Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Lithium Cholesterol Sulfate: A Novel and Potential Drug for Treating Alzheimer’s Disease and Autism Spectrum Disorder

Author(s): Weiqiang Hu, Menghua Zhao, Junrong Lian, Dandan Li, Jinhua Wen* and Jun Tan*

Volume 22, Issue 8, 2023

Published on: 26 September, 2022

Page: [1250 - 1258] Pages: 9

DOI: 10.2174/1871527321666220825114236

open access plus

Abstract

Background and Objective: Recent studies have shown that lithium treatment can reduce symptoms of Alzheimer’s disease (AD) and Autism Spectrum Disorder (ASD). However, the present lithium salts clinically available have serious short-term and long-term side effects, requiring frequent monitoring of blood chemistry and plasma lithium levels to avoid toxicity. Consequently, there is a demand for a safer and more effective lithium formulation to treat these diseases.

Methods: Hence, we firstly synthesized lithium cholesterol sulfate (LiCS) and compared its pharmacological effects with that of lithium chloride (LiCl) and sodium cholesterol sulfate (NaCS) on markers of neurodegenerative disease in cell cultures.

Results: LiCS was more potent than LiCl in increasing inhibitory GSK3β (Ser9) phosphorylation (pGSK3β) in both CHO and SH-SY5Y cells. These agents dose-dependently increased pGSK3β, starting at 10 μM for LiCS and 60 μM for LiCl and maximally by approximately 100% at 60 μM for LiCS and 1.25 mM for LiCl, without altering total GSK3β levels. In HEK293/tau cells, LiCS reduced tau (Thr231) phosphorylation (ptau) starting at 10 μM and maximally by 63% at 40 μM without altering total tau levels, but ptau levels were not altered by LiCl at any dose between 60 μM and 1.25 mM. In BV2 cells, LiCS and LiCl decreased LPS-induced TNFα levels, starting at 20 μM for LiCS and 5 mM for LiCl, and maximally by approximately 30% at 80 μM for LiCS and 20 mM for LiCl. NaCS at any dose between 5 and 90 μM did not alter pGSK3β, ptau or LPS-induced TNFα.

Conclusion: LiCS may become a new drug with good pharmacological potential for the treatment of neurodegenerative disorders, such as AD and ASD, by allowing lithium to more readily access intracellular pathological processes.

Keywords: Lithium cholesterol sulfate, lithium chloride, Alzheimer’s disease, Autism spectrum disorder, phosphorylated GSK3β, phosphorylated tau, TNFα.

Graphical Abstract

[1]
Scheltens P, Blennow K, Breteler MMB, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[2]
Wang J, Gu BJ, Masters CL, Wang YJ. Erratum: A systemic view of Alzheimer disease - insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 2017; 13(11): 703.
[http://dx.doi.org/10.1038/nrneurol.2017.147] [PMID: 29027541]
[3]
Clayton KA, Van Enoo AA, Ikezu T. Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Front Neurosci 2017; 11: 680.
[http://dx.doi.org/10.3389/fnins.2017.00680] [PMID: 29311768]
[4]
Matsunaga S, Kishi T, Annas P, Basun H, Hampel H, Iwata N. Lithium as a treatment for Alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 2015; 48(2): 403-10.
[http://dx.doi.org/10.3233/JAD-150437] [PMID: 26402004]
[5]
Fitzpatrick SE, Srivorakiat L, Wink LK, Pedapati EV, Erickson CA. Aggression in autism spectrum disorder: Presentation and treatment options. Neuropsychiatr Dis Treat 2016; 12: 1525-38.
[PMID: 27382295]
[6]
Siegel M, Beresford CA, Bunker M, et al. Preliminary investigation of lithium for mood disorder symptoms in children and adolescents with autism spectrum disorder. J Child Adolesc Psychopharmacol 2014; 24(7): 399-402.
[http://dx.doi.org/10.1089/cap.2014.0019] [PMID: 25093602]
[7]
Canitano R. Mood stabilizers in children and adolescents with autism spectrum disorders. Clin Neuropharmacol 2015; 38(5): 177-82.
[http://dx.doi.org/10.1097/WNF.0000000000000096] [PMID: 26366961]
[8]
Candini M, Battaglia S, Benassi M, di Pellegrino G, Frassinetti F. The physiological correlates of interpersonal space. Sci Rep 2021; 11(1): 2611.
[http://dx.doi.org/10.1038/s41598-021-82223-2] [PMID: 33510396]
[9]
Ellena G, Battaglia S, Làdavas E. The spatial effect of fearful faces in the autonomic response. Exp Brain Res 2020; 238(9): 2009-18.
[http://dx.doi.org/10.1007/s00221-020-05829-4] [PMID: 32617883]
[10]
Borgomaneri S, Vitale F, Battaglia S, Avenanti A. Early right motor cortex response to happy and fearful facial expressions: A TMS motor-evoked potential study. Brain Sci 2021; 11(9): 1203.
[http://dx.doi.org/10.3390/brainsci11091203] [PMID: 34573224]
[11]
Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR, Lu MC. Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011-2012. Natl Health Stat Report 2013; 65: 1-11.
[12]
Theoharides TC, Tsilioni I, Patel AB, Doyle R. Atopic diseases and inflammation of the brain in the pathogenesis of autism spectrum disorders. Transl Psychiatry 2016; 6(6): e844.
[http://dx.doi.org/10.1038/tp.2016.77] [PMID: 27351598]
[13]
Gąssowska M, Baranowska-Bosiacka I,, Moczydłowska J,et al. Perinatal exposure to lead (Pb) promotes Tau phosphorylation in the rat brain in a GSK-3β and CDK5 dependent manner Relevance to neurological disorders Toxicology 2016; 347-9. 17-28
[http://dx.doi.org/10.1016/j.tox.2016.03.002] [PMID: 27012722]
[14]
Richardson T, Macaluso M. Clinically relevant treatment considerations regarding lithium use in bipolar disorder. Expert Opin Drug Metab Toxicol 2017; 13(11): 1105-13.
[http://dx.doi.org/10.1080/17425255.2017.1386653] [PMID: 28965429]
[15]
Oruch R, Elderbi MA, Khattab HA, Pryme IF, Lund A. Lithium: A review of pharmacology, clinical uses, and toxicity. Eur J Pharmacol 2014; 740: 464-73.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.042] [PMID: 24991789]
[16]
Devanand DP, Strickler JG, Huey ED, et al. Lithium treatment for agitation in Alzheimer’s disease (Lit-AD): Clinical rationale and study design. Contemp Clin Trials 2018; 71: 33-9.
[http://dx.doi.org/10.1016/j.cct.2018.05.019] [PMID: 29859917]
[17]
Devanand DP, Pelton GH, D’Antonio K, et al. Low-dose lithium treatment for agitation and psychosis in Alzheimer disease and frontotemporal dementia. Alzheimer Dis Assoc Disord 2017; 31(1): 73-5.
[http://dx.doi.org/10.1097/WAD.0000000000000161] [PMID: 27819842]
[18]
Wu X, Bai Y, Tan T, et al. Lithium ameliorates autistic-like behaviors induced by neonatal isolation in rats. Front Behav Neurosci 2014; 8: 234.
[http://dx.doi.org/10.3389/fnbeh.2014.00234] [PMID: 25018711]
[19]
Serret S, Thümmler S, Dor E, Vesperini S, Santos A, Askenazy F. Lithium as a rescue therapy for regression and catatonia features in two SHANK3 patients with autism spectrum disorder: Case reports. BMC Psychiatry 2015; 15(1): 107.
[http://dx.doi.org/10.1186/s12888-015-0490-1] [PMID: 25947967]
[20]
Strott CA, Higashi Y. Cholesterol sulfate in human physiology: What’s it all about? J Lipid Res 2003; 44(7): 1268-78.
[http://dx.doi.org/10.1194/jlr.R300005-JLR200] [PMID: 12730293]
[21]
Merten M, Dong JF, Lopez JA, Thiagarajan P. Cholesterol sulfate. Circulation 2001; 103(16): 2032-4.
[http://dx.doi.org/10.1161/01.CIR.103.16.2032] [PMID: 11319189]
[22]
Seneff S, Davidson R, Mascitelli L. Might cholesterol sulfate deficiency contribute to the development of autistic spectrum disorder? Med Hypotheses 2012; 78(2): 213-7.
[http://dx.doi.org/10.1016/j.mehy.2011.10.026] [PMID: 22098722]
[23]
Beel AJ, Sakakura M, Barrett PJ, Sanders CR. Direct binding of cholesterol to the amyloid precursor protein: An important interaction in lipid-Alzheimer’s disease relationships? Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(8): 975-82.
[http://dx.doi.org/10.1016/j.bbalip.2010.03.008] [PMID: 20304095]
[24]
Lovestone S, Davis DR, Webster MT, et al. Lithium reduces tau phosphorylation: Effects in living cells and in neurons at therapeutic concentrations. Biol Psychiatry 1999; 45(8): 995-1003.
[http://dx.doi.org/10.1016/S0006-3223(98)00183-8] [PMID: 10386182]
[25]
Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not A beta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 2007; 170(5): 1669-75.
[http://dx.doi.org/10.2353/ajpath.2007.061178] [PMID: 17456772]
[26]
Valvassori SS, Dal-Pont GC, Tonin PT, et al. Coadministration of lithium and celecoxib attenuates the behavioral alterations and inflammatory processes induced by amphetamine in an animal model of mania. Pharmacol Biochem Behav 2019; 183: 56-63.
[http://dx.doi.org/10.1016/j.pbb.2019.05.009] [PMID: 31158395]
[27]
Boyko M, Nassar A, Kaplanski J, Zlotnik A, Sharon-Granit Y, Azab AN. Effects of acute lithium treatment on brain levels of inflammatory mediators in poststroke rats. BioMed Res Int 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/916234] [PMID: 26491692]
[28]
Al-Horani RA, Desai UR. Chemical sulfation of small molecules-advances and challenges. Tetrahedron 2010; 66(16): 2907-18.
[http://dx.doi.org/10.1016/j.tet.2010.02.015] [PMID: 20689724]
[29]
Donazzolo E, Gucciardi A, Mazzier D, et al. Improved synthesis of glycine, taurine and sulfate conjugated bile acids as reference compounds and internal standards for ESI-MS/MS urinary profiling of inborn errors of bile acid synthesis. Chem Phys Lipids 2017; 204: 43-56.
[http://dx.doi.org/10.1016/j.chemphyslip.2017.03.004] [PMID: 28300538]
[30]
Bandyopadhyay B, Li G, Yin H, Kuret J. Tau aggregation and toxicity in a cell culture model of tauopathy. J Biol Chem 2007; 282(22): 16454-64.
[http://dx.doi.org/10.1074/jbc.M700192200] [PMID: 17428800]
[31]
Choi SE, Jang HJ, Kang Y, et al. Atherosclerosis induced by a high-fat diet is alleviated by lithium chloride via reduction of VCAM expression in ApoE-deficient mice. Vascul Pharmacol 2010; 53(5-6): 264-72.
[http://dx.doi.org/10.1016/j.vph.2010.09.004] [PMID: 20888430]
[32]
Kim S, Bong N, Kim OS, Jin J, Kim DE, Lee DK. Lithium chloride suppresses LPS-mediated matrix metalloproteinase-9 expression in macrophages through phosphorylation of GSK-3β. Cell Biol Int 2015; 39(2): 177-84.
[http://dx.doi.org/10.1002/cbin.10352] [PMID: 25053111]
[33]
Yang Y, Rosenberg GA. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res 2015; 1623: 30-8.
[http://dx.doi.org/10.1016/j.brainres.2015.04.024] [PMID: 25916577]
[34]
Ranaivo HR, Hodge JN, Choi N, Wainwright MS. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J Neuroinflammation 2012; 9(1): 645.
[http://dx.doi.org/10.1186/1742-2094-9-68] [PMID: 22507553]
[35]
Smith AJ, Kim SH, Tan J, et al. Plasma and brain pharmacokinetics of previously unexplored lithium salts. RSC Adv 2014; 4(24): 12362-5.
[http://dx.doi.org/10.1039/C3RA46962J] [PMID: 25045517]
[36]
Habib A, Sawmiller D, Li S, et al. LISPRO mitigates β-amyloid and associated pathologies in Alzheimer’s mice. Cell Death Dis 2017; 8(6): e2880.
[http://dx.doi.org/10.1038/cddis.2017.279] [PMID: 28617434]
[37]
Hirschowitz BI, Lanas A. Atypical and aggressive upper gastrointestinal ulceration associated with aspirin abuse. J Clin Gastroenterol 2002; 34(5): 523-8.
[http://dx.doi.org/10.1097/00004836-200205000-00008] [PMID: 11960062]
[38]
Varela N, Bognar M, Agudelo C, Jurado R. Salicylate toxicity in the older patient. J Clin Rheumatol 1998; 4(1): 1-5.
[http://dx.doi.org/10.1097/00124743-199802000-00001] [PMID: 19078235]
[39]
Durnas C, Cusack BJ. Salicylate intoxication in the elderly. Recognition and recommendations on how to prevent it. Drugs Aging 1992; 2(1): 20-34.
[http://dx.doi.org/10.2165/00002512-199202010-00004] [PMID: 1554971]
[40]
Rodrigueza WV, Wheeler JJ, Klimuk SK, Kitson CN, Hope MJ. Transbilayer movement and net flux of cholesterol and cholesterol sulfate between liposomal membranes. Biochemistry 1995; 34(18): 6208-17.
[http://dx.doi.org/10.1021/bi00018a025] [PMID: 7742326]
[41]
Przybylska M, Faber M, Zaborowski A, Bryszewska M. Cholesterol sulfate induces changes in human erythrocyte thermostability. IUBMB Life 1998; 46(2): 399-410.
[http://dx.doi.org/10.1080/15216549800203912] [PMID: 9801808]
[42]
Drayer NM, Lieberman S. Isolation of cholesterol sulfate from human blood and gallstones. Biochem Biophys Res Commun 1965; 18(1): 126-30.
[http://dx.doi.org/10.1016/0006-291X(65)90894-6] [PMID: 14265744]
[43]
Battaglia S, Harrison BJ, Fullana MA. Does the human ventromedial prefrontal cortex support fear learning, fear extinction or both? A commentary on subregional contributions. Mol Psychiatry 2022; 27(2): 784-6.
[http://dx.doi.org/10.1038/s41380-021-01326-4] [PMID: 34667263]
[44]
Battaglia S, Thayer JF. Functional interplay between central and autonomic nervous systems in human fear conditioning. Trends Neurosci 2022; 45(7): 504-6.
[http://dx.doi.org/10.1016/j.tins.2022.04.003] [PMID: 35577621]
[45]
Battaglia S, Orsolini S, Borgomaneri S, Barbieri R, Diciotti S, di Pellegrino G. Characterizing cardiac autonomic dynamics of fear learning in humans. Psychophysiology 2022; e14122.
[http://dx.doi.org/10.1111/psyp.14122] [PMID: 35671393]

© 2024 Bentham Science Publishers | Privacy Policy