Abstract
Background: Breast cancer is the most common malignancy and the second most common cause of death in women worldwide. Axillary lymph node metastasis (ALNM) is the most significant prognostic factor in breast cancer. Under the current guidelines, sentinel lymph node biopsy (SLNB) is the standard of axillary staging in patients with clinically-node negative breast cancer. Despite the minimally invasive nature of SLNB, it can cause short and long-term morbidities, including pain, sensory impairment, and upper limb motor dysfunction. However, lymphedema remains the most feared adverse event, and it affects 7% of patients within 36 months of follow-up.
Recently, we have witnessed the implication of radiomics and artificial intelligence domains in the diagnosis and follow-up of many malignancies with promising results. Therefore, we have conducted a systematic search to investigate the potential of radiomics and artificial intelligence in predicting ALNM.
Methods: Four electronic databases were searched: PubMed, Scopus, CINAHL, and Web of Science. We used the Preferred Reporting Items for Systematic Reviews and Meta-Analysis as our basis of organization.
Results: For radiomics, the area under the curve (AUC) for the included studies ranged from 0.715 to 0.93. Accuracy ranged from 67.7% to 98%. Sensitivity and specificity ranged from 70.3% to 97.8% and 58.4% to 98.2%, respectively. For other artificial intelligence methods, AUC ranged from 0.68 to 0.98, while accuracy ranged from 55% to 89%.
Conclusion: The results of radiomics and artificial intelligence in predicting ALNM are promising. However, validation as a substitute for SLNB requires more substantial evidence from large randomized trials.
Keywords: Radiomics, Artificial Intelligence, Breast Cancer, Axillary Lymph Node Biopsy, Lymphedema, Systematic Review
Graphical Abstract
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[PMID: 25313729]
[http://dx.doi.org/10.1097/01.SLA.0000065289.06765.71] [PMID: 12724640]
[http://dx.doi.org/10.1148/radiol.2020192534] [PMID: 32315268]
[http://dx.doi.org/10.1016/j.soc.2014.03.007] [PMID: 24882346]
[http://dx.doi.org/10.1001/jama.2011.90] [PMID: 21304082]
[http://dx.doi.org/10.1001/jama.2017.11470] [PMID: 28898379]
[http://dx.doi.org/10.1097/PPO.0b013e31817fbe5e] [PMID: 18677128]
[http://dx.doi.org/10.1200/JCO.2008.16.3725] [PMID: 18838709]
[http://dx.doi.org/10.1002/bjs.5139] [PMID: 16106479]
[http://dx.doi.org/10.1038/nrclinonc.2017.141] [PMID: 28975929]
[http://dx.doi.org/10.1007/s11548-013-0829-3] [PMID: 23526445]
[http://dx.doi.org/10.1007/s00330-020-07181-1] [PMID: 32845388]
[http://dx.doi.org/10.1016/j.compbiomed.2020.104206] [PMID: 33421823]
[http://dx.doi.org/10.1016/j.ebiom.2021.103460] [PMID: 34233259]
[http://dx.doi.org/10.1001/jamanetworkopen.2020.28086] [PMID: 33289845]
[http://dx.doi.org/10.1007/s00330-017-5005-7] [PMID: 28828635]
[http://dx.doi.org/10.1007/s10278-018-0086-7] [PMID: 29696472]
[http://dx.doi.org/10.1088/1361-6560/aaf241] [PMID: 30523819]
[http://dx.doi.org/10.1007/s00330-018-5981-2] [PMID: 30701328]
[http://dx.doi.org/10.1038/s41598-019-38502-0] [PMID: 30783148]
[http://dx.doi.org/10.1002/jmri.26224] [PMID: 30171822]
[http://dx.doi.org/10.3389/fonc.2020.01463] [PMID: 32983979]
[http://dx.doi.org/10.1016/j.acra.2019.11.004] [PMID: 31879160]
[http://dx.doi.org/10.1002/mp.14538] [PMID: 33058224]
[http://dx.doi.org/10.3389/fonc.2020.541849] [PMID: 33381444]
[http://dx.doi.org/10.1016/j.clbc.2019.11.009] [PMID: 32139272]
[http://dx.doi.org/10.1016/j.ejrad.2020.109512] [PMID: 33429302]
[http://dx.doi.org/10.1038/s41467-020-15027-z] [PMID: 32144248]
[http://dx.doi.org/10.1002/jum.15294] [PMID: 32329142]
[http://dx.doi.org/10.1016/j.ebiom.2020.103018] [PMID: 32980697]
[http://dx.doi.org/10.1016/j.ejrad.2019.108658] [PMID: 31521878]
[http://dx.doi.org/10.1016/j.ultrasmedbio.2019.07.413] [PMID: 31444031]
[http://dx.doi.org/10.1049/htl.2019.0072] [PMID: 32038869]
[http://dx.doi.org/10.1016/j.ejrad.2017.07.027] [PMID: 28987700]
[http://dx.doi.org/10.1016/j.ultrasmedbio.2015.05.022] [PMID: 26206257]
[http://dx.doi.org/10.1002/mp.14876] [PMID: 33825207]
[http://dx.doi.org/10.1016/j.acra.2019.11.007] [PMID: 31818648]
[http://dx.doi.org/10.2214/AJR.18.20094] [PMID: 30540209]
[http://dx.doi.org/10.1007/s12194-018-00491-6] [PMID: 30499048]
[http://dx.doi.org/10.1038/s41598-019-40831-z] [PMID: 30872652]
[http://dx.doi.org/10.1007/s00330-020-07016-z] [PMID: 32607630]
[PMID: 26856112]
[http://dx.doi.org/10.1088/0967-3334/17/4/007] [PMID: 8953628]
[http://dx.doi.org/10.1016/j.compbiomed.2021.104571] [PMID: 34166881]
[http://dx.doi.org/10.3390/cancers13020352] [PMID: 33477893]
[http://dx.doi.org/10.1007/BF02345205] [PMID: 15587463]
[http://dx.doi.org/10.3109/02841851.2010.498444] [PMID: 20707666]
[http://dx.doi.org/10.1186/1472-6947-12-54] [PMID: 22695278]
[http://dx.doi.org/10.1016/j.engappai.2012.10.013]
[http://dx.doi.org/10.12659/MSM.890345] [PMID: 24714517]
[http://dx.doi.org/10.1186/s12885-019-5827-6] [PMID: 31226956]
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0075] [PMID: 31340938]
[PMID: 12017328]
[http://dx.doi.org/10.2214/AJR.05.0936] [PMID: 16632729]
[http://dx.doi.org/10.1016/j.crad.2016.12.001] [PMID: 28139203]
[http://dx.doi.org/10.1186/s12885-017-3847-7] [PMID: 29207975]
[http://dx.doi.org/10.1007/s13246-019-00730-z] [PMID: 30762223]
[http://dx.doi.org/10.1148/radiol.2018172300] [PMID: 29514017]