Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Improved Bioavailablity of Curcumin by Derivatisation with Isoleucine in Plasma and Reproductive Tissues of Female Rats is Mainly Due to Altered Affinity for P-gp Transporter

Author(s): Sheshadri Divyashree, Prakash Janhavi, Nanjundaswamy Vijendra Kumar, Bheemanakere Kempaiah Bettadaiah and Serva Peddha Muthukumar*

Volume 19, Issue 4, 2023

Published on: 27 October, 2022

Article ID: e190822207756 Pages: 8

DOI: 10.2174/1573407218666220819184042

Price: $65

Abstract

Aim: The present study aimed to investigate the bioavailability of curcumin conjugated with isoleucine.

Background: Curcumin has various health beneficiary properties; however, it is poorly bioavailable because of its insolubility in water, poor absorption and quick systemic elimination. Hence, any approach that could improve bioavailability is necessary.

Objective: The objective of the present study is to examine whether the bioavailability and biodistribution of curcumin is improved upon derivatisation with isoleucine than that of native curcumin.

Methods: About 0.1 g/kg bw of curcumin and its isoleucine-derivative were administered to fasting rats. Then the blood and tissue samples were collected at different time intervals (0, 1800, 3600, 7200, 14400, 28800, 43200, 86400, and 172800 seconds) and processed for the extraction of curcumin and its derivative with methanol. The processed samples were subjected to HPLC analysis and compared with the standard curcumin and its derivative. The results were analysed using the software, PKSolver, for determining the bioavailability and biodistribution. Further, the docking studies were carried out to better understand the results obtained.

Results: We found that isoleucine-curcumin conjugates have better bioavailable in plasma, ovary and uterus in the experimental rats. The curcumin and its isoleucine-derivative was detected to be maximum at 14400 seconds. However, the concentration of isoleucine-derivative of curcumin was significantly high at Tmax compared to native curcumin. Further, curcumin and its derivative were found in the reproductive organs only at 28800 seconds, 43200 seconds and 86400 seconds. The binding energy of isoleucine-derivative of curcumin with p-glycoprotein transporter was found to be more compared to the native form. This may be the reason for the increased bioavailability of isoleucine-derivative of curcumin.

Conclusion: The isoleucine-curcumin conjugate has better bioavailability compared to curcumin both in plasma and reproductive organs.

Keywords: Bioavailability, curcumin, ovary, uterus, isoleucine, Pgp transporter

Graphical Abstract

[1]
Bhat, S.; Amin, T.; Nazir, S. Biological activities of turmeric (curcuma longa linn.)-an overview. BMR Microb, 2015, 1(1), 1-5.
[2]
Maheshwari, R.K.; Singh, A.K.; Gaddipati, J.; Srimal, R.C. Multiple biological activities of curcumin: A short review. Life Sci., 2006, 78(18), 2081-2087.
[http://dx.doi.org/10.1016/j.lfs.2005.12.007] [PMID: 16413584]
[3]
Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: The golden pigment from golden spice. Cancer Res. Treat., 2014, 46(1), 2-18.
[http://dx.doi.org/10.4143/crt.2014.46.1.2] [PMID: 24520218]
[4]
Prasad, S.; Aggarwal, B.B. Turmeric, the golden spice: From traditional medicine to modern medicine.Herbal Medicine: Biomolecular and clinical aspects. Chapter; 132nd ed; Benzie, I.F.F.; Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2011.
[http://dx.doi.org/10.1201/b10787-14]
[5]
Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348.
[http://dx.doi.org/10.1111/bph.13621] [PMID: 27638428]
[6]
Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health, 2016, 32(2), 246-250.
[http://dx.doi.org/10.1177/0748233713498458] [PMID: 24097361]
[7]
Sharma, S.; Kulkarni, S.K.; Chopra, K. Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin. Exp. Pharmacol. Physiol., 2006, 33(10), 940-945.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04468.x] [PMID: 17002671]
[8]
Priyadarsini, K.I.; Maity, D.K.; Naik, G.H.; Kumar, M.S.; Unnikrishnan, M.K.; Satav, J.G.; Mohan, H. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic. Biol. Med., 2003, 35(5), 475-484.
[http://dx.doi.org/10.1016/S0891-5849(03)00325-3] [PMID: 12927597]
[9]
Yoysungnoen, P.; Wirachwong, P.; Changtam, C.; Suksamrarn, A.; Patumraj, S. Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World J. Gastroenterol., 2008, 14(13), 2003-2009.
[http://dx.doi.org/10.3748/wjg.14.2003] [PMID: 18395899]
[10]
Singh, L.; Sharma, S.; Xu, S.; Tewari, D.; Fang, J. Curcumin as a natural remedy for atherosclerosis: A pharmacological review. Molecules, 2021, 26(13), 4036.
[http://dx.doi.org/10.3390/molecules26134036] [PMID: 34279384]
[11]
Jurenka, J.S. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research. Altern. Med. Rev., 2009, 14(2), 141-153.
[PMID: 19594223]
[12]
Kelley, B.J.; Knopman, D.S. Alternative medicine and Alzheimer disease. Neurologist, 2008, 14(5), 299-306.
[http://dx.doi.org/10.1097/NRL.0b013e318172cf4d] [PMID: 18784599]
[13]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5, 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[14]
Sarkar, F.H.; Li, Y.; Wang, Z.; Kong, D. NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int. Rev. Immunol., 2008, 27(5), 293-319.
[http://dx.doi.org/10.1080/08830180802276179] [PMID: 18853341]
[15]
Zhou, D.Y.; Ding, N.; Du, Z.Y.; Cui, X.X.; Wang, H.; Wei, X.C.; Conney, A.H.; Zhang, K.; Zheng, X. Curcumin analogues with high activity for inhibiting human prostate cancer cell growth and androgen receptor activation. Mol. Med. Rep., 2014, 10(3), 1315-1322.
[http://dx.doi.org/10.3892/mmr.2014.2380] [PMID: 25060817]
[16]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[17]
Sharma, V.; Nehru, B.; Munshi, A.; Jyothy, A. Antioxidant potential of curcumin against oxidative insult induced by pentylenetetrazol in epileptic rats. Methods Find. Exp. Clin. Pharmacol., 2010, 32(4), 227-232.
[http://dx.doi.org/10.1358/mf.2010.32.4.1452090] [PMID: 20508869]
[18]
Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K.I. Transport of liposomal and albumin loaded curcumin to living cells: An absorption and fluorescence spectroscopic study. Biochim. Biophys. Acta, 2006, 1760(10), 1513-1520.
[http://dx.doi.org/10.1016/j.bbagen.2006.06.012] [PMID: 16904830]
[19]
Ma, Z.; Shayeganpour, A.; Brocks, D.R.; Lavasanifar, A.; Samuel, J. High-performance liquid chromatography analysis of curcumin in rat plasma: Application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed. Chromatogr., 2007, 21(5), 546-552.
[http://dx.doi.org/10.1002/bmc.795] [PMID: 17340565]
[20]
Hu, L.; Jia, Y.; Niu, F.; Jia, Z.; Yang, X.; Jiao, K. Preparation and enhancement of oral bioavailability of curcumin using microemulsions vehicle. J. Agric. Food Chem., 2012, 60(29), 7137-7141.
[http://dx.doi.org/10.1021/jf204078t] [PMID: 22587560]
[21]
Paolino, D.; Vero, A.; Cosco, D.; Pecora, T.M.G.; Cianciolo, S.; Fresta, M.; Pignatello, R. Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front. Pharmacol., 2016, 7, 485.
[http://dx.doi.org/10.3389/fphar.2016.00485] [PMID: 28066239]
[22]
Ravindranath, V.; Chandrasekhara, N. Absorption and tissue distribution of curcumin in rats. Toxicology, 1980, 16(3), 259-265.
[http://dx.doi.org/10.1016/0300-483X(80)90122-5] [PMID: 7423534]
[23]
Perkins, S.; Verschoyle, R.D.; Hill, K.; Parveen, I.; Threadgill, M.D.; Sharma, R.A.; Williams, M.L.; Steward, W.P.; Gescher, A.J. Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol. Biomarkers Prev., 2002, 11(6), 535-540.
[PMID: 12050094]
[24]
Parvathi, K.S.; Negi, P.S.; Srinivas, P. Curcumin-amino acid conjugates: Synthesis, antioxidant and antimutagenic attributes. Food Chem., 2010, 120, 523-530.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.047]
[25]
Chow, S.C. Bioavailability and bioequivalence in drug development. Wiley Interdiscip. Rev. Comput. Stat., 2014, 6(4), 304-312.
[http://dx.doi.org/10.1002/wics.1310] [PMID: 25215170]
[26]
Chang, M-T.; Tsai, T-R.; Lee, C-Y.; Wei, Y-S.; Chen, Y-J.; Chen, C-R.; Tzen, J.T. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies. J. Agric. Food Chem., 2013, 61(40), 9666-9671.
[http://dx.doi.org/10.1021/jf4019195] [PMID: 24020431]
[27]
Bi, C.; Miao, X.Q.; Chow, S.F.; Wu, W.J.; Yan, R.; Liao, Y.H.; Chow, A.H-L.; Zheng, Y. Particle size effect of curcumin nanosuspensions on cytotoxicity, cellular internalization, in vivo pharmacokinetics and biodistribution. Nanomedicine, 2017, 13(3), 943-953.
[http://dx.doi.org/10.1016/j.nano.2016.11.004] [PMID: 27884638]
[28]
Divyashree, S.; Yajurvedi, H.N. Long-term chronic stress exposure induces PCO phenotype in rat. Reproduction, 2016, 152(6), 765-774.
[http://dx.doi.org/10.1530/REP-16-0404] [PMID: 27651523]
[29]
Divyashree, S.; Yajurvedi, H.N. Chronic stress effects and their reversibility on the fallopian tubes and uterus in rats. Reprod. Fertil. Dev., 2018, 30(2), 380-390.
[http://dx.doi.org/10.1071/RD17082] [PMID: 28743351]
[30]
Mohammadi, S.; Kayedpoor, P.; Karimzadeh-Bardei, L.; Nabiuni, M. The effect of curcumin on TNF-α IL-6 and CRP expression in a model of polycystic ovary syndrome as an inflammation state. J. Reprod. Infertil., 2017, 18(4), 352-360.
[PMID: 29201665]
[31]
Kamei, N.; Tamiwa, H.; Miyata, M.; Haruna, Y.; Matsumura, K.; Ogino, H.; Hirano, S.; Higashiyama, K.; Takeda-Morishita, M. Hydrophobic amino acid tryptophan shows promise as a potential absorption enhancer for oral delivery of biopharmaceuticals. Pharmaceutics, 2018, 10(4), 1-21.
[http://dx.doi.org/10.3390/pharmaceutics10040182] [PMID: 30308982]
[32]
Ullrich, S.S.; Fitzgerald, P.C.E.; Schober, G.; Steinert, R.E.; Horowitz, M.; Feinle-Bisset, C. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers. Am. J. Clin. Nutr., 2016, 104(5), 1274-1284.
[http://dx.doi.org/10.3945/ajcn.116.140640] [PMID: 27655440]
[33]
Alqaraleh, M.; Kasabri, V.; Mashallah, S. Evaluation of anticancer and anti-inflammatory properties of branched-chain amino acids. J. Biochem. Cell. Bio., 2018, 1(2), 108.
[34]
Dei Cas, M.; Ghidoni, R. Dietary curcumin: Correlation between bioavailability and health potential. Nutrients, 2019, 11(9), 1-14.
[http://dx.doi.org/10.3390/nu11092147] [PMID: 31500361]
[35]
Esperon-Rojas, A.A.; Baeza-Jimenez, R.; Santos-Luna, D.; Velasco-Rodriguez, L.C.; Ochoa-Rodriguez, L.R.; Garcia, H.S. Bioavailability of curcumin in nanoemulsions stabilized with mono- and diacylglycerols structured with conjugated linoleic aacid and n-3 fatty acids. Biocatal. Agric. Biotechnol., 2020, 26, 101858.
[http://dx.doi.org/10.1016/j.bcab.2020.101638]
[36]
Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci., 2009, 37(3-4), 223-230.
[http://dx.doi.org/10.1016/j.ejps.2009.02.019] [PMID: 19491009]
[37]
Juan, H.; Jing, T.; Wan-Hua, Y.; Juan, S.; Xiao-Lei, L.; Wen-Xing, P. P-gp induction by curcumin: An effective antidotal pathway. J. Bioequivalence Bioavailab., 2013, 5, 236-241.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy