Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Recent Progress in SiC Nanostructures as Anode Materials for Lithium- Ion Batteries

Author(s): Xiaohong Fan, Dingrong Deng, Yi Li* and Qi-Hui Wu*

Volume 16, Issue 1, 2023

Published on: 16 September, 2022

Page: [18 - 29] Pages: 12

DOI: 10.2174/2666145415666220822120615

open access plus

Abstract

Large volume variation during charge/discharge of silicon (Si) nanostructures applied as the anode electrodes for high energy lithium-ion batteries (LIBs) has been considered the most critical problem, inhibiting their commercial applications. Searching for alternative highperformance anodes for LIBs has been emphasized. Silicon carbide (SiC) nanomaterials, a wide bandgap semiconductor with excellent mechanical properties, have been investigated as anode electrode materials even as active materials, protective layers, or inactive buffer stuff. In this minireview, we briefly summarize the synthesis of SiC nanostructures, the application of SiC/C anode materials, and SiC/Si composite anodes in LIBs.

Keywords: SiC, Si, lithium-ion batteries, anode, nanostructures, thin films.

[1]
Wang C, Chui YS, Ma R, et al. A three-dimensional graphene scaffold supported thin film silicon anode for lithium-ion batteries. J Mater Chem A Mater Energy Sustain 2013; 1(35): 10092-8.
[http://dx.doi.org/10.1039/c3ta11740e]
[2]
Sun YL, Song HL, Yang Y, et al. First-principles study of lithium insertion into Si10H16 cluster. Comput Theor Chem 2015; 1056: 56-60.
[http://dx.doi.org/10.1016/j.comptc.2015.01.006]
[3]
Ren JG, Wang C, Wu QH, et al. A silicon nanowire–reduced graphene oxide composite as a high-performance lithium ion battery anode material. Nanoscale 2014; 6(6): 3353-60.
[http://dx.doi.org/10.1039/c3nr05093a] [PMID: 24522297]
[4]
Ren JG, Wu QH, Hong G, et al. Silicon-graphene composite anodes for high-energy lithium batteries. Energy Technol (Weinheim) 2013; 1(1): 77-84.
[http://dx.doi.org/10.1002/ente.200038]
[5]
Timmons A, Todd ADW, Mead SD, et al. Silicon carbide: Synthesis and properties. In: Gerhardt R, Ed. Properties and Applications of Silicon Carbide. InTech, Croatia 2011; pp. 361-88.
[6]
Virdis S, Vetter U, Ronning C, Kröger H, Hofsäss H, Dietrich M. Lattice site location of ion-implanted 8Li in silicon carbide. J Appl Phys 2002; 91(3): 1046-52.
[http://dx.doi.org/10.1063/1.1425442]
[7]
Zheng X, Fang G, Pan Y, Li Q, Wu M. Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery. J Power Sources 2019; 439: 227081.
[http://dx.doi.org/10.1016/j.jpowsour.2019.227081]
[8]
Lipson AL, Chattopadhyay S, Karmel HJ, et al. Enhanced lithiation of doped 6H silicon carbide (0001) via high temperature vacuum growth of epitaxial graphene. J Phys Chem C 2012; 116(39): 20949-57.
[http://dx.doi.org/10.1021/jp307220y]
[9]
Sri Devi Kumari T, Jeyakumar D, Prem Kumar T. Nano silicon carbide: A new lithium-insertion anode material on the horizon. RSC Advances 2013; 3(35): 15028-34.
[http://dx.doi.org/10.1039/c3ra40798e]
[10]
Zhang H, Xu H. Nanocrystalline silicon carbide thin film electrodes for lithium-ion batteries. Solid State Ion 2014; 263: 23-6.
[http://dx.doi.org/10.1016/j.ssi.2014.04.020]
[11]
Huang XD, Zhang F, Gan XF, et al. Electrochemical characteristics of amorphous silicon carbide film as a lithiumion battery anode. RSC Advances 2018; 8(10): 5189-96.
[http://dx.doi.org/10.1039/C7RA12463E] [PMID: 35542431]
[12]
Hu Y, Liu X, Zhang X, et al. Bead-curtain shaped SiC@SiO2 core-shell nanowires with superior electrochemical properties for lithium-ion batteries. Electrochim Acta 2016; 190: 33-9.
[http://dx.doi.org/10.1016/j.electacta.2015.12.211]
[13]
Li H, Yu H, Zhang X, et al. Bowl-like 3C-SiC nanoshells encapsulated in hollow graphitic carbon spheres for high-rate lithium-ion batteries. Chem Mater 2016; 28(4): 1179-86.
[http://dx.doi.org/10.1021/acs.chemmater.5b04750]
[14]
Bednorz R, Gewald T. Investigation of the effects of charging processes on lithium-ion cells with SiC anodes at low temperatures. Batteries 2020; 6(2): 34.
[http://dx.doi.org/10.3390/batteries6020034]
[15]
Sun C, Wang YJ, Gu H, et al. Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy 2020; 77: 105092.
[http://dx.doi.org/10.1016/j.nanoen.2020.105092]
[16]
Moene R, Makkee M, Moulijn JA. High surface area silicon carbide as catalyst support characterization and stability. Appl Catal A Gen 1998; 167(2): 321-30.
[http://dx.doi.org/10.1016/S0926-860X(97)00326-8]
[17]
Zheng X, Liu Y, Cao Y, Wang J, Zhang Y. CVD synthesis of nanometer SiC coating on diamond particles. Ceram Int 2021; 47(11): 16162-9.
[http://dx.doi.org/10.1016/j.ceramint.2021.02.192]
[18]
Li T, Liu ZY, Zan YN, et al. Effect of nanometer SiC coating on thermal conductivity and bending strength of graphite flake/6063Al composites. J Alloys Compd 2021; 862: 158023.
[http://dx.doi.org/10.1016/j.jallcom.2020.158023]
[19]
Li S, Luo X, Zhao L, Wei C, Gao P, Wang P. Crack tolerant silicon carbide ceramics prepared by liquid-phase assisted oscillatory pressure sintering. Ceram Int 2020; 46(11): 18965-9.
[http://dx.doi.org/10.1016/j.ceramint.2020.04.222]
[20]
Taha MA, Youness RA, Zawrah MF. Review on nanocomposites fabricated by mechanical alloying. Int J Miner Metall Mater 2019; 26(9): 1047-58.
[http://dx.doi.org/10.1007/s12613-019-1827-4]
[21]
Kuzubov AA, Eliseeva NS, Krasnov PO, Tomilin FN, Fedorov AS, Tolstaya AV. Possibility of a 2D SiC monolayer formation on Mg(0001) and MgO(111) substrates. Russ J Phys Chem A Focus Chem 2013; 87(8): 1332-5.
[http://dx.doi.org/10.1134/S0036024413080141]
[22]
Zou G, Dong C, Xiong K, Li H, Jiang C, Qian Y. Low-temperature solvothermal route to 2H–SiC nanoflakes. Appl Phys Lett 2006; 88(7): 071913.
[http://dx.doi.org/10.1063/1.2174123]
[23]
Ju Z, Xu L, Pang Q, Xing Z, Ma X, Qian Y. The synthesis of nanostructured SiC from waste plastics and silicon powder. Nanotechnology 2009; 20(35): 355604.
[http://dx.doi.org/10.1088/0957-4484/20/35/355604] [PMID: 19671984]
[24]
Chabi S, Chang H, Xia Y, Zhu Y. From graphene to silicon carbide: Ultrathin silicon carbide flakes. Nanotechnology 2016; 27(7): 075602.
[http://dx.doi.org/10.1088/0957-4484/27/7/075602] [PMID: 26775658]
[25]
Susi T, Skakalova V, Mittelberger A, et al. 2D silicon carbide: Computational insights and the observation of SiC nanograin assembly. Sci Rep 2017; 7: 4399-408.
[http://dx.doi.org/10.1038/s41598-017-04683-9] [PMID: 28667311]
[26]
Cao Y, Dong H, Pu S, Zhang X. Photoluminescent twodimensional SiC quantum dots for cellular imaging and transport. Nano Res 2018; 11(8): 4074-81.
[http://dx.doi.org/10.1007/s12274-018-1990-3]
[27]
Wang C, Li Y, Ostrikov KK, Yang Y, Zhang W. Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si@SiC@C for high-performance lithium ion batteries. J Alloys Compd 2015; 646: 966-72.
[http://dx.doi.org/10.1016/j.jallcom.2015.06.177]
[28]
Zhang C, Li B, Li Y, Wang M, Yang Y. Optical activity of SiC nanoparticles prepared from single-handed helical 4,4-biphenylene-bridged polybissilsesquioxane nanotubes. New J Chem 2015; 39(11): 8424-9.
[http://dx.doi.org/10.1039/C5NJ01027F]
[29]
Shao C, Zhang F, Sun H, Li B, Li Y, Yang Y. SiC/C composite mesoporous nanotubes as anode material for highperformance lithium-ion batteries. Mater Lett 2017; 205: 245-8.
[http://dx.doi.org/10.1016/j.matlet.2017.06.021]
[30]
Timmons A, Todd ADW, Mead SD, et al. Studies of Si1-xCx electrode materials prepared by high-energy mechanical milling and combinatorial sputter deposition. J Electrochem Soc 2007; 154(9): A865-74.
[http://dx.doi.org/10.1149/1.2755782]
[31]
Sri Maha Vishnu D, Sure J, Kim HK, Kumar RV, Schwandt C. Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater 2020; 26: 234-41.
[http://dx.doi.org/10.1016/j.ensm.2019.12.041]
[32]
Li W, Li J, Wen J, et al. Hollow nanostructure of sea-sponge-C/SiC@SiC/C for stable Li+-storage capability. Sci Bull (Beijing) 2019; 64(16): 1152-7.
[http://dx.doi.org/10.1016/j.scib.2019.06.014]
[33]
Voitko KV, Kuts VS, Grebenyuk AG, Bakalinska OM, Bakalinskyi OV, Kartel MM. Quantum-chemical modeling of the fullerene-type (SiC)12 nanocluster for highperformance lithium-ion batteries. Comput Theor Chem 2020; 1180: 112826.
[http://dx.doi.org/10.1016/j.comptc.2020.112826]
[34]
Nangir M, Massoudi A, Tayebifard SA. Investigation of the lithium-ion depletion in the silicon-silicon carbide anode/electrolyte inter-face in lithium-ion battery via electrochemical impedance spectroscopy. J Electroanal Chem (Lausanne) 2020; 873: 114385.
[http://dx.doi.org/10.1016/j.jelechem.2020.114385]
[35]
Briggs N, Gebeyehu ZM, Vera A, et al. Epitaxial graphene/silicon carbide intercalation: A mini review on graphene modulation and unique 2D materials. Nanoscale 2019; 11(33): 15440-7.
[http://dx.doi.org/10.1039/C9NR03721G] [PMID: 31393495]
[36]
Yan Z, Jin H, Guo J. Lowtemperature synthesis of graphitic carboncoated silicon anode materials. Carbon Energy 2019; 1(2): 246-52.
[http://dx.doi.org/10.1002/cey2.8]
[37]
Fiori S, Murata Y, Veronesi S, Rossi A, Coletti C, Heun S. Li-intercalated graphene on SiC(0001): An STM study. Phys Rev B 2017; 96(12): 125429.
[http://dx.doi.org/10.1103/PhysRevB.96.125429]
[38]
Roohi H, Lotfi T. Tuning the electronic properties of SiC nanosheets decorated by Li n (n = 1–3) for the anode of lithium-ion batteries. Mol Phys 2020; 118(23): e1786182.
[http://dx.doi.org/10.1080/00268976.2020.1786182]
[39]
Bijoy TK, Murugan P. Lithiation of the two-dimensional silicon carbide-graphene van der Waals heterostructure: A first principles study. J Phys Chem C 2019; 123(17): 10738-45.
[http://dx.doi.org/10.1021/acs.jpcc.8b12492]
[40]
Sun X, Shao C, Zhang F, Li Y, Wu QH, Yang Y. SiC nanofibers as long-life lithium-ion battery anode materials. Front Chem 2018; 6: 166.
[http://dx.doi.org/10.3389/fchem.2018.00166] [PMID: 29868567]
[41]
Majid A, Fatima SA, Ud-Din Khan S, Almutairi ZA. Assessment of 2H–SiC based intercalation compound for use as anode in lithium ion batteries. Ceram Int 2020; 46(4): 5297-305.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.280]
[42]
Manju MS, Thomas S, Lee SU, Kulangara Madam A. Mechanically robust, self-healing graphene like defective SiC: A prospective anode of Li-ion batteries. Appl Surf Sci 2021; 541: 148417.
[http://dx.doi.org/10.1016/j.apsusc.2020.148417]
[43]
Jeon BJ, Lee JK. Electrochemical characteristics of nc-Si/SiC composite for anode electrode of lithium ion batteries. J Alloys Compd 2014; 590: 254-9.
[http://dx.doi.org/10.1016/j.jallcom.2013.12.122]
[44]
Wang W, Wang Y, Gu L, et al. SiC@Si core–shell nanowires on carbon paper as a hybrid anode for lithium-ion batteries. J Power Sources 2015; 293: 492-7.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.103]
[45]
Wen Z, Lu G, Cui S, et al. Rational design of carbon network cross-linked Si–SiC hollow nanosphere as anode of lithium-ion batteries. Nanoscale 2014; 6(1): 342-51.
[http://dx.doi.org/10.1039/C3NR04162J] [PMID: 24196865]
[46]
Ngo DT, Le HTT, Pham XM, Park CN, Park CJ. Facile synthesis of Si@SiC composite as an anode material for lithium-ion batteries. ACS Appl Mater Interfaces 2017; 9(38): 32790-800.
[http://dx.doi.org/10.1021/acsami.7b10658] [PMID: 28875692]
[47]
Yu C, Chen X, Xiao Z, et al. Silicon carbide as a protective layer to stabilized Si-based anodes by inhibiting chemical reactions. Nano Lett 2019; 19(8): 5124-32.
[http://dx.doi.org/10.1021/acs.nanolett.9b01492] [PMID: 31260631]
[48]
Furquan M, Jangid MK, Khatribail AR, Vijayalakshmi S, Mukhopadhyay A, Mitra S. Mechanical and electrochemical stability improvement of SiC-reinforced silicon-based composite anode for Li-ion batteries. ACS Appl Energy Mater 2020; 3(12): 12613-26.
[http://dx.doi.org/10.1021/acsaem.0c02523]
[49]
Park S, Sung J, Chae S, et al. Scalable synthesis of hollow β-SiC/Si anodes via selective thermal oxidation for lithium-ion batteries. ACS Nano 2020; 14(9): 11548-57.
[http://dx.doi.org/10.1021/acsnano.0c04013] [PMID: 32794741]
[50]
Zhang J, Tang J, Zhou X, et al. Optimized porous Si/SiC composite spheres as high-performance anode material for lithium-ion batteries. ChemElectroChem 2019; 6(2): 450-5.
[http://dx.doi.org/10.1002/celc.201801313]
[51]
Zhang Z, Li H. Sequential-template synthesis of hollowed carbon polyhedron@SiC@Si for lithium-ion battery with high capacity and electrochemical stability. Appl Surf Sci 2020; 514: 145920.
[http://dx.doi.org/10.1016/j.apsusc.2020.145920]
[52]
Zhang Y, Hu K, Zhou Y, et al. A facile, one-step synthesis of silicon/silicon carbide/carbon nanotube nanocomposite as a cycling-stable anode for lithium ion batteries. Nanomaterials (Basel) 2019; 9(11): 1624.
[http://dx.doi.org/10.3390/nano9111624] [PMID: 31731756]
[53]
Cai W, Zhang F, Li B, Yang Y, Li Y. Fabrication of C/SiC/Si composite fibers from helical mesoporous silica and application as lithi-um ion battery anode. J Taiwan Inst Chem Eng 2019; 97: 489-95.
[http://dx.doi.org/10.1016/j.jtice.2019.02.021]
[54]
Yang Y, Ren JG, Wang X, et al. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries. Nanoscale 2013; 5(18): 8689-94.
[http://dx.doi.org/10.1039/c3nr02788k] [PMID: 23900559]

© 2024 Bentham Science Publishers | Privacy Policy