
Srivastava, K.P.; Mishra, P.K.; Kumari, S. Microwave irradiated Friedel-Crafts diacylation of sydnones. Rasayan J. Chem., 2010, 3(1), 140-144.
[63]
Bhosale, S.K.; Deshpande, S.R.; Wagh, R.D. Ultrasound assisted one pot synthesis, spectral, antimicrobial and antioxidant studies of novel 4-[1-oxo-3-(substituted phenyl)-2-propenyl]-3-substituted phenyl sydnones. Asian J. Chem., 2015, 27(8), 3063.
[http://dx.doi.org/10.14233/ajchem.2015.18864]
[64]
Yashunskii, V.G.; Vasil’eva, V.F.; Skender, Y.N. Zhurnal Obshchei Khimii, 1959, 29, 2712.
[65]
a) Asundaria, S.T.; Pannecouque, C.; De Clercq, E.; Patel, K.C. Sydnone sulfonamide derivatives as antibacterial, antifungal, antiproliferative and anti-HIV agents. Pharm. Chem. J., 2014, 48(4), 260-268.
[http://dx.doi.org/10.1007/s11094-014-1090-y];
b) Asundaria, S.T.; Patel, K.C. Synthesis, characterization and antimicrobial activity of thiazole, benzothiazole and pyrimidine derivatives bearing sydnone moieties. Pharm. Chem. J., 2012, 45(12), 725-731.
[http://dx.doi.org/10.1007/s11094-012-0712-5];
c) Patel, Y.M.; Patel, K.C. Synthesis and biological evaluation of new sydnone based derivatives. J. Saudi Chem. Soc., 2015, 19(2), 193-199.
[http://dx.doi.org/10.1016/j.jscs.2012.02.005];
d) Akbari, V.K.; Chothani, N.J.; Patel, Y.M.; Patel, K.C. Synthesis and Biological activity of some Novel Chalcone derivatives containing [1, 3, 4] oxadiazole-2(3H)-thione. Indian J. Chem.-B, 2015, 54B(1), 93-102.;
e) Asundaria, S.T.; Patel, N.S.; Patel, K.C. Crystal structure of ethyl 2-(4-chloro¬anilino)acetate. Org. Commun., 2010, 3(2), 30-38.
[66]
Dubey, R.; Chaudhary, N.; Kumar, R.; Panwar, H. Study of mesoionic compounds: Synthesis and pharmacological evaluation of several 2-[{(4-substituted-1-sulphonyl) sydnon-3-yl}]-1,3,4-thiadiazino(6,5-b)indoles as antimicrobial, insecticidal and antihelmintic agents. Orient. J. Chem., 2014, 30(1), 271-278.
[http://dx.doi.org/10.13005/ojc/300134]
[67]
Savaliya, P.P.; Vikunjana, K.A.; Keshav, C.P. Studies on synthesis of some new sydnone containing compounds and their biological activities. Chem. Sci. Trans., 2013, 2(2), 589-597.
[http://dx.doi.org/10.7598/cst2013.424]
[68]
Eade, R.A.; Earl, J.C. The sydnones; a new class of compound containing two adjacent nitrogen atoms. J. Chem. Soc., 1946, 591-593.
[http://dx.doi.org/10.1039/jr9460000591] [PMID: 20282426]
[69]
Turnbull, K.; Blackburn, T.L.; Miller, J.J. Nitration of sydnones. Reaction with 3-arylsydnones containing electron-donors on the aryl ring. J. Heterocycl. Chem., 1996, 33(2), 485-487.
[http://dx.doi.org/10.1002/jhet.5570330244]
[70]
Tien, H.J.; Lin, S.T.; Sheu, J.T. Nitration of 3-aryl-4-acetylsydnones: Preparation of 3-(3-nitroaryl)sydnones by using acetyl group as a blocking group. Can. J. Chem., 1994, 72(7), 1610-1613.
[http://dx.doi.org/10.1139/v94-201]
[71]
Weintraub, P.M.; Bambury, R.E. Heterocycles. II. Nitration of 3-arylsydnones. Tetrahedron Lett., 1969, 10(7), 579-581.
[http://dx.doi.org/10.1016/S0040-4039(01)87753-4]
[72]
Yang, Y.S.; Li, Q.S.; Sun, S.; Zhang, Y.B.; Wang, X.L.; Zhang, F.; Tang, J.F.; Zhu, H.L. Design, modification and 3D QSAR studies of novel 2,3-dihydrobenzo[b][1,4]dioxin-containing 4,5-dihydro-1H-pyrazole derivatives as inhibitors of B-Raf kinase. Bioorg. Med. Chem., 2012, 20(20), 6048-6058.
[http://dx.doi.org/10.1016/j.bmc.2012.08.043] [PMID: 22985962]
[73]
Zuo, Y.; He, X.; Ning, Y.; Tang, Q.; Xie, M.; Hu, W.; Shang, Y. Substituent-oriented C-N bond formation via N-H insertion or Wolff rearrangement of 5-aryl-1H-pyrazoles and diazo compounds. Org. Biomol. Chem., 2019, 17(45), 9766-9771.
[http://dx.doi.org/10.1039/C9OB01868A] [PMID: 31697287]
[74]
Huisgen, R.; Grashey, R.; Gotthardt, H. 1,3‐Dipolare cycloadditionen, XXXVI. Pyrazole aus sydnonen und α. β‐ungesättigten nitrilen oder carbonylverbindungen. Chem. Ber., 1968, 101(3), 829-838.
[http://dx.doi.org/10.1002/cber.19681010312]
[75]
Breugst, M.; Reissig, H.U. The Huisgen Reaction: Milestones of the 1,3‐dipolar cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59(30), 12293-12307.
[http://dx.doi.org/10.1002/anie.202003115] [PMID: 32255543]
[76]
Gimadiev, T.R.; Klimchuk, O.; Nugmanov, R.I.; Madzhidov, T.I.; Varnek, A. Sydnone-alkyne cycloaddition: Which factors are responsible for reaction rate? J. Mol. Struct., 2019, 1198, 126897.
[http://dx.doi.org/10.1016/j.molstruc.2019.126897]
[77]
Dürüst, Y.; Sağırlı, A.; Kariuki, B.M.; Knight, D.W. [1,3]-Dipolar cycloaddition of N-aryl sydnones to benzothiophene 1,1-dioxide, 1-cyclopropylprop-2-yn-1-ol and 1-(prop-2-ynyl)-1H-indole. Tetrahedron, 2014, 70(35), 6012-6019.
[http://dx.doi.org/10.1016/j.tet.2014.04.083]
[78]
Bouton, J.; Van Calenbergh, S.; Hullaert, J. Sydnone ribosides as a platform for the synthesis of pyrazole c-nucleosides: A unified synthesis of formycin b and pyrazofurin. Org. Lett., 2020, 22(23), 9287-9291.
[http://dx.doi.org/10.1021/acs.orglett.0c03523] [PMID: 33210930]
[79]
Brown, A.W.; Harrity, J.P.A. Expanding available pyrazole substitution patterns by sydnone cycloaddition reactions. Tetrahedron, 2017, 73(22), 3160-3172.
[http://dx.doi.org/10.1016/j.tet.2017.04.049]
[80]
Foster, R.S.; Adams, H.; Jakobi, H.; Harrity, J.P. Synthesis of 4-fluoromethylsydnones and their participation in alkyne cycloaddition reactions. J. Org. Chem., 2013, 78(8), 4049-4064.
[http://dx.doi.org/10.1021/jo400381a] [PMID: 23548035]
[81]
Handa, N.V.; Li, S.; Gerbec, J.A.; Sumitani, N.; Hawker, C.J.; Klinger, D. Fully aromatic high performance thermoset via sydnone–alkyne cycloaddition. J. Am. Chem. Soc., 2016, 138(20), 6400-6403.
[http://dx.doi.org/10.1021/jacs.6b03381] [PMID: 27180658]
[82]
Chen, F.; Liu, F.M.; Shi, H.; Chen, S.L. A facile access to 1,3,4-trisubstituted pyrazoles via 1,3-dipolar cycloaddition of 3-arylsydnones with α,β-unsaturated ketones. Monatshefte für Chem.-. Chem. Monthly, 2013, 144(6), 879-884.
[http://dx.doi.org/10.1007/s00706-012-0901-7]
[83]
Yang, Y.; Kuang, C. Facile synthesis of 1-arylpyrazoles. Synthesis, 2015, 47(15), 2281-2284.
[http://dx.doi.org/10.1055/s-0034-1380658]
[84]
Butković, K.; Marinić, Z.; Molčanov, K.; Kojić-Prodić, B.; Šindler-Kulyk, M. Photochemical and thermal intramolecular 1,3-dipolar cycloaddition reactions of new o-stilbene-methylene-3-sydnones and their synthesis. Beilstein J. Org. Chem., 2011, 7(1), 1663-1670.
[http://dx.doi.org/10.3762/bjoc.7.196] [PMID: 22238545]
[85]
Huang, W.; Jin, Z.; Shi, Z.; Intemann, J.J.; Li, M.; Luo, J.; Jen, A.K.Y. Spontaneous thermal cross-linking of a sydnone-containing side-chain polymer with maleimides through a convergent [3+2] dual cycloaddition/cycloreversion process for electro-optics. Polym. Chem., 2013, 4(24), 5760-5767.
[http://dx.doi.org/10.1039/c3py00694h]
[86]
Yang, Y.; Kuang, C.; Jin, H.; Yang, Q.; Zhang, Z. Efficient synthesis of 1,3-diaryl-4-halo-1H-pyrazoles from 3-arylsydnones and 2-aryl-1,1-dihalo-1-alkenes. Beilstein J. Org. Chem., 2011, 7(1), 1656-1662.
[http://dx.doi.org/10.3762/bjoc.7.195] [PMID: 22238544]
[87]
Zeng, Y.; Liu, F. 1,3‐Dipolar cycloaddition in the synthesis of novel isoxazoline/pyrazole derivatives bearing 1,2,3‐triazoles moiety. J. Heterocycl. Chem., 2013, 50(3), 696-702.
[http://dx.doi.org/10.1002/jhet.1527]
[88]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Angew. Chem. Int. Ed., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5]
[89]
Decuypere, E.; Specklin, S.; Gabillet, S.; Audisio, D.; Liu, H.; Plougastel, L.; Kolodych, S.; Taran, F. Copper(I)-catalyzed cycloaddition of 4-bromosydnones and alkynes for the regioselective synthesis of 1,4,5-trisubstituted pyrazoles. Org. Lett., 2015, 17(2), 362-365.
[http://dx.doi.org/10.1021/ol503482a] [PMID: 25545588]
[90]
Comas-Barceló, J.; Foster, R.S.; Fiser, B.; Gomez-Bengoa, E.; Harrity, J.P. Cu-promoted sydnone cycloadditions of alkynes: Scope and mechanism studies. Chemistry, 2015, 21(8), 3257-3263.
[http://dx.doi.org/10.1002/chem.201406118] [PMID: 25557473]
[91]
Comas-Barceló, J.; Blanco-Ania, D.; Van Den Broek, S.A.; Nieuwland, P.J.; Harrity, J.P.; Rutjes, F.P. Cu-catalysed pyrazole synthesis in continuous flow. Catal. Sci. Technol., 2016, 6(13), 4718-4723.
[http://dx.doi.org/10.1039/C5CY02247A]
[92]
Brown, A.W.; Harrity, J.P. Direct arylation of sydnones with aryl chlorides toward highly substituted pyrazoles. J. Org. Chem., 2015, 80(4), 2467-2472.
[http://dx.doi.org/10.1021/acs.joc.5b00143] [PMID: 25635522]
[93]
Lakeland, C.P.; Watson, D.W.; Harrity, J.P.A. Exploiting synergistic catalysis for an ambient temperature photocycloaddition to pyrazoles. Chemistry, 2020, 26(1), 155-159.
[http://dx.doi.org/10.1002/chem.201904210] [PMID: 31657486]
[94]
Liu, H.; Audisio, D.; Plougastel, L.; Decuypere, E.; Buisson, D.A.; Koniev, O.; Kolodych, S.; Wagner, A.; Elhabiri, M.; Krzyczmonik, A.; Forsback, S.; Solin, O.; Gouverneur, V.; Taran, F. Ultrafast click chemistry with fluorosydnones. Angew. Chem. Int. Ed. Engl., 2016, 55(39), 12073-12077.
[http://dx.doi.org/10.1002/anie.201606495] [PMID: 27560312]
[95]
Murrey, H.E.; Judkins, J.C.; Am Ende, C.W.; Ballard, T.E.; Fang, Y.; Riccardi, K.; Di, L.; Guilmette, E.R.; Schwartz, J.W.; Fox, J.M.; Johnson, D.S. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: Implications for intracellular imaging. J. Am. Chem. Soc., 2015, 137(35), 11461-11475.
[http://dx.doi.org/10.1021/jacs.5b06847] [PMID: 26270632]
[96]
Ros, E.; Bellido, M.; Verdaguer, X.; Ribas de Pouplana, L.; Riera, A. Synthesis and application of 3-bromo-1,2,4,5-tetrazine for protein labeling to trigger click-to-release biorthogonal reactions. Bioconjug. Chem., 2020, 31(3), 933-938.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00052] [PMID: 32057238]
[97]
a) Fu, Y.; Finney, N.S. Small-molecule fluorescent probes and their design. RSC Advances, 2018, 8(51), 29051-29061.;
b) Wu, D.; Sedgwick, A.C.; Gunnlaugsson, T.; Akkaya, E.U.; Yoon, J.; James, T.D. Fluorescent chemosensors: The past,present and future. Chem. Soc. Rev., 2017, 46(23), 7105-7123.;
c) Daly, B.; Leng, J.; deSilva, A.P. Current developments in fluorescent PET (photoinduced electron transfer) sensors andswitches. Chem. Soc. Rev., 2015, 44(13), 4203-4211.
[PMID: 25695939]
[98]
Richard, M.; Truillet, C.; Tran, V.L.; Liu, H.; Porte, K.; Audisio, D.; Roche, M.; Jego, B.; Cholet, S.; Fenaille, F.; Kuhnast, B.; Taran, F.; Specklin, S. New fluorine-18 pretargeting PET imaging by bioorthogonal chlorosydnone-cycloalkyne click reaction. Chem. Commun. (Camb.), 2019, 55(70), 10400-10403.
[http://dx.doi.org/10.1039/C9CC05486C] [PMID: 31402360]
[99]
Plougastel, L.; Lamaa, D.; Yen-Pon, E.; Audisio, D.; Taran, F. Fluorogenic probes based onpolycyclic sydnone scaffolds. Tetrahedron, 2020, 76(51), 131250.
[http://dx.doi.org/10.1016/j.tet.2020.131250]
[100]
Wallace, S.; Chin, J.W. Strain-promoted sydnone bicyclo-[6.1.0]-nonyne cycloaddition. Chem. Sci. (Camb.), 2014, 5(5), 1742-1744.
[http://dx.doi.org/10.1039/C3SC53332H]
[101]
Favre, C.; de Cremoux, L.; Badaut, J.; Friscourt, F. Sydnone reporters for highly fluorogenic copper-free click ligations. J. Org. Chem., 2018, 83(4), 2058-2066.
[http://dx.doi.org/10.1021/acs.joc.7b03004] [PMID: 29388773]
[102]
Shum, J.; Zhang, P.Z.; Lee, L.C.C.; Lo, K.K.W. Bioorthogonal phosphorogenic rhenium (i) polypyridine sydnone complexes for specific lysosome labeling. ChemPlusChem, 2020, 85(7), 1374-1378.
[http://dx.doi.org/10.1002/cplu.202000029] [PMID: 32207563]
[103]
Lee, L.C.C.; Cheung, H.M.H.; Liu, H.W.; Lo, K.K.W. Exploitation of environment‐sensitive luminophores in the design of sydnone‐based bioorthogonal imaging reagents. Chemistry, 2018, 24(53), 14064-14068.
[http://dx.doi.org/10.1002/chem.201803452] [PMID: 29989299]
[104]
Plougastel, L.; Koniev, O.; Specklin, S.; Decuypere, E.; Créminon, C.; Buisson, D.A.; Wagner, A.; Kolodych, S.; Taran, F. 4-Halogeno-sydnones for fast strain promoted cycloaddition with bicyclo-[6.1.0]-nonyne. Chem. Commun. (Camb.), 2014, 50(66), 9376-9378.
[http://dx.doi.org/10.1039/C4CC03816A] [PMID: 25005038]
[105]
Plougastel, L.; Pattanayak, M.R.; Riomet, M.; Bregant, S.; Sallustrau, A.; Nothisen, M.; Wagner, A.; Audisio, D.; Taran, F. Sydnone-based turn-on fluorogenic probes for no-wash protein labeling and in-cell imaging. Chem. Commun. (Camb.), 2019, 55(31), 4582-4585.
[http://dx.doi.org/10.1039/C9CC01458F] [PMID: 30931444]
[106]
Bizetto, E.L.; Noleto, G.R.; Echevarria, A.; Canuto, A.V.; Cadena, S.M.S.C. Effect of sydnone SYD-1 on certain functions of LPS-stimulated macrophages. Mol. Cell. Biochem., 2012, 360(1-2), 15-21.
[http://dx.doi.org/10.1007/s11010-011-1038-4] [PMID: 21877148]
[107]
Asma, K.B.; Manju, N.; Chandra, M.M. Synthesis, antimicrobial, antioxidant and molecular docking study of some novel bis-1,2,4-triazolo[3,4-b]-1,3,4-thiadiazoles. J. Med. Chem. Drug Des., 2018, 105(1), 1-6.
[108]
Jagadeesh, K.; Revankar, S.P. Analgesic effect of thiozolyl thiourea sydnones in albino rats. Int. J. Sci. Appl. Res., 2015, 2(7), 11-16.
[109]
Abdualkader, A.M.; Taher, M.; Nik Idirs, N.Y. Mesoionic sydnone: A review in their chemical and biological properties. Int. J. Pharm. Pharm. Sci., 2017, 9(8), 1-9.
[http://dx.doi.org/10.22159/ijpps.2017v9i8.18774]
[110]
Brandt, A.P. Pires, Ado.R.; Rocha, M.E.M.; Noleto, G.R.; Acco, A.; de Souza, C.E.A.; Echevarria, A.; Canuto, A.V.; Cadena, S.M. Sydnone SYD-1 affects the metabolic functions of isolated rat hepatocytes. Chem. Biol. Interact., 2014, 218, 107-114.
[http://dx.doi.org/10.1016/j.cbi.2014.05.002] [PMID: 24836382]
[111]
Galuppo, L.F.; Dos Reis Lívero, F.A.; Martins, G.G.; Cardoso, C.C.; Beltrame, O.C.; Klassen, L.M.B.; Canuto, A.V.; Echevarria, A.; Telles, J.E.; Klassen, G.; Acco, A. Sydnone 1: A mesoionic compound with antitumoral and haematological effects in vivo. Basic Clin. Pharmacol. Toxicol., 2016, 119(1), 41-50.
[http://dx.doi.org/10.1111/bcpt.12545] [PMID: 26709053]
[112]
Hegde, J.C.; Girish, K.S.; Adhikari, A.; Kalluraya, B. Novel one-pot synthesis of aziridines carrying sydnone moiety and their biological studies. Synth. Commun., 2013, 43(2), 301-308.
[http://dx.doi.org/10.1080/00397911.2011.599102]
[113]
Kalluraya, B.; Manju, N.; Sharath, C.L. Synthesis and antioxidant activity study of carbothioamide and their corresponding thiazole derivatives. J. Heterocycl. Chem., 2020, 57(8), 3105-3115.
[http://dx.doi.org/10.1002/jhet.4018]
[114]
Gozzi, G.J. Pires, Ado.R.; Martinez, G.R.; Rocha, M.E.M.; Noleto, G.R.; Echevarria, A.; Canuto, A.V.; Cadena, S.M. The antioxidant effect of the mesoionic compound SYD-1 in mitochondria. Chem. Biol. Interact., 2013, 205(3), 181-187.
[http://dx.doi.org/10.1016/j.cbi.2013.07.004] [PMID: 23867904]
[115]
Asundaria, S.T.; Pannecouque, C.; De Clercq, E.; Supuran, C.T.; Patel, K.C. Synthesis of novel biologically active methylene derivatives of sydnones. Med. Chem. Res., 2013, 22(12), 5752-5763.
[http://dx.doi.org/10.1007/s00044-013-0567-7]
[116]
Du, S.; Hu, X.; Shao, X.; Qian, X. Novel trifluoromethyl sydnone derivatives: Design, synthesis and fungicidal activity. Bioorg. Med. Chem. Lett., 2021, 44, 128114.
[http://dx.doi.org/10.1016/j.bmcl.2021.128114] [PMID: 34015501]
[117]
Yelamaggad, C.V.; Mathews, M.; Hiremath, U.S.; Rao, D.S.; Prasad, S.K. Self-assembly of chiral mesoionic heterocycles into smectic phases: A new class of polar liquid crystal. Tetrahedron Lett., 2005, 46(15), 2623-2626.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.084]
[118]
Intemann, J.J.; Huang, W.; Jin, Z.; Shi, Z.; Yang, X.; Yang, J.; Jen, A.K.Y. Cascading retro-diels–alder cycloreversion and sydnone-maleimide based double 1,3-dipolar cycloaddition for quantitative thermal cross-linking of an amorphous polymer solid. ACS Macro Lett., 2013, 2(3), 256-259.
[http://dx.doi.org/10.1021/mz4000267]
[119]
Zhang, J.; Zhang, Q.; Zhou, S.; Liu, Y.; Huang, W. Synthesis and characterization of amphiphilic miktoarm star polymers based on sydnone-maleimide double cycloaddition. Polym. Chem., 2018, 9(2), 203-212.
[http://dx.doi.org/10.1039/C7PY01476G]
[120]
Santhi, N.; Madhumitha, J. Molecular interaction studies in binary liquid mixture through ultrasonic measurements at 303.15 K. Int. J. Adv. Chem., 2014, 2(1), 12-16.
[121]
Cassel, S.; Rico-Lattes, I.; Lattes, A. Zwitterionic and mesoionic liquids: Molecular aggregation in 3-methylsydnone. Sci. China Chem., 2010, 53(9), 2063-2069.
[http://dx.doi.org/10.1007/s11426-010-4062-4]
[122]
Nambu, N.; Yamamoto, J.; Yamaguchi, K.; Sasaki, Y. Physicochemical properties of 3-propyl-4-propylsydnone as solvent for lithium battery electrolytes. Electrochemistry (Tokyo), 2012, 80(10), 780-782.
[http://dx.doi.org/10.5796/electrochemistry.80.780]
[123]
Luecke, A.L.; Wiechmann, S.; Freese, T.; Schmidt, A. Suzuki–miyaura cross-coupling reactions in acetic acid employing sydnone-derived catalyst systems. Synlett, 2017, 28(15), 1990-1993.
[http://dx.doi.org/10.1055/s-0036-1589059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy