Generic placeholder image

Current Materials Science

Editor-in-Chief

ISSN (Print): 2666-1454
ISSN (Online): 2666-1462

Mini-Review Article

Compritol: A Versatile Excipient for Novel Drug Delivery System

Author(s): Dipthi Shree*, Chinam Niranjan Patra and Biswa Mohan Sahoo

Volume 16, Issue 1, 2023

Published on: 26 September, 2022

Page: [30 - 42] Pages: 13

DOI: 10.2174/2666145415666220827090500

Price: $65

Abstract

Background: Active pharmaceutical ingredient to be administered in a suitable dosage form is usually incorporated with an inert substance (excipient) to achieve a necessary therapeutic effect. Pharmaceutical excipient plays a prominent role in the drug delivery system. Thus, the exploration of novel excipients is indispensable to aid in formulating the new chemical entity. This review discusses novel lipid excipient Compritol for devising as an efficient drug delivery system and its utility in the pharmaceutical and cosmeceutical industries.

Summary: In this review manuscript, the potential pharmaceutical and cosmeceutical applicability of compritol as a novel excipient has been highlighted. An extensive search of the literature was done using the existing original research papers. Furthermore, painstaking efforts were made to compile and update the information using databases viz., PubMed, Science Direct, Google Scholar, etc. The applications of various grades of compritol are enumerated in the form of tables.

Keywords: Therapeutic Regimen, optimization, sophisticated techniques, novel carrier, bioavailability, targeted delivery, lipid-based carrier system.

Graphical Abstract

[1]
Dave VS, Saoji SD, Raut NA, Haware RV. Excipient variability and its impact on dosage form functionality. J Pharm Sci 2015; 104(3): 906-15.
[http://dx.doi.org/10.1002/jps.24299] [PMID: 25561249]
[2]
Furrer P. The central role of excipients in drug formulation. Eur Pharm Rev 2013; 18(2): 67-70.
[3]
Shrestha H, Bala R, Arora S. Lipid based drug delivery dystems. J Pharm (Cairo) 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/801820] [PMID: 26556202]
[4]
Boyd BJ, Bergström CAS, Vinarov Z, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci 2019; 137: 104967.
[http://dx.doi.org/10.1016/j.ejps.2019.104967] [PMID: 31252052]
[5]
Kalepu S, Manthina M, Padavala V. Oral lipid based drug delivery systems – An overview. Acta Pharm Sin B 2013; 3(6): 361-72.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[6]
Persson LC, Porter CJH, Charman WN, Bergström CAS. Computational prediction of drug solubility in lipid based formulation excipients. Pharm Res 2013; 30(12): 3225-37.
[http://dx.doi.org/10.1007/s11095-013-1083-7] [PMID: 23771564]
[7]
Sun S, Zhang H, Wang X, He S, Zhai G. Development and evaluation of ibuprofen loaded mixed micelles preparations for topical delivery. J Drug Deliv Sci Technol 2018; 48: 363-71.
[http://dx.doi.org/10.1016/j.jddst.2018.10.012]
[8]
Nakmode D, Bhavana V, Thakor P, et al. Fundamental aspects of lipid-based excipients in lipid-based product development. Pharmaceutics 2022; 14(4): 831.
[http://dx.doi.org/10.3390/pharmaceutics14040831] [PMID: 35456665]
[9]
Small DM. A classification of biologic lipids based upon their interaction in aqueous systems. J Am Oil Chem Soc 1968; 45(3): 108-19.
[http://dx.doi.org/10.1007/BF02915334] [PMID: 5642084]
[10]
Lantz RJ, Robinson MJ. Method of preparing sustained release pellets and products thereof. US3146167A, 1964.
[11]
Schwartz JB, Simonelli AP, Higuchi WI. Drug release from wax matrices. I. Analysis of data with first-order kinetics and with the diffusion-controlled model. J Pharm Sci 1968; 57(2): 274-7.
[http://dx.doi.org/10.1002/jps.2600570206] [PMID: 5641671]
[12]
Porter CJH, Trevaskis NL, Charman WN. Lipids and lipid based formulations: Optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov 2007; 6(3): 231-48.
[http://dx.doi.org/10.1038/nrd2197] [PMID: 17330072]
[13]
Sohi H, Sultana Y, Khar RK. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Drug Dev Ind Pharm 2004; 30(5): 429-48.
[http://dx.doi.org/10.1081/DDC-120037477] [PMID: 15244079]
[14]
Dubey R, Shami TC, Rao BKU. Microencapsulation technology and applications. Def Sci J 2009; 59(1): 82-95.
[15]
Singh MN, Hemant KSY, Ram M, Shivakumar HG. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci 2010; 5(2): 65-77.
[PMID: 21589795]
[17]
Madgulkar AR, Bhalekar M, Shiradkar MR. Compritol and precirol: Innovative pharmaceutical excipients. Asian J Chem 2007; 19(1): 454-8.
[18]
Shah H, Jain A, Laghate G, Prabhudesai D. Remington: The science and practice of pharmacy. (23rd ed.). Academic press, Elsevier 2021; pp. 633-43.
[http://dx.doi.org/10.1016/B978-0-12-820007-0.00032-5]
[19]
Attama AA, Momoh MA, Builders PF. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and devel-opment. Intech 2012.
[http://dx.doi.org/10.5772/50486]
[20]
Qazi F, Shoaib MH, Yousuf RI, Nasiri MI, Ahmed K, Ahmad M. Lipids bearing extruded-spheronized pellets for extended release of poorly soluble antiemetic agent-Meclizine HCl. Lipids Health Dis 2017; 16(1): 75.
[http://dx.doi.org/10.1186/s12944-017-0466-x] [PMID: 28403892]
[21]
Vithani K, Maniruzzaman M, Slipper IJ, et al. Sustained release solid lipid matrices processed by hot-melt extrusion (HME). Colloids Surf B Biointerfaces 2013; 110: 403-10.
[http://dx.doi.org/10.1016/j.colsurfb.2013.03.060] [PMID: 23759381]
[22]
Negi JS, Chattopadhyay P, Sharma AK, Ram V. Development and evaluation of glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self-nanoemulsification (SNE) technique. Arch Pharm Res 2014; 37(3): 361-70.
[http://dx.doi.org/10.1007/s12272-013-0154-y] [PMID: 23695866]
[23]
Lopez GR, Ganem RG. Solid lipid nanoparticles (SLN) and Nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability. J cosmet dermatol sci appl 2015; 5: 62-72.
[24]
Jannin V, Rosiaux Y, Doucet J. Exploring the possible relationship between the drug release of Compritol®-containing tablets and its polymorph forms using micro X-ray diffraction. J Control Release 2015; 197: 158-64.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.013] [PMID: 25445699]
[25]
Mahant S, Rao R, Nanda S. Chapter 3 - Nanostructured lipid carriers: Revolutionizing skin care and topical therapeutics. In: Design of Nanostructures for Versatile Therapeutic Applications. 2018; 97-136.
[http://dx.doi.org/10.1016/B978-0-12-813667-6.00003-6]
[26]
Koo OMY, Varia SA. Case studies with new excipients: Development, implementation and regulatory approval. Ther Deliv 2011; 2(7): 949-56.
[http://dx.doi.org/10.4155/tde.11.62] [PMID: 22833905]
[27]
Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. (6th ed.). Pharmaceutical Press and American Pharmacists Association 2009; pp. 286-7.
[28]
Jannin V, Cuppok Y. Hot melt coating with lipid excipients. Int J Pharm 2013; 457(2): 480-7.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.026] [PMID: 23089578]
[29]
Devi R, Agarwal S. Some multifunctional lipid excipients and their pharmaceutical applications. Int J Pharm Pharm Sci 2019; 11(9): 1-7.
[http://dx.doi.org/10.22159/ijpps.2019v11i9.34194]
[30]
Rowe RC, Sheskey PJ, Owen SC. Handbook of pharmaceutical excipients. (5th ed.). Pharmaceutical Press and American Pharmacists Association 2006; pp. 304-5.
[31]
Miao S, Lin D. Monoglycerides: Categories, structures, properties, preparations, and applications in the food industry. In: Encyclopedia of Food chemistry. 2019; pp. 155-63.
[32]
Rarokar NR, Menghani S, Kerzare D, Khedekar PB. Progress in synthesis of monoglycerides for use in food and pharmaceuticals. J Excip Food Chem 2017; 3(3): 2-6.
[http://dx.doi.org/10.4172/2472-0542.1000128]
[33]
Aburahma MH, Badr ESM. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv 2014; 11(12): 1865-83.
[http://dx.doi.org/10.1517/17425247.2014.935335] [PMID: 25152197]
[34]
Ahmad J. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics 2021; 8(3): 84.
[http://dx.doi.org/10.3390/cosmetics8030084]
[35]
Pavlou P, Siamidi A, Varvaresou A, Vlachou M. Skin care formulations and lipid carriers as skin moisturizing agents. Cosmetics 2021; 8(3): 89.
[http://dx.doi.org/10.3390/cosmetics8030089]
[36]
Huang J, Yang Z, Guan F, et al. A novel mono- and diacylglycerol lipase highly expressed in Pichia pastoris and its application for food emulsifier preparation. Process Biochem 2013; 48(12): 1899-904.
[http://dx.doi.org/10.1016/j.procbio.2013.08.021]
[37]
Yasir M, Chauhan I, Haji MJ, Tura AJ, Saxena PK. Formulation and evaluation of glyceryl behenate based solid lipid nanoparticles for the delivery of donepezil to brain through nasal route. Res J Pharm Technol 2018; 11(7): 2836-44.
[http://dx.doi.org/10.5958/0974-360X.2018.00523.1]
[38]
Chawla V, Saraf SA. Glyceryl behenate and its suitability for production of aceclofenac solid lipid nanoparticles. J Am Oil Chem Soc 2011; 88(1): 119-26.
[http://dx.doi.org/10.1007/s11746-010-1618-6]
[39]
Drescher S, Hoogevest P. The phospholipid research center: Current research in phospholipids and their use in drug delivery. Pharmaceutics 2020; 12(12): 1235.
[http://dx.doi.org/10.3390/pharmaceutics12121235] [PMID: 33353254]
[40]
Severino P, Andreani T, Macedo AS, et al. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J Drug Deliv 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/750891] [PMID: 22175030]
[41]
Opota DO, Kaloustian J, Senga PK, Vemba AT, Cimanga RK. The efficiency of glyceryl behenate as sustained-release agent compared with hydroxypropyl cellulose in tablets. Int J Pharm Tech Res 2013; 5(2): 622-8.
[42]
Jawed SH, Muhammad IN, Qazi F, Shoaib MH, Arshad HM, Siddiqui T. Development and quality evaluation of sustained release pellets of eperisone HCl. Pak J Pharm Sci 2021; 34(1): 225-35.
[PMID: 34275846]
[43]
Kang C, Lee JH, Kim DW, Lee BJ, Park JB. Preparation of sustained release tablet with minimized usage of glyceryl behenate using post-heating method. AAPS PharmSciTech 2018; 19(7): 3067-75.
[http://dx.doi.org/10.1208/s12249-018-1128-7] [PMID: 30094721]
[44]
Shah NH, Stiel D, Weiss M, Infeld MH, Malick AW. Evaluation of two new tablet lubricants - sodium stearyl fumarate and glyceryl behenate. Measurement of physical parameters (compaction, ejection and residual forces) in the tableting process and the effect on the dissolution rate. Drug Dev Ind Pharm 1986; 12(8-9): 1329-46.
[http://dx.doi.org/10.3109/03639048609065862]
[45]
Mužíková J, Muchová S, Komersová A, Lochař V. Compressibility of tableting materials and properties of tablets with glyceryl behenate. Acta Pharm 2015; 65(1): 91-8.
[http://dx.doi.org/10.1515/acph-2015-0006] [PMID: 25781708]
[46]
Li J, Wu Y. Lubricants in pharmaceutical solid dosage forms. Lubricants 2014; 2(1): 21-43.
[http://dx.doi.org/10.3390/lubricants2010021]
[47]
Hohl R, Scheibelhofer O, Stocker E, et al. Monitoring of a hot melt coating process via a novel multipoint near-infrared spectrometer. AAPS PharmSciTech 2017; 18(1): 182-93.
[http://dx.doi.org/10.1208/s12249-016-0504-4] [PMID: 26935562]
[48]
Chansanroj K, Betz G, Leuenberger H, Mitrevej A, Sinchaipanid N. Polymorphic change of a triglyceride base in hot melt coating pro-cess and stability acceleration by tempering process. J Drug Deliv Sci Technol 2007; 17(5): 347-52.
[http://dx.doi.org/10.1016/S1773-2247(07)50053-5]
[49]
Detoni CB, Souto GD, da Silva ALM, Pohlmann AR, Guterres SS. Photostability and skin penetration of different E-resveratrol-loaded supramolecular structures. Photochem Photobiol 2012; 88(4): 913-21.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01147.x] [PMID: 22443373]
[50]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticle from liposomes to mRNA vaccine delivery, a landscape of research diver-sity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[51]
Souto EB, Mehnert W, Müller RH. Polymorphic behaviour of Compritol®888 ATO as bulk lipid and as SLN and NLC. J Microencapsul 2006; 23(4): 417-33.
[http://dx.doi.org/10.1080/02652040600612439] [PMID: 16854817]
[52]
Sakellari GI, Zafeiri L, Batchelor H, Spyropoulos F. Formulation design, production and characterisation of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the encapsulation of a model hydrophobic active. Food Hydrocolloids for Health 2021; 1: 100024.
[http://dx.doi.org/10.1016/j.fhfh.2021.100024]
[53]
Lopes DG, Salar BS, Zimmer A. Designing optimal formulations for hot-melt coating. Int J Pharm 2017; 533(2): 357-63.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.086] [PMID: 28842310]
[54]
Rana H, Dholakia M, Gohel M, Omri A, Thakkar V, Gandhi T. Demonstration of advanced data mining tools for optimization of pel-lets employing modified extrusion-pelletization technique. Curr Drug Ther 2021; 16(2): 154-69.
[http://dx.doi.org/10.2174/1574885515999201217155123]
[55]
Hamdani J, Moës AJ, Amighi K. Development and in vitro evaluation of a novel floating multiple unit dosage form obtained by melt pelletization. Int J Pharm 2006; 322(1-2): 96-103.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.052] [PMID: 16824707]
[56]
Kalász H, Antal I. Drug excipients. Curr Med Chem 2006; 13(21): 2535-63.
[http://dx.doi.org/10.2174/092986706778201648] [PMID: 17017910]
[57]
Sznitowska M, Wolska E, Baranska H, Cal K, Pietkiewicz J. The effect of a lipid composition and a surfactant on the characteristics of the solid lipid microspheres and nanospheres (SLM and SLN). Eur J Pharm Biopharm 2017; 110(1): 24-30.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.023] [PMID: 27815177]
[58]
Available from: http://www.gattefosse.com
[59]
Patere S, Desai N, Jain A, et al. Compritol®888 ATO a lipid excipient for sustained release of highly water soluble active: Formulation, scale-up and IVIVC study. Curr Drug Deliv 2013; 10(5): 548-56.
[http://dx.doi.org/10.2174/1567201811310050006] [PMID: 23607649]
[60]
Mahaparale PR, Kuchekar BS. Sustained release wax matrix tablet of metaprolol succinate. Research J Pharm and Tech 2012; 5(11): 1408-12.
[61]
Wadhwa A, Mathura V, Rathnanand M, Naha A, Lewis SA. Compritol®888 lipid matrix via twin screw extruder. Int J Appl Pharma 2019; 11(1): 261-4.
[http://dx.doi.org/10.22159/ijap.2019v11i1.29675]
[62]
Li F, Hu J, Deng J, Su H, Xu S, Liu J. In vitro controlled release of sodium ferulate from Compritol 888 ATO-based matrix tablets. Int J Pharm 2006; 324(2): 152-7.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.006] [PMID: 16837152]
[63]
Patel JK, Patel NV, Shah SH. In vitro controlled release of colon targeted mesalamine from compritol ATO 888 based matrix tablets using factorial design. Res Pharm Sci 2009; 4(2): 63-75.
[PMID: 21589801]
[64]
Nagarsenker MS, Patere SN, Kapadia CJ. Influence of formulation factors and compression force on release profile of sustained re-lease metoprolol tablets using compritol ® 888 ATO as lipid excipient. Indian J Pharm Sci 2015; 77(5): 620-5.
[http://dx.doi.org/10.4103/0250-474X.169030] [PMID: 26798179]
[65]
Roberts M, Pulcini L, Mostafa S, Cuppok-Rosiaux Y, Marchaud D. Preparation and characterization of Compritol 888 ATO matrix tablets for the sustained release of diclofenac sodium. Pharm Dev Technol 2015; 20(4): 507-12.
[http://dx.doi.org/10.3109/10837450.2013.871035] [PMID: 24354893]
[66]
Hwang KM, Byun W, Cho CH, Park ES. Preparation and optimization of glyceryl behenate-based highly porous pellets containing cilostazol. Pharm Dev Technol 2018; 23(5): 540-51.
[http://dx.doi.org/10.1080/10837450.2016.1245743] [PMID: 27718780]
[67]
Mahaparale P, Kuchekar B. Development and evaluation of modified release wax matrix tablet dosage form for tramadol hydrochloride. Asian J Pharm 2015; 9(2): 102-6.
[http://dx.doi.org/10.4103/0973-8398.154701]
[68]
Chen G, Hou SX, Hu P, Hu QH, Guo DD, Xiao Y. In vitro dexamethasone release from nanoparticles and its pharmacokinetics in the inner ear after administration of the drug-loaded nanoparticles via the round window. Nan Fang Yi Ke Da Xue Xue Bao 2008; 28(6): 1022-4.
[PMID: 18583254]
[69]
Roberts M, Vellucci D, Mostafa S, Miolane C, Marchaud D. Development and evaluation of sustained-release Compritol®888 ATO matrix mini-tablets. Drug Dev Ind Pharm 2012; 38(9): 1068-76.
[http://dx.doi.org/10.3109/03639045.2011.638302] [PMID: 22149472]
[70]
Jagdale SC, Patil SA, Kuchekar BS, Chabukswar AR. Preparation and characterization of metformin hydrochloride - compritol 888 ATO Solid Dispersion. J Young Pharm 2011; 3(3): 197-204.
[http://dx.doi.org/10.4103/0975-1483.83758] [PMID: 21897658]
[71]
Jannin V, Leccia E, Rosiaux Y, Doucet J. Evolution of the microstructure of sustained- release matrix tablets during dissolution and storage. Indian J Pharm Sci 2018; 80(6): 1011-20.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000451]
[72]
Fouad EA, Ibrahim MA, El-Badry M. Embedment of chlorpheniramine maleate in directly compressed matrix tablets of compritol and kollidone SR. Trop J Pharm Res 2015; 14(3): 371-7.
[http://dx.doi.org/10.4314/tjpr.v14i3.3]
[73]
Etman ME, Mahmoud EH, Galal S, Nada AH. Floating ranitidine microparticulates: Development and in vitro evaluation. Int J App Pharm 2016; 8(4): 1-9.
[74]
Bhamre V, Sherkar D, Derle D, Narkhede M, Nehete J. Stavudine sintered matrix tablet: Formulation and evaluation. Research J Pharm And Tech 2011; 4(9): 1455-60.
[75]
Dhameliya PB, Vyas JR, Narola M, Patel K, Upadhye U. Preparation and evaluation of sustained release tablet of eperisone hydrochlo-ride by compritol ATO 888 as a matrix forming agent. J Drug Deliv Ther 2014; 4(3): 132-7.
[http://dx.doi.org/10.22270/jddt.v4i3.868]
[76]
Ramesh KVRNS, Shah F, Kiranmayi BH, Kumar MV. Design and evaluation of sustained release matrix tablets of levofloxacin em-ploying almond gum. Int J Chem Sci 2014; 12(3): 762-72.
[77]
Varia U, Prajapati B, Katariya H. Formulation and development of bosentan loaded once a daily tablet for pulmonary artery hyperten-sion using lipid matrices by 32 full factorial designs. Int J Pharm Sci Res 2018; 9(11): 4729-40.
[78]
Barakat NS, Elbagory IM, Almurshedi AS. Formulation, release characteristics and bioavailability study of oral monolithic matrix tablets containing carbamazepine. AAPS PharmSciTech 2008; 9(3): 931-8.
[http://dx.doi.org/10.1208/s12249-008-9108-y] [PMID: 18686038]
[79]
Abd El-Halim SM, Amin MM, El-Gazayerly ON, Abd El-Gawad NA. Comparative study on the different techniques for the prepara-tion of sustained-release hydrophobic matrices of a highly water-soluble drug. Drug Discov Ther 2010; 4(6): 484-92.
[PMID: 22491314]
[80]
Chi N, Guo JH, Zhang Y, Zhang W, Tang X. An oral controlled release system for amroxol hydrochloride containing a wax and a water insoluble polymer. Pharm Dev Technol 2010; 15(1): 97-104.
[http://dx.doi.org/10.3109/10837450903013576] [PMID: 19671037]
[81]
Vithani K, Cuppok Y, Mostafa S, Slipper IJ, Snowden MJ, Douroumis D. Diclofenac sodium sustained release hot melt extruded lipid matrices. Pharm Dev Technol 2014; 19(5): 531-8.
[http://dx.doi.org/10.3109/10837450.2013.805775] [PMID: 23763447]
[82]
Gambhire MN, Ambade KW, Kurmi SD, Kadam VJ, Jadhav KR. Development and in vitro evaluation of an oral floating matrix tablet formulation of diltiazem hydrochloride. AAPS PharmSciTech 2007; 8(3): E166-74.
[http://dx.doi.org/10.1208/pt0803073] [PMID: 17915823]
[83]
Gohel M, Nagori SA. Fabrication and evaluation of captopril modified-release oral formulation. Pharm Dev Technol 2009; 14(6): 679-86.
[http://dx.doi.org/10.3109/10837450902922744] [PMID: 19883258]
[84]
Hamza YES, Aburahma MH. Innovation of novel sustained release compression coated tablets for lornoxicam: Formulation and in vitro investigations. Drug Dev Ind Pharm 2010; 36(3): 337-49.
[http://dx.doi.org/10.3109/03639040903170768] [PMID: 19722915]
[85]
Deore RK, Kavitha K, Tamizhmani TG. Preparation and evaluation of sustained release matrix tablets of tramadol hydrochloride using compritol 888 ATO by melt granulation technique. Res J Pharm Biol Chem Sci 2010; 1(3): 431-40.
[86]
Abd-Elbary A, Tadros MI, Alaa-Eldin AA. Sucrose stearate-enriched lipid matrix tablets of etodolac: Modulation of drug release, diffusional modeling and structure elucidation studies. AAPS PharmSciTech 2013; 14(2): 656-68.
[http://dx.doi.org/10.1208/s12249-013-9951-3] [PMID: 23572253]
[87]
El Gamal SS, Naggar VF, Allam AN. Optimization of acyclovir oral tablets based on gastroretention technology: Factorial design analysis and physicochemical characterization studies. Drug Dev Ind Pharm 2011; 37(7): 855-67.
[http://dx.doi.org/10.3109/03639045.2010.546404] [PMID: 21401342]
[88]
Obaidat A, Obaidat RM. Controlled release of tramadol hydrochloride from matrices prepared using glyceryl behenate. Eur J Pharm Biopharm 2001; 52(2): 231-5.
[http://dx.doi.org/10.1016/S0939-6411(01)00173-4] [PMID: 11522491]
[89]
Aboelwafa AA, Basalious EB. Optimization and in vivo pharmacokinetic study of a novel controlled release venlafaxine hydrochloride three layer tablet. AAPS PharmSciTech 2010; 11(3): 1026-37.
[http://dx.doi.org/10.1208/s12249-010-9467-z] [PMID: 20532709]
[90]
Gu X, Fediuk DJ, Simons FER, Simons KJ. Evaluation and comparison of five matrix excipients for the controlled release of acrivastine and pseudoephedrine. Drug Dev Ind Pharm 2004; 30(10): 1009-17.
[http://dx.doi.org/10.1081/DDC-200040237] [PMID: 15595567]
[91]
Wang J, Wen H, Desai D. Lubrication in tablet formulations. Eur J Pharm Biopharm 2010; 75(1): 1-15.
[http://dx.doi.org/10.1016/j.ejpb.2010.01.007] [PMID: 20096779]
[92]
Takalapally S, Meda S, Kumaraswami R, Shravan A. A critical review on solid lubricants. Int J Mech Eng 2016; 7(5): 193-9.
[93]
Morin G, Briens L. The effect of lubricants on powder flowability for pharmaceutical application. AAPS PharmSciTech 2013; 14(3): 1158-68.
[http://dx.doi.org/10.1208/s12249-013-0007-5] [PMID: 23897035]
[94]
Otsuka M, Yamane I, Matsuda Y. Effects of lubricant mixing on compression properties of various kinds of direct compression excipients and physical properties of the tablets. Adv Powder Technol 2004; 15(4): 477-93.
[http://dx.doi.org/10.1163/1568552041270563]
[95]
Abramovici B, Gromenil JC, Molard F, Blanc F. Comparative study on the lubricating properties of a new additive: The glycerol tribe-henate (compritol 888) compared to magnesium stearate. Bull Tech Gattefosse 1985; 78: 75-85.
[96]
Xu H, Liu L, Li X, Ma J, Liu R, Wang S. Extended tacrolimus release via the combination of lipid-based solid dispersion and HPMC hydrogel matrix tablets. Asian J Pharma Sci 2019; 14(4): 445-54.
[http://dx.doi.org/10.1016/j.ajps.2018.08.001] [PMID: 32104473]
[97]
Martínez AL, Zambrano ZML, Vidal RG, Mendoza ES, Quintanar GD. Evaluation of the lubricating effect of magnesium stearate and glyceryl behenate solid lipid nanoparticles in a direct compression process. Int J Pharm 2018; 545(1-2): 170-5.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.002] [PMID: 29729408]
[98]
Jannin V, Bérard V, N’Diaye A, Andrès C, Pourcelot Y. Comparative study of the lubricant performance of Compritol®888 ATO either used by blending or by hot melt coating. Int J Pharm 2003; 262(1-2): 39-45.
[http://dx.doi.org/10.1016/S0378-5173(03)00316-8] [PMID: 12927386]
[99]
Din F, Saleem S, Aleem F, et al. Advanced colloidal technologies for the enhanced bioavailability of drugs. Cogent Med 2018; 5(1): 1480572.
[http://dx.doi.org/10.1080/2331205X.2018.1480572]
[100]
Savjani KT, Gajjar AK, Savjani JK. Drug solubility: Importance and enhancement techniques. ISRN Pharm 2012; 2012: 1-10.
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[101]
Majumdar A, Dubey N, Malviya N. Nanostructure lipid carriers: A promising tool for the drug delivery in the treatment of skin cancer. Asian J Pharm Clin Res 2019; 12(5): 15-26.
[102]
Saowanee S, Baby DA, Sabitha M. Current trends in lipid based delivery systems and its applications in drug delivery. Asian J Pharm Clin Res 2012; 5: 4-9.
[103]
Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 2011; 42(1-2): 11-8.
[http://dx.doi.org/10.1016/j.ejps.2010.10.002] [PMID: 20971188]
[104]
Deng J, Wu Z, Zhao Z, et al. Berberine loaded nanostructured lipid carriers enhance the treatment of ulcerative colitis. Int J Nanomedicine 2020; 15: 3937-51.
[http://dx.doi.org/10.2147/IJN.S247406] [PMID: 32581538]
[105]
Shinde G, Kesarla R, Rayasa MRS, Prajapati N. Formulation, development and characterization of nanostructured lipid carrier (NLC) loaded gel for psoriasis. Pharm Lett 2013; 5(4): 13-25.
[106]
Gokce EH, Sandri G, Bonferoni MC, et al. Cyclosporine A loaded SLNs: Evaluation of cellular uptake and corneal cytotoxicity. Int J Pharm 2008; 364(1): 76-86.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.028] [PMID: 18725276]
[107]
Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in drug - in cyclodextrin – in nanostruc-tured lipid carriers for ketoprofen topical delivery. Eur J Pharm Biopharm 2012; 80(1): 46-53.
[http://dx.doi.org/10.1016/j.ejpb.2011.07.015] [PMID: 21839833]
[108]
Mancini G, Gonçalves LMD, Marto J, et al. Increased therapeutic efficacy of SLN containing etofenamate and ibuprofen in topical treatment of inflammation. Pharmaceutics 2021; 13(3): 328.
[http://dx.doi.org/10.3390/pharmaceutics13030328] [PMID: 33802592]
[109]
Abdelbary G, Fahmy RH. Diazepam loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech 2009; 10(1): 211-9.
[http://dx.doi.org/10.1208/s12249-009-9197-2] [PMID: 19277870]
[110]
Patlolla RR, Chougule M, Patel AR, Jackson T, Tata PNV, Singh M. Formulation, characterization and pulmonary deposition of nebulized celecoxib encapsulated nanostructured lipid carriers. J Control Release 2010; 144(2): 233-41.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.006] [PMID: 20153385]
[111]
Chen YC, Liu DZ, Liu JJ, Chang TW, Ho HO, Sheu MT. Development of terbinafine solid lipid nanoparticles as a topical delivery system Int J nanomed 2012; 7: 4409-18.
[http://dx.doi.org/10.2147/IJN.S33682] [PMID: 22923986]
[112]
Gonzalez ME, Nikolić S, Calpena AC, Egea MA, Souto EB, García ML. Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels. J Pharm Sci 2012; 101(2): 707-25.
[http://dx.doi.org/10.1002/jps.22784] [PMID: 22012873]
[113]
Gadad AP, Tigadi SG, Dandagi PM, Mastiholimath VS, Bolmal UB. Rosuvastatin loaded nanostructured lipid carrier: For enhance-ment of oral bioavailability. Ind J Pharma Edu Res 2016; 50(4): 605-11.
[http://dx.doi.org/10.5530/ijper.50.4.13]
[114]
Rahman Z, Zidan AS, Khan MA. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur J Pharm Biopharm 2010; 76(1): 127-37.
[http://dx.doi.org/10.1016/j.ejpb.2010.05.003] [PMID: 20470882]
[115]
Priyanka KA, Hasan SA. Preparation and evaluation of montelukast sodium loaded solid lipid nanoparticles. J Young Pharm 2012; 4(3): 129-37.
[http://dx.doi.org/10.4103/0975-1483.100016] [PMID: 23112531]
[116]
Barthelemy P, Laforêt JP, Farah N, Joachim J. Compritol® 888 ATO: An innovative hot melt coating agent for prolonged release drug formulations. Eur J Pharm Biopharm 1999; 47(1): 87-90.
[http://dx.doi.org/10.1016/S0939-6411(98)00088-5] [PMID: 10234531]
[117]
Faham A, Prinderre P, Farah N, Eichler KD, Kalantzis G, Joachim J. Hot-melt coating technology. I. Influence of Compritol 888 ATO and granule size on theophylline release. Drug Dev Ind Pharm 2000; 26(2): 167-76.
[http://dx.doi.org/10.1081/DDC-100100341] [PMID: 10697753]
[118]
Becker K, Salar BS, Zimmer A. Solvent-free melting techniques for the preparation of lipid based solid oral formulations. Pharm Res 2015; 32(5): 1519-45.
[http://dx.doi.org/10.1007/s11095-015-1661-y] [PMID: 25788447]
[119]
Jenning V, Gohla SH. Encapsulation of retinoids in solid lipid nanoparticles (SLN). J Microencapsul 2001; 18(2): 149-58.
[http://dx.doi.org/10.1080/02652040010000361] [PMID: 11253932]
[120]
Compritol® 888 CG MB. Gatteefosse. Available from: https://www.gattefosse.com/personal-care-textures/compritol-888-cg-mb
[121]
Compritol® 888 Pellets. Names and synonyms. Gatteefosse. Available from: https://www.gattefosse.com/pharmaceuticals-products/compritol-888-pellets
[122]
Bom S, Fitas M, Martins AM, Pinto P, Ribeiro HM, Marto J. Replacing synthetic ingredients by sustainable natural alternatives: A case study using topical O/W emulsions. Molecules 2020; 25(21): 4887.
[http://dx.doi.org/10.3390/molecules25214887] [PMID: 33105792]
[123]
Compritol® HD5 ATO. Names and synonyms. Available from: https://www.gattefosse.com/pharmaceuticals-products/compritol-hd5-ato
[124]
Compritol HD5 ATO. Description. Pharma excipients. Available from: https://www.pharmaexcipients.com/product/compritol-hd5-ato/
[125]
Deshmukh K, Kapadia C. Comparative evaluation of compritol® HD5 ATO with sodium Stearyl fumarate and PEG 6000 as am-phiphilic, hydrodispersible pharmaceutical lubricants. J Excip Food Chem 2017; 8(1): 5-18.
[126]
N’Diaye A, Jannin V, Bérard V, Andrès C, Pourcelot Y. Comparative study of the lubricant performance of Compritol® HD5 ATO and Compritol® 888 ATO: Effect of polyethylene glycol behenate on lubricant capacity. Int J Pharm 2003; 254(2): 263-9.
[http://dx.doi.org/10.1016/S0378-5173(03)00027-9] [PMID: 12623202]
[127]
Gattefosse SA. CPHI online. Available from: https://www.cphi-online.com/compritol-e-ato-prod486161.html
[128]
Ruscica M, Gomaraschi M, Mombelli G, et al. Nutraceutical approach to moderate cardiometabolic risk: Results of a randomized, double blind and crossover study with Armolipid Plus. J Clin Lipidol 2014; 8(1): 61-8.
[http://dx.doi.org/10.1016/j.jacl.2013.11.003] [PMID: 24528686]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy