Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Recent Advancements in Herbal Bioactive-based Nanoformulations for the Treatment of Psoriasis

Author(s): Prativa Biswasroy, Deepak Pradhan, Jitu Haldar, Biswakanth Kar, Goutam Ghosh and Goutam Rath*

Volume 19, Issue 4, 2023

Published on: 21 November, 2022

Article ID: e230822207906 Pages: 10

DOI: 10.2174/1573407218666220823112843

Price: $65

Abstract

Psoriasis is a multifaceted inflammatory dermatological skin disease characterized by Tcell (T-lymphocyte) activation, hyperproliferation, and abnormal epidermal keratinocyte differentiation. Natural bioactive agents from plants including Psoralea corylifolia, Nigella sativa, Curcuma longa, Capsicum annum, Smilax china, Woodfordia fructicosa, and others have recently gained a lot of attention for their anti-psoriatic properties. However, inadequate drug absorption, lack of specificity in drug release, and unintended skin reactions largely restrict their clinical efficacy. Nanoformulations improve the pharmacodynamic characteristics that overcome drug delivery challenges and enhance the anti-psoriatic activity. Nanostructured systems such as liposome, ethosome, liposphere, and others have been reported to improve plant extract solubility, penetration, bioavailability, bioactivity, and minimize undesirable effects, providing the way for the development of herbal nanoformulation. This review enlights the therapeutic efficacy of lead phytocompounds and its nanoformulations in managing psoriasis.

Keywords: Psoriasis, herbal extract, nanocarriers, clinical efficacy

Graphical Abstract

[1]
Sindrilaru, A.; Filip, A.; Scharffetter-Kochanek, K.; Crisan, D. How can nanoparticle-based technologies revolutionize the topical therapy in psoriasis? Exp. Dermatol., 2020, 29(11), 1097-1103.
[http://dx.doi.org/10.1111/exd.14149] [PMID: 32657487]
[2]
Yadav, M.; Sardana, I.; Sharma, A.; Sharma, N.; Nagpal, K.; Malik, P. Emerging pathophysiological targets of psoriasis for future therapeutic strategies. IDDT, 2020, 20(4), 409-422.
[http://dx.doi.org/10.2174/1871526519666190617162701] [PMID: 31288731]
[3]
Ayala-Fontanez, N.; Soler, D.C.; McCormick, T.S. Current knowledge on psoriasis and autoimmune diseases. Psoriasis, 2016, 6, 7-32.
[http://dx.doi.org/10.2147/PTT.S64950]
[4]
Gomez, C.; Muangnoi, C.; Sorasitthiyanukarn, F.N.; Wongpiyabovorn, J.; Rojsitthisak, P.; Rojsitthisak, P. Synergistic effects of photo-irradiation and curcumin-chitosan/alginate nanoparticles on tumor necrosis factor-alpha-induced psoriasis-like proliferation of keratinocytes. Molecules, 2019, 24(7), 1388.
[http://dx.doi.org/10.3390/molecules24071388] [PMID: 30970577]
[5]
Sarac, G.; Koca, T.T.; Baglan, T. A brief summary of clinical types of psoriasis. North. Clin. Istanb., 2016, 3, 79-82.
[http://dx.doi.org/10.14744/nci.2016.16023]
[6]
Naldi, L.; Gambini, D. The clinical spectrum of psoriasis. Clin. Dermatol., 2007, 25(6), 510-518.
[http://dx.doi.org/10.1016/j.clindermatol.2007.08.003] [PMID: 18021886]
[7]
Ramanunny, A.K.; Wadhwa, S.; Singh, S.K.; Sharma, D.S.; Khursheed, R.; Awasthi, A. Treatment strategies against psoriasis: Principle, perspectives and practices. Curr. Drug Deliv., 2020, 17(1), 52-73.
[http://dx.doi.org/10.2174/1567201816666191120120551] [PMID: 31752655]
[8]
Benhadou, F.; Mintoff, D.; Del Marmol, V. Psoriasis: Keratinocytes or immune cells - Which is the trigger? Dermatology, 2019, 235(2), 91-100.
[http://dx.doi.org/10.1159/000495291] [PMID: 30566935]
[9]
Chamcheu, J.C.; Esnault, S.; Adhami, V.M.; Noll, A.L.; Banang-Mbeumi, S.; Roy, T.; Singh, S.S.; Huang, S.; Kousoulas, K.G.; Mukhtar, H. Fisetin, a 3,7,3′4′-tetrahydroxyflavone inhibits the PI3K/Akt/mTOR and MAPK pathways and ameliorates psoriasis pathology in 2D and 3D organotypic human inflammatory skin models. Cells, 2019, 8(9), 1089.
[http://dx.doi.org/10.3390/cells8091089] [PMID: 31540162]
[10]
Joshi, P.; Joshi, S.; Rajani, U.; Semwal, R.B.; Semwal, D.K. Formulation and evaluation of polyherbal cream and lotion for the treatment of psoriasis-induced secondary infections. Curr. Rev. Clin. Exp Pharmacol., 2021, 16(1), 79-96.
[http://dx.doi.org/10.2174/1574884714666191017111218] [PMID: 31622222]
[11]
Pradhan, M.; Alexander, A.; Singh, M.R.; Singh, D.; Saraf, S.; Saraf, S. Ajazuddin, Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother., 2018, 107, 447-463.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[12]
Zito, P.M.; Mazzoni, T. Acitretin; StatPearls Publishing: Treasure Island, FL, 2021.
[13]
Czarnecka-Operacz, M.; Sadowska-Przytocka, A. The possibilities and principles of methotrexate treatment of psoriasis – the updated knowledge. Postepy Dermatol. Alergol., 2014, 6, 392-400.
[http://dx.doi.org/10.5114/pdia.2014.47121]
[14]
Singh, K.; Argáez, C. Cyclosporine for moderate to severe plaque psoriasis in adults: A review of clinical effectiveness and safety. CADTH rapid response reports; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, 2018.
[15]
Bonesi, M.; Loizzo, M.R.; Provenzano, E.; Menichini, F.; Tundis, R. Anti-psoriasis agents from natural plant sources. Curr. Med. Chem., 2016, 23(12), 1250-1267.
[http://dx.doi.org/10.2174/0929867323666160321121819] [PMID: 26997153]
[16]
Silva, P.; Bonifácio, B.; Ramos, M.; Negri, K.; Maria Bauab, T.; Chorilli, M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int. J. Nanomedicine, 2013, 9, 1-15.
[http://dx.doi.org/10.2147/IJN.S52634]
[17]
Iriventi, P.; Gupta, Nv. Topical delivery of curcumin and caffeine mixture-loaded nanostructured lipid carriers for effective treatment of psoriasis. Pharmacogn. Mag., 2020, 16(68), 206.
[http://dx.doi.org/10.4103/pm.pm_260_19]
[18]
Yadav, N.; Aggarwal, R.; Targhotra, M.; Sahoo, P.K.; Chauhan, M.K. Natural and nanotechnology based treatment: An alternative approach to psoriasis. CNANOM, 2021, 11(1), 21-39.
[http://dx.doi.org/10.2174/2468187310999201022192318]
[19]
Fereig, S.A.; El-Zaafarany, G.M.; Arafa, M.G.; Abdel-Mottaleb, M.M.A. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv., 2020, 27(1), 662-680.
[http://dx.doi.org/10.1080/10717544.2020.1754527] [PMID: 32393082]
[20]
Pandey, K. Nimisha, An overview on promising nanotechnological approaches for the treatment of psoriasis. Recent Pat. Nanotechnol., 2020, 14(2), 102-118.
[http://dx.doi.org/10.2174/1872210514666200204124130] [PMID: 32013854]
[21]
Herman, A.; Herman, A.P. Topically used herbal products for the treatment of psoriasis - mechanism of action, drug delivery, clinical studies. Planta Med., 2016, 82(17), 1447-1455.
[http://dx.doi.org/10.1055/s-0042-115177] [PMID: 27574899]
[22]
Huang, T-H.; Lin, C-F.; Alalaiwe, A.; Yang, S-C.; Fang, J-Y. Apoptotic or antiproliferative activity of natural products against keratinocytes for the treatment of psoriasis. Int. J. Mol. Sci., 2019, 20(10), 2558.
[http://dx.doi.org/10.3390/ijms20102558] [PMID: 31137673]
[23]
Aghmiuni, A.I.; Khiavi, A.A. Medicinal Plants to Calm and Treat Psoriasis Disease. Arom. Med. Plants, 2017.
[http://dx.doi.org/10.5772/67062]
[24]
Richard, E.G. The science and (lost) art of psoralen plus UVA phototherapy. Dermatol. Clin., 2020, 38(1), 11-23.
[http://dx.doi.org/10.1016/j.det.2019.08.002] [PMID: 31753184]
[25]
Doppalapudi, S.; Jain, A.; Chopra, D.K.; Khan, W. Psoralen loaded liposomal nanocarriers for improved skin penetration and efficacy of topical PUVA in psoriasis. Eur. J. Pharm. Sci., 2017, 96, 515-529.
[http://dx.doi.org/10.1016/j.ejps.2016.10.025] [PMID: 27777066]
[26]
Zhang, Y-T.; Shen, L.N.; Zhao, J.H.; Feng, N.P. Evaluation of psoralen ethosomes for topical delivery in rats by using in vivo microdialysis. Int. J. Nanomedicine, 2014, 9, 669-678.
[http://dx.doi.org/10.2147/IJN.S57314] [PMID: 24489470]
[27]
Hassani, J.; Feldman, S.R. Phototherapy in scleroderma. Dermatol. Ther., 2016, 6(4), 519-553.
[http://dx.doi.org/10.1007/s13555-016-0136-3] [PMID: 27519050]
[28]
Kumar, S.; Singh, K.K.; Rao, R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J. Microencapsul., 2019, 36(2), 140-155.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[29]
Kumar, S.; Rao, R. Novel dithranol loaded cyclodextrin nanosponges for augmentation of solubility, photostability and cytocompatibility. Curr. Nanosci., 2021, 17, 747-761.
[http://dx.doi.org/10.2174/1573413716666201215165552]
[30]
Ali, A.; Ali, S. Aqil, Mohd.; Imam, S. S.; Ahad, A.; Qadir, A. Thymoquinone loaded dermal lipid nano particles: Box behnken design optimization to preclinical psoriasis assessment. J. Drug Deliv. Sci. Technol., 2019, 52, 713-721.
[http://dx.doi.org/10.1016/j.jddst.2019.05.041]
[31]
Dwarampudi, L.P.; Palaniswamy, D.; Nithyanantham, M.; Raghu, P.S. Antipsoriatic activity and cytotoxicity of ethanolic extract of Nigella sativa seeds. Pharmacogn. Mag., 2012, 8(32), 268-272.
[http://dx.doi.org/10.4103/0973-1296.103650] [PMID: 24082629]
[32]
Jain, A.; Pooladanda, V.; Bulbake, U.; Doppalapudi, S.; Rafeeqi, T.A.; Godugu, C.; Khan, W. Liposphere mediated topical delivery of thymoquinone in the treatment of psoriasis. Nanomedicine, 2017, 13(7), 2251-2262.
[http://dx.doi.org/10.1016/j.nano.2017.06.009] [PMID: 28647592]
[33]
Ammon, H.P.; Wahl, M.A. Pharmacology of Curcuma longa. Planta Med., 1991, 57(1), 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[34]
Kim, E.J.; Lewis, D.J.; Dabaja, B.S.; Duvic, M. Curcumin for the treatment of tumor-stage mycosis fungoides. Dermatol. Ther., 2017, 30(4), e12511.
[http://dx.doi.org/10.1111/dth.12511] [PMID: 28585397]
[35]
Kang, D.; Li, B.; Luo, L.; Jiang, W.; Lu, Q.; Rong, M.; Lai, R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie, 2016, 123, 73-80.
[http://dx.doi.org/10.1016/j.biochi.2016.01.013] [PMID: 26826458]
[36]
Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 assists the topical anti-psoriatic efficacy of curcumin-loaded hyaluronan-modified ethosomes: A new strategy for clustering drug in inflammatory skin. Theranostics, 2019, 9(1), 48-64.
[http://dx.doi.org/10.7150/thno.29715] [PMID: 30662553]
[37]
Sun, L.; Liu, Z.; Wang, L.; Cun, D.; Tong, H.H.Y.; Yan, R.; Chen, X.; Wang, R.; Zheng, Y. Enhanced topical penetration, system exposure and anti-psoriasis activity of two particle-sized, curcumin-loaded PLGA nanoparticles in hydrogel. J. Control. Release, 2017, 254, 44-54.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.385] [PMID: 28344018]
[38]
Jain, A.; Doppalapudi, S.; Domb, A.J.; Khan, W. Tacrolimus and curcumin co-loaded liposphere gel: Synergistic combination towards management of psoriasis. J. Control. Release, 2016, 243, 132-145.
[http://dx.doi.org/10.1016/j.jconrel.2016.10.004] [PMID: 27725194]
[39]
Md Saari, N.H.; Chua, L.S.; Hasham, R.; Yuliati, L. Curcumin-loaded nanoemulsion for better cellular permeation. Sci. Pharm., 2020, 88(4), 44.
[http://dx.doi.org/10.3390/scipharm88040044]
[40]
Algahtani, M.S.; Ahmad, M.Z.; Nourein, I.H.; Ahmad, J. Co-delivery of imiquimod and curcumin by nanoemugel for improved topical delivery and reduced psoriasis-like skin lesions. Biomolecules, 2020, 10(7), 968.
[http://dx.doi.org/10.3390/biom10070968] [PMID: 32605030]
[41]
Saleem, S.; Iqubal, M.K.; Garg, S.; Ali, J.; Baboota, S. Trends in nanotechnology-based delivery systems for dermal targeting of drugs: An enticing approach to offset psoriasis. Expert Opin. Drug Deliv., 2020, 17(6), 817-838.
[http://dx.doi.org/10.1080/17425247.2020.1758665] [PMID: 32315216]
[42]
Gupta, R.; Gupta, M.; Mangal, S.; Agrawal, U.; Vyas, S.P. Capsaicin-loaded vesicular systems designed for enhancing localized delivery for psoriasis therapy. Artif. Cells Nanomed. Biotechnol., 2016, 44, 825-34.
[http://dx.doi.org/10.3109/21691401.2014.984301] [PMID: 25465045]
[43]
Harada, N.; Okajima, K. Effect of topical application of capsaicin and its related compounds on dermal insulin-like growth factor-I levels in mice and on facial skin elasticity in humans. Growth Horm. IGF Res., 2007, 17(2), 171-176.
[http://dx.doi.org/10.1016/j.ghir.2006.12.005] [PMID: 17307377]
[44]
Kenins, P. Responses of single nerve fibres to capsaicin applied to the skin. Neurosci. Lett., 1982, 29(1), 83-88.
[http://dx.doi.org/10.1016/0304-3940(82)90369-X] [PMID: 7070716]
[45]
Szallasi, A.; Blumberg, P.M. Mechanisms and therapeutic potential of vanilloids (Capsaicin-like Molecules). Adv. Pharmacol., 1993, 24, 123-155.
[http://dx.doi.org/10.1016/S1054-3589(08)60936-9]
[46]
Agrawal, U.; Gupta, M.; Vyas, S.P. Capsaicin delivery into the skin with lipidic nanoparticles for the treatment of psoriasis. Artif. Cells Nanomed. Biotechnol., 2015, 43(1), 33-39.
[http://dx.doi.org/10.3109/21691401.2013.832683] [PMID: 24040836]
[47]
Chhabra, N.; Goyal, V.; Sankhla, S.; Aseri, M. Capsaicin: A promising therapy - a critical reappraisal. Int. J. Nutr. Pharmacol. Neurol. Dis., 2012, 2(1), 8.
[http://dx.doi.org/10.4103/2231-0738.93124]
[48]
Lowes, M.A.; Bowcock, A.M.; Krueger, J.G. Pathogenesis and therapy of psoriasis. Nature, 2007, 445(7130), 866-873.
[http://dx.doi.org/10.1038/nature05663] [PMID: 17314973]
[49]
Vijayalakshmi, A.; Ravichandiran, V.; Malarkodi, V.; Nirmala, S.; Jayakumari, S. Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. for anti-psoriatic activity. Asian Pac. J. Trop. Biomed., 2012, 2(4), 269-275.
[http://dx.doi.org/10.1016/S2221-1691(12)60021-5] [PMID: 23569912]
[50]
Hatahet, T.; Morille, M.; Hommoss, A.; Devoisselle, J.M.; Müller, R.H.; Bégu, S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int. J. Pharm., 2018, 542(1-2), 176-185.
[http://dx.doi.org/10.1016/j.ijpharm.2018.03.019] [PMID: 29549014]
[51]
Raghuwanshi, N.; Yadav, T.C.; Srivastava, A.K.; Raj, U.; Varadwaj, P.; Pruthi, V. Structure-based drug designing and identification of woodfordia fruticosa inhibitors targeted against heat shock protein (HSP70-1) as suppressor for Imiquimod-induced psoriasis like skin inflammation in mice model. Mater. Sci. Eng. C, 2019, 95, 57-71.
[http://dx.doi.org/10.1016/j.msec.2018.10.061] [PMID: 30573271]
[52]
Meng, S.; Sun, L.; Wang, L.; Lin, Z.; Liu, Z.; Xi, L.; Wang, Z.; Zheng, Y. Loading of water-insoluble celastrol into niosome hydrogels for improved topical permeation and anti-psoriasis activity. Colloids Surf. B Biointerfaces, 2019, 182, 110352.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110352] [PMID: 31306831]
[53]
Venkatesh, H.N.; Ravish, H.; Wilma Delphine Silvia, C.R.; Srinivas, H. Molecular signature of the immune response to yoga therapy in stress-related chronic disease conditions: An insight. Int. J. Yoga, 2020, 13(1), 9-17.
[http://dx.doi.org/10.4103/ijoy.IJOY_82_18] [PMID: 32030016]
[54]
Chen, S-R.; Dai, Y.; Zhao, J.; Lin, L.; Wang, Y.; Wang, Y. A mechanistic overview of triptolide and celastrol, natural products from tripterygium wilfordii Hook F. Front. Pharmacol., 2018, 9, 104.
[http://dx.doi.org/10.3389/fphar.2018.00104] [PMID: 29491837]
[55]
Astry, B.; Venkatesha, S.H.; Laurence, A.; Christensen-Quick, A.; Garzino-Demo, A.; Frieman, M.B.; O’Shea, J.J.; Moudgil, K.D. Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clin. Immunol., 2015, 157(2), 228-238.
[http://dx.doi.org/10.1016/j.clim.2015.01.011] [PMID: 25660987]
[56]
Singh, H.P.; Utreja, P.; Tiwary, A.K.; Jain, S. Elastic liposomal formulation for sustained delivery of colchicine: In vitro characterization and in vivo evaluation of anti-gout activity. AAPS J., 2009, 11(1), 54-64.
[http://dx.doi.org/10.1208/s12248-008-9078-8] [PMID: 19191031]
[57]
Tavano, L.; Alfano, P.; Muzzalupo, R.; de Cindio, B. Niosomes vs microemulsions: New carriers for topical delivery of capsaicin. Colloids Surf. B Biointerfaces, 2011, 87(2), 333-339.
[http://dx.doi.org/10.1016/j.colsurfb.2011.05.041] [PMID: 21684725]
[58]
Zhang, Y-T.; Shen, L-N.; Wu, Z-H.; Zhao, J-H.; Feng, N-P. Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake. J. Pharm. Sci., 2014, 103(10), 3120-3126.
[http://dx.doi.org/10.1002/jps.24096] [PMID: 25070929]
[59]
Carafa, M.; Marianecci, C.; Rinaldi, F.; Di Marzio, L.; Mastriota, M.; Pieretti, S.; Celia, C.; Paolino, D.; Iannone, M.; Fresta, M. Ammonium glycyrrhizinate-loaded niosomes as a potential nanotherapeutic system for anti-inflammatory activity in murine models. Int. J. Nanomedicine, 2014, 9, 635-651.
[http://dx.doi.org/10.2147/IJN.S55066]
[60]
Negi, P.; Sharma, I.; Hemrajani, C.; Rathore, C.; Bisht, A.; Raza, K.; Katare, O.P. Thymoquinone-loaded lipid vesicles: A promising nanomedicine for psoriasis. BMC Complement. Altern. Med., 2019, 19(1), 334.
[http://dx.doi.org/10.1186/s12906-019-2675-5] [PMID: 31771651]
[61]
Eid, A.M.; Elmarzugi, N.A.; Abu Ayyash, L.M.; Sawafta, M.N.; Daana, H.I. A review on the cosmeceutical and external applications of nigella sativa. J. Trop. Med., 2017, 2017, 7092514.
[http://dx.doi.org/10.1155/2017/7092514] [PMID: 29358959]
[62]
Sonia, K.; Anupama, D. Microemulsion based transdermal drug delivery of tea tree oil. Int. J. Drug Dev. Res., 2011, 3(1), 191-198.
[63]
Ali, M.S.; Alam, M.S.; Imam, M.F.; Siddiqui, M.R. Topical nanoemulsion of turmeric oil for psoriasis: Characterization, ex vivo and in vivo assessment. Int. J. Drug Deliv., 2012, 4(2), 184-197.
[64]
Zakir, F.; Vaidya, B.; Goyal, A.K.; Malik, B.; Vyas, S.P. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Deliv., 2010, 17(4), 238-248.
[http://dx.doi.org/10.3109/10717541003680981] [PMID: 20235758]
[65]
David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[66]
Crisan, D.; Scharffetter-Kochanek, K.; Crisan, M.; Schatz, S.; Hainzl, A.; Olenic, L.; Filip, A.; Schneider, L.A.; Sindrilaru, A. Topical silver and gold nanoparticles complexed with Cornus mas suppress inflammation in human psoriasis plaques by inhibiting NF-κB activity. Exp. Dermatol., 2018, 27(10), 1166-1169.
[http://dx.doi.org/10.1111/exd.13707] [PMID: 29906306]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy