Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Significance of Chemically Derivatized Starch as Drug Carrier in Developing Novel Drug Delivery Devices

Author(s): Mayank Kumar Malik, Pankaj Bhatt, Tarun Kumar, Jaspal Singh, Vipin Kumar*, Abdul Faruk, Shivkanya Fuloria, Neeraj Kumar Fuloria, Vetriselvan Subrimanyan and Sunil Kumar

Volume 13, Issue 6, 2023

Published on: 17 October, 2022

Article ID: e190822207708 Pages: 14

DOI: 10.2174/2210315512666220819112334

Price: $65

Abstract

Delivery of therapeutics using synthetic polymers is challenging due to toxicity, immunogenicity and impaired bioavailability following administration. However, natural polymers are being explored as safe for their use as a substitute for synthetic polymers. In the past three decades, the biomaterials like starches have been applied to impart an imperative role in delivering therapeutics. There is an increased focus on finding new sources of starches and their modifications. Hence, the derivatization of starches has become necessary to achieve desired properties. The modifications to native starch systems are being investigated to improve solubility, stability, bioavailability, etc., of an incorporated drug(s) and lower-down induced toxicities. All these requirements have led to the use of modified starches in the drug delivery of bioactive component(s). This review explores the current state of knowledge about starch structure and chemical modification methods from perspectives. It integrates aspects of its use in developing drug delivery devices like tablets, hydrogel, and patches. The information provided in this review may be applied as a reference for future chemically modified starch as excipients in drug carrier studies.

Keywords: Chemical modification, drug delivery devices, Cross-linking, modified starch, release, modelling

Graphical Abstract

[1]
Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Stärke, 2014, 66(1-2), 41-45.
[http://dx.doi.org/10.1002/star.201300106]
[2]
Bergthaller, W.; Hollmann, J. Starch; Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2014.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.11374-5]
[3]
Estrada-León, R.J.; Moo-Huchin, V.M.; Ríos-Soberanis, C.R.; Betancur-Ancona, D.; May-Hernández, L.H.; Carrillo-Sánchez, F.A.; Cervantes-Ucb, J.M.; Pérez-Pacheco, E. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocoll., 2016, 57, 1-9.
[http://dx.doi.org/10.1016/j.foodhyd.2016.01.008]
[4]
Correia, P.R.; Nunes, M.C.; Beirão-da-Costa, M.L. The effect of starch isolation method on physical and functional properties of Portuguese nut starches. II. Q. rotundifolia Lam. and Q. suber Lam. acorns starches. Food Hydrocoll., 2013, 30(1), 448-455.
[http://dx.doi.org/10.1016/j.foodhyd.2012.06.014]
[5]
Sharma, V.K.; Mazumdar, B. Feasibility and characterization of gummy exudate of Cochlospermum religiosum as pharmaceutical excipient. Ind. Crops Prod., 2013, 50, 776-786.
[http://dx.doi.org/10.1016/j.indcrop.2013.08.041]
[6]
Sharma, V.K.; Mazumder, B. Cross-linking of Isabgol husk polysaccharides for microspheres development and its impact on particle size, swelling kinetics and thermal behaviour. Polym. Bull., 2014, 71(3), 735-757.
[http://dx.doi.org/10.1007/s00289-013-1089-7]
[7]
Sharma, V.K.; Mazumder, B.; Nautiyal, V.; Sharma, P.P.; Ahmed, Y. In-vitro characterization of microspheres containing chemically cross-linked gummy exudates of Cochlospermum religiosum. Nat. Prod. J., 2019, 9(3), 217-228.
[http://dx.doi.org/10.2174/2210315508666181004144520]
[8]
Kumar, V.; Mazumder, B.; Sharma, P.P.; Ahmed, Y. Pharmacokinetics and hypoglycemic effect of gliclazide loaded in Isabgol husk mucilage microparticles. J. Pharm. Investig., 2021, 51(2), 159-171.
[http://dx.doi.org/10.1007/s40005-020-00494-9]
[9]
Jackson, DS Starch structure, properties, and determination Encycl.Food Sci. Nutr., 2003, 5561-5567.
[10]
Buléon, A.; Colonna, P.; Planchot, V.; Ball, S. Starch granules: Structure and biosynthesis. Int. J. Biol. Macromol., 1998, 23(2), 85-112.
[http://dx.doi.org/10.1016/S0141-8130(98)00040-3] [PMID: 9730163]
[11]
Basu, S.; Malik, S.; Joshi, G.; Gupta, P.K.; Rana, V. Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. Carbohydr. Polym. Technol. Applicat., 2021, 2, 100050.
[http://dx.doi.org/10.1016/j.carpta.2021.100050]
[12]
Parker, R.; Ring, S.G. Aspects of the physical chemistry of starch. J. Cereal Sci., 2001, 34(1), 1-17.
[http://dx.doi.org/10.1006/jcrs.2000.0402]
[13]
Tester, R.F.; Karkalas, J.; Qi, X. Starch-composition, fine structure and architecture. J. Cereal Sci., 2004, 39(2), 151-165.
[http://dx.doi.org/10.1016/j.jcs.2003.12.001]
[14]
Hu, P.; Fan, X.; Lin, L.; Wang, J.; Zhang, L.; Wei, C. Effects of surface proteins and lipids on molecular structure, thermal properties, and enzymatic hydrolysis of rice starch. Food Sci. Technol., 2017, 38(1), 84-90.
[http://dx.doi.org/10.1590/1678-457x.35016]
[15]
Appelqvist, I.A.; Debet, M.R. Starch-biopolymer interactions-a review. Food Rev. Int., 1997, 13(2), 163-224.
[http://dx.doi.org/10.1080/87559129709541105]
[16]
Prado, H.J.; Matulewicz, M.C.; Bonelli, P.R.; Cukierman, A.L. Preparation and characterization of a novel starch-based interpolyelectrolyte complex as matrix for controlled drug release. Carbohydr. Res., 2009, 344(11), 1325-1331.
[http://dx.doi.org/10.1016/j.carres.2009.04.026] [PMID: 19539898]
[17]
Yan, H.; Liu, G.; Gu, Z. Recent advances of starch-based excipients used in extended-release tablets: A review. Drug Deliv., 2014, 23(1), 1-9.
[PMID: 24758139]
[18]
Garcia, M.A.V.T.; Garcia, C.F.; Faraco, A.A.G. Pharmaceutical and biomedical applications of native and modified starch: A review. Stärke, 2020, 72(7-8), 1900270.
[http://dx.doi.org/10.1002/star.201900270]
[19]
Wang, X.; Gao, W.Y.; Zhang, L.M.; Xiao, P.G.; Yao, L.P.; Liu, Y. Study on the morphology, crystalline structure and thermal properties of yam starch acetates with different degrees of substitution. Sci. China Series B Chem., 2008, 51(9), 859-865.
[http://dx.doi.org/10.1007/s11426-008-0089-1]
[20]
Efthimiadou, E.K.; Metaxa, A.F.; Kordas, G. Modified polysaccharides for drug delivery; Polysacch; Bioact. Biotechnol, 2015, pp. 1805-1835.
[21]
Han, J.A. BeMiller, JN. Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr. Polym., 2007, 67(3), 366-374.
[http://dx.doi.org/10.1016/j.carbpol.2006.06.011]
[22]
Miao, M.; Li, R.; Jiang, B.; Cui, S.W.; Zhang, T.; Jin, Z. Structure and physicochemical properties of octenyl succinic esters of sugary maize soluble starch and waxy maize starch. Food Chem., 2014, 151, 154-160.
[http://dx.doi.org/10.1016/j.foodchem.2013.11.043] [PMID: 24423515]
[23]
Carlos-Amaya, F.; Osorio-Diaz, P.; Agama-Acevedo, E.; Yee-Madeira, H.; Bello-Pérez, L.A. Physicochemical and digestibility properties of double-modified banana (Musa paradisiaca L.) starches. J. Agric. Food Chem., 2011, 59(4), 1376-1382.
[http://dx.doi.org/10.1021/jf1035004] [PMID: 21214175]
[24]
Majzoobi, M.; Radi, M.; Farahnaky, A.; Jamalian, J.; Tongdang Karrila, T. physicochemical properties of phosphoryl chloride cross-linked wheat Starch. Iran. Polym. J., 2009, 18, 491-499.
[25]
Jyothi, A.N.; Moorthy, S.N.; Rajasekharan, K.N. Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Stärke, 2006, 58(6), 292-299.
[http://dx.doi.org/10.1002/star.200500468]
[26]
Tian, S.; Chen, Y.; Chen, Z.; Yang, Y.; Wang, Y. Preparation and characteristics of starch esters and its effects on dough physicochemical properties. J. Food Qual., 2018, 12, 1-7.
[http://dx.doi.org/10.1155/2018/1395978]
[27]
Katerinopoulou, K.; Giannakas, A.; Grigoriadi, K.; Barkoula, N.M.; Ladavos, A. Preparation and characterization of acetylated corn starch-(PVOH)/clay nanocomposite films. Carbohydr. Polym., 2014, 102, 216-222.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.030] [PMID: 24507275]
[28]
Mali, S.; Grossmann, M.V.E. Preparation of acetylated distarch adipates by extrusion. Lebensm. Wiss. Technol., 2001, 34(6), 384-389.
[http://dx.doi.org/10.1006/fstl.2001.0768]
[29]
Lawal, O.S.; Storz, J.; Storz, H.; Lohmann, D.; Lechner, D.; Kulicke, W.M. Hydrogels based on carboxymethyl cassava starch cross-linked with di-or polyfunctional carboxylic acids: Synthesis, water absorbent behavior and rheological characterizations. Eur. Polym. J., 2009, 45(12), 3399-3408.
[http://dx.doi.org/10.1016/j.eurpolymj.2009.09.019]
[30]
Wang, X.; Huang, L.; Zhang, C.; Deng, Y.; Xie, P.; Liu, L.; Cheng, J. Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydr. Polym., 2020, 240, 116292.
[http://dx.doi.org/10.1016/j.carbpol.2020.116292] [PMID: 32475573]
[31]
Kuakpetoon, D.; Wang, Y.J. Characterization of different starches oxidized by hypochlorite. Stärke, 2001, 53(5), 211-218.
[http://dx.doi.org/10.1002/1521-379X(200105)53:5<211:AID-STAR211>3.0.CO;2-M]
[32]
Gao, C.; Lü, S.; Logo, O.; Xu, X.; Bai, X.; Logo, O.; Wu, C.; Ning, P.; Zhanga, S.; Liu, M. Novel amphiphilic glucose-responsive modified starch micelles for insulin delivery. RSC Advances, 2017, 7(73), 45978-45986.
[http://dx.doi.org/10.1039/C7RA08291F]
[33]
Takizawa, F.F.; Silva, G.D.O.D.; Konkel, F.E.; Demiate, I.M. Characterization of tropical starches modified with potassium permanganate and lactic acid. Braz. Arch. Biol. Technol., 2004, 47(6), 921-931.
[http://dx.doi.org/10.1590/S1516-89132004000600012]
[34]
Barbosa, J.V.; Martins, J.; Carvalho, L.; Bastos, M.M.S.M.; Magalhães, F.D. Effect of peroxide oxidation on the expansion of potato starch foam. Ind. Crops Prod., 2019, 137, 428-435.
[http://dx.doi.org/10.1016/j.indcrop.2019.05.045]
[35]
Muhrbeck, P.; Eliasson, A.C.; Salomonsson, A.C. Physical characterization of bromine oxidised potato starch. Stärke, 1990, 42(11), 418-420.
[http://dx.doi.org/10.1002/star.19900421103]
[36]
Li, J.; Zhou, M.; Cheng, F.; Lin, Y.; Shi, L.; Zhu, P.X. Preparation of oxidized corn starch with high degree of oxidation by fenton-like oxidation assisted with ball milling. Mater. Today Commun., 2020, 22, 100793.
[http://dx.doi.org/10.1016/j.mtcomm.2019.100793]
[37]
Zhou, F.; Liu, Q.; Zhang, H.; Chen, Q.; Kong, B. Potato starch oxidation induced by sodium hypochlorite and its effect on functional properties and digestibility. Int. J. Biol. Macromol., 2016, 84, 410-417.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.050] [PMID: 26712699]
[38]
Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A review of the chemical modification techniques of starch. Carbohydr. Polym., 2017, 157, 1226-1236.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.094] [PMID: 27987827]
[39]
Tijsen, C.J.; Scherpenkate, H.J.; Stamhuis, E.J.; Beenackers, A.A.C.M. Optimisation of the process conditions for the modification of starch. Chem. Eng. Sci., 1999, 54(13-14), 2765-2772.
[http://dx.doi.org/10.1016/S0009-2509(98)00321-2]
[40]
Nattapulwat, N.; Purkkao, N.; Suwithayapan, O. Preparation and application of carboxymethyl yam (Dioscorea esculenta) starch. AAPS PharmSciTech, 2009, 10(1), 193-198.
[http://dx.doi.org/10.1208/s12249-009-9194-5] [PMID: 19238555]
[41]
Ispas-Szabo, P.; De Koninck, P.; Calinescu, C.; Mateescu, M.A. Carboxymethyl starch excipients for drug chronodelivery. AAPS PharmSciTech, 2017, 18(5), 1673-1682.
[http://dx.doi.org/10.1208/s12249-016-0634-8] [PMID: 27686941]
[42]
Ju, B.; Yan, D.; Zhang, S. Micelles self-assembled from thermoresponsive 2-hydroxy-3-butoxypropyl starches for drug delivery. Carbohydr. Polym., 2012, 87(2), 1404-1409.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.028]
[43]
Onofre, F.O.; Wang, Y.J. Hydroxypropylated starches of varying amylose contents as sustained release matrices in tablets. Int. J. Pharm., 2010, 385(1-2), 104-112.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.038] [PMID: 19879935]
[44]
Besheer, A.; Hause, G.; Kressler, J.; Mäder, K. Hydrophobically modified hydroxyethyl starch: Synthesis, characterization, and aqueous self-assembly into nano-sized polymeric micelles and vesicles. Biomacromolecules, 2007, 8(2), 359-367.
[http://dx.doi.org/10.1021/bm0609487] [PMID: 17256901]
[45]
Stannett, V.T.; Fanta, G.F.; Doane, W.M.; Chatterjee, P.K. Polymer grafted cellulose and starch. Textile Science and Technol., 2002, 13, 323-347.
[http://dx.doi.org/10.1016/S0920-4083(02)80012-3]
[46]
Mostafa, K.M.; Samarkandy, A.R.; El-Sanabary, A.A. Grafting onto carbohydrate polymer using novel potassium persulfate/tetramethylethylene diamine redox system for initiating grafting. Adv. Polym. Technol., 2011, 30(2), 138-149.
[http://dx.doi.org/10.1002/adv.20210]
[47]
Jyothi, A.N. Starch graft copolymers: Novel applications in industry. Comp. Inter., 2010, 17(2-3), 165-174.
[http://dx.doi.org/10.1163/092764410X490581]
[48]
Kumar, D.; Pandey, J.; Raj, V.; Kumar, P. A review on the modification of polysaccharide through graft copolymerization for various potential applications. Open Med. Chem. J., 2017, 11(1), 109-126.
[http://dx.doi.org/10.2174/1874104501711010109] [PMID: 29151987]
[49]
Chauhan, G.S.; Bhatt, S.S.; Kaur, I.; Singha, A.S.; Kaith, B.S. Evaluation of optimum grafting parameters and the effect of ceric ion initiated grafting of methyl methacrylate on to jute fibre on the kinetics of thermal degradation and swelling behaviour. Polym. Degrad. Stabil., 2000, 69(3), 261-265.
[http://dx.doi.org/10.1016/S0141-3910(00)00063-X]
[50]
Abu-Thabit, N.Y.; Makhlouf, A.S.H. Historical development of drugdelivery systems: From conventional macroscale to controlled, targeted,and responsive nanoscale systems. In: Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications; Woodhead Publishing: Sawston, 2018; Vol. 1, pp. 3-41.
[http://dx.doi.org/10.1016/B978-0-08-101997-9.00001-1]
[51]
Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct. Target. Ther., 2018, 3(1), 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[52]
Faheem, A.M.; Abdelkader, D.H. Novel drug delivery systems Woodhead Publishing, Swaston EngineeringDrug Delivery Systems;, 2020, 1-16.
[http://dx.doi.org/10.1016/B978-0-08-102548-2.00001-9]
[53]
Ajazuddin, S.S.; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[54]
Xu, Y.; Zi, Y.; Lei, J.; Mo, X.; Shao, Z.; Wu, Y.; Tian, Y.; Li, D.; Mu, C. pH-Responsive nanoparticles based on cholesterol/imidazole modified oxidized-starch for targeted anticancer drug delivery. Carbohydr. Polym., 2020, 233, 115858.
[http://dx.doi.org/10.1016/j.carbpol.2020.115858] [PMID: 32059909]
[55]
Kumar, P.; Ganure, A.L.; Subudhi, B.B.; Shukla, S.; Upadhyay, P. Design and comparative in-vitro and in-vivo evaluation of starch-acrylate graft copolymer based salbutamol sulphate sustained release tablets. Asian Pharm. Sci., 2015, 10(3), 239-246.
[http://dx.doi.org/10.1016/j.ajps.2014.12.003]
[56]
Ramadan, E.; Borg, T.; Abdelghani, G.M.; Saleh, N.M. Design and in vivo pharmacokinetic study of a newly developed lamivudine transdermal patch. Future J. Pharm. Sci., 2018, 4(2), 166-174.
[http://dx.doi.org/10.1016/j.fjps.2018.03.002]
[57]
Rioux, B.; Ispas-Szabo, P.; Aït-Kadi, A.; Mateescu, M.A.; Juhász, J. Structure–properties relationship in cross-linked high amylose starch cast films. Carbohydr. Polym., 2002, 50(4), 371-378.
[http://dx.doi.org/10.1016/S0144-8617(02)00039-5]
[58]
Saboktakin, M.R.; Tabatabaie, R.M.; Maharramov, A.; Ramazanov, M.A. Synthesis and in vitro evaluation of carboxymethyl starch-chitosan nanoparticles as drug delivery system to the colon. Int. J. Biol. Macromol., 2011, 48(3), 381-385.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.10.005] [PMID: 20955728]
[59]
Odeniyi, M.A.; Omoteso, O.A.; Adepoju, A.O.; Jaiyeoba, K.T. Starch nanoparticles in drug delivery: A review. Polim. Med., 2018, 48(1), 41-45.
[http://dx.doi.org/10.17219/pim/99993] [PMID: 30657657]
[60]
Wang, Y.; Liu, Y.; Liu, Y.; Wang, Y.; Wu, J.; Li, R.; Yanga, J.; Zhang, N. pH-sensitive pullulan based nanoparticles for intracellular drug delivery. Polym. Chem., 2014, 5, 423-432.
[http://dx.doi.org/10.1039/C3PY00817G]
[61]
Chourasia, M.K.; Jain, S.K. Polysaccharides for colon targeted drug delivery. Drug Deliv., 2004, 11(2), 129-148.
[http://dx.doi.org/10.1080/10717540490280778] [PMID: 15200012]
[62]
Chen, J.; Li, X.; Chen, L.; Xie, F. Starch film-coated microparticles for oral colon-specific drug delivery. Carbohydr. Polym., 2018, 191, 242-254.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.025] [PMID: 29661315]
[63]
Chung, H.J.; Shin, D.H.; Lim, S.T. in vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int., 2008, 41, 579-585.
[http://dx.doi.org/10.1016/j.foodres.2008.04.006]
[64]
Östergård, K.; Björck, I.; Gunnarsson, A. A study of native and chemically modified potato starch. Part I: Analysis and enzymic availability in vitro. Stärke, 1988, 40, 58-66.
[http://dx.doi.org/10.1002/star.19880400206]
[65]
Pu, H.; Chen, L.; Li, X.; Xie, F.; Yu, L.; Li, L. An oral colon-targeting controlled release system based on resistant starch acetate: Synthetization, characterization, and preparation of film-coating pellets. J. Agric. Food Chem., 2011, 59(10), 5738-5745.
[http://dx.doi.org/10.1021/jf2005468] [PMID: 21513356]
[66]
Simi, C.K.; Emilia Abraham, T. Hydrophobic grafted and cross-linked starch nanoparticles for drug delivery. Bioprocess Biosyst. Eng., 2007, 30(3), 173-180.
[http://dx.doi.org/10.1007/s00449-007-0112-5] [PMID: 17278045]
[67]
Xu, W.; Yang, W.; Yang, Y. Electrospun starch acetate nanofibers: Development, properties, and potential application in drug delivery. Biotechnol. Prog., 2009, 25(6), 1788-1795.
[http://dx.doi.org/10.1002/btpr.242] [PMID: 19637387]
[68]
Xiao, H.; Yang, T.; Lin, Q.; Liu, G.Q.; Zhang, L.; Yu, F.; Chen, Y. Acetylated starch nanocrystals: Preparation and antitumor drug delivery study. Int. J. Biol. Macromol., 2016, 89, 456-464.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.037] [PMID: 27156696]
[69]
Pringels, E.; Ameye, D.; Vervaet, C.; Foreman, P.; Remon, J.P. Starch/carbopol spray-dried mixtures as excipients for oral sustained drug delivery. J. Control. Release, 2005, 103(3), 635-641.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.022] [PMID: 15820410]
[70]
Elgaied-Lamouchi, D.; Descamps, N.; Lefèvre, P.; Mackin-Mohamour, A.R.; Neut, C.; Siepmann, F.; Siepmann, J.; Muschert, S. Robustness of controlled release tablets based on a cross-linked pregelatinized potato starch matrix. AAPS PharmSciTech, 2020, 21(5), 148.
[http://dx.doi.org/10.1208/s12249-020-01674-4] [PMID: 32436061]
[71]
Pohja, S.; Suihko, E.; Vidgren, M.; Paronen, P.; Ketolainen, J. Starch acetate as a tablet matrix for sustained drug release. J. Control. Release, 2004, 94(2-3), 293-302.
[http://dx.doi.org/10.1016/j.jconrel.2003.09.017] [PMID: 14744481]
[72]
Singh, A.; Kumar, K.J. Enhancing delayed release characteristics of chapparada avare seed starch. Int. J. Biol. Macromol.,, 2020, 165(Pt A), 1431-1437.
[http://dx.doi.org/ 10.1016/j.ijbiomac.2020.10.027] [PMID: 33058969]
[73]
Saboktakin, M.R.; Akhyari, S.; Nasirov, F.A. Synthesis and characterization of modified starch/polybutadiene as novel transdermal drug delivery system. Int. J. Biol. Macromol., 2014, 69, 442-446.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.062] [PMID: 24887550]
[74]
Miksusanti; Fithri, A.N.; Herlina; Wijaya, D.P.; Taher, T. Optimization of chitosan-tapioca starch composite as polymer in the formulation of gingival mucoadhesive patch film for delivery of gambier (Uncaria gambir Roxb) leaf extract. Int. J. Biol. Macromol., 2020, 144, 289-295.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.12.086] [PMID: 31838069]
[75]
Tak, H.Y.; Yun, Y.H.; Lee, C.M.; Yoon, S.D. Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch. Carbohydr. Polym., 2019, 208, 261-268.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.076] [PMID: 30658799]
[76]
Agubata, C.O.; Nta, B.B.; Onunkwo, G.C.; Joshua, P.E.; Ofoefule, S.I.; Onoja, R.I. Development of transdermal patches for the delivery of chlorpheniramine in infants using hypromellose and cassava starch composite polymers. J. Drug Deliv. Ther., 2020, 10(4), 125-132.
[77]
Marto, J.; Pinto, P.; Fitas, M.; Gonçalves, L.M.; Almeida, A.J.; Ribeiro, H.M. Safety assessment of starch-based personal care products: Nanocapsules and pickering emulsions. Toxicol. Appl. Pharmacol., 2018, 342, 14-21.
[http://dx.doi.org/10.1016/j.taap.2018.01.018] [PMID: 29407772]
[78]
Nair, B.; Yamarik, T.A. Final report on the safety assessment of aluminum starch octenylsuccinate. Int. J. Toxicol., 2002, 21(Suppl. 1), 1-7.
[http://dx.doi.org/10.1080/10915810290096379] [PMID: 12042058]
[79]
Mortensen, A.; Aguilar, F.; Crebelli, R.; Di Domenico, A.; Dusemund, B.; Frutos, M.J.; Galtier, P.; Gott, D.; Gundert-Remy, U.; Leblanc, J.C.; Lindtner, O.; Moldeus, P.; Mosesso, P.; Parent-Massin, D.; Oskarsson, A.; Stankovic, I.; Waalkens-Berendsen, I.; Woutersen, R.A.; Wright, M.; Younes, M.; Boon, P.; Chrysafidis, D.; Gürtler, R.; Tobback, P.; Altieri, A.; Rincon, A.M.; Lambré, C. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J., 2017, 15(7), e04910.
[PMID: 32625571]
[80]
Peito, S.; Peixoto, D.; Ferreira-Faria, I.; Margarida Martins, A.; Margarida Ribeiro, H.; Veiga, F.; Marto, J.; Cláudia Paiva-Santos, A. Nano- and microparticle-stabilized pickering emulsions designed for topical therapeutics and cosmetic applications. Int. J. Pharm., 2022, 615, 121455.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121455] [PMID: 35031412]
[81]
Daudt, R.M.; Back, P.I.; Cardozo, N.S.M.; Marczak, L.D.; Külkamp-Guerreiro, I.C. Pinhão starch and coat extract as new natural cosmetic ingredients: Topical formulation stability and sensory analysis. Carbohydr. Polym., 2015, 134, 573-580.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.038] [PMID: 26428160]
[82]
Pereira, C.S.; Cunha, A.M.; Reis, R.L.; Vázquez, B.; San Román, J. New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers. J. Mater. Sci. Mater. Med., 1998, 9(12), 825-833.
[http://dx.doi.org/10.1023/A:1008944127971] [PMID: 15348948]
[83]
Chin, S.F.; Romainor, A.N.B.; Pang, S.C.; Lihan, S. Antimicrobial starch-citrate hydrogel for potential applications as drug delivery carriers. J. Drug Deliv. Sci. Technol., 2019, 54, 101239.
[http://dx.doi.org/10.1016/j.jddst.2019.101239]
[84]
Ali, A.E.H.; Al Arifi, A. Characterization and in-vitro evaluation of starch based hydrogels as carriers for colon specific drug delivery systems. Carbohydr. Polym., 2009, 78(4), 725-730.
[http://dx.doi.org/10.1016/j.carbpol.2009.06.009]
[85]
Meng, R.; Wu, Z.; Xie, H.Q.; Xu, G.X.; Cheng, J.S.; Zhang, B. Preparation, characterization, and encapsulation capability of the hydrogel cross-linked by esterified tapioca starch. Int. J. Biol. Macromol., 2020, 155, 1-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.141] [PMID: 32194113]
[86]
Van Soest, J.J.G.; Knooren, N. Influence of glycerol and water content on the structure and properties of extruded starch plastic sheets during aging. J. Appl. Polym. Sci., 1997, 64(7), 1411-1422.
[http://dx.doi.org/10.1002/(SICI)1097-4628(19970516)64:7<1411:AID-APP21>3.0.CO;2-Y]
[87]
Jansson, A.; Thuvander, F. Influence of thickness on the mechanical properties for starch films. Carbohydr. Polym., 2004, 56(4), 499-503.
[http://dx.doi.org/10.1016/j.carbpol.2004.03.019]
[88]
Shimazu, A.A.; Mali, S.; Grossmann, M.V.E. Plasticizing and antiplasticizing effects of glycerol and sorbitol on biodegradable cassava starch films. Semin. Cienc. Agrar., 2007, 28(1), 79-88.
[http://dx.doi.org/10.5433/1679-0359.2007v28n1p79]
[89]
Cristina Freire, A.; Fertig, C.C.; Podczeck, F.; Veiga, F.; Sousa, J. Starch-based coatings for colon-specific drug delivery. Part I: The influence of heat treatment on the physico-chemical properties of high amylose maize starches. Eur. J. Pharm. Biopharm., 2009, 72(3), 574-586.
[http://dx.doi.org/10.1016/j.ejpb.2009.02.008] [PMID: 19233267]
[90]
Queiroz, V.M.; Kling, I.C.S.; Eltom, A.E.; Archanjo, B.S.; Prado, M.; Simão, R.A. Corn starch films as a long-term drug delivery system for chlorhexidine gluconate. Mater. Sci. Eng. C, 2020, 112, 110852.
[http://dx.doi.org/10.1016/j.msec.2020.110852] [PMID: 32409029]
[91]
Chan, S.Y.; Goh, C.F.; Lau, J.Y.; Tiew, Y.C.; Balakrishnan, T. Rice starch thin films as a potential buccal delivery system: Effect of plasticiser and drug loading on drug release profile. Int. J. Pharm., 2019, 562, 203-211.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.044] [PMID: 30904726]
[92]
Davoodi, P.; Lee, L.Y.; Xu, Q.; Sunil, V.; Sun, Y.; Soh, S.; Wang, C.H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev., 2018, 132, 104-138.
[http://dx.doi.org/10.1016/j.addr.2018.07.002] [PMID: 30415656]
[93]
Bisharat, L.; Barker, S.A.; Narbad, A.; Craig, D.Q.M. In vitro drug release from acetylated high amylose starch-zein films for oral colon-specific drug delivery. Int. J. Pharm., 2019, 556, 311-319.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.021] [PMID: 30557678]
[94]
Singh, A.V.; Nath, L.K. Evaluation of chemically modified hydrophobic sago starch as a carrier for controlled drug delivery. Saudi Pharm. J., 2013, 21(2), 193-200.
[http://dx.doi.org/10.1016/j.jsps.2012.05.005] [PMID: 23960835]
[95]
Paramakrishnan, N.; Jha, S.; Kumar, K.J. Effect of carboxymethylation on physicochemical, micromeritics and release characteristics of Kyllinga nemoralis starch. Int. J. Biol. Macromol., 2016, 92, 543-549.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.039] [PMID: 27422040]
[96]
Kumar, K.J.; Varma, ChA.; Panpalia, S.G. Physicochemical and release characteristics of acetylated Indian palmyrah retrograded shoot starch. Int. J. Biol. Macromol., 2014, 69, 108-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.023] [PMID: 24857875]
[97]
Okunlola, A.; Adebayo, A.S.; Adeyeye, M.C. Development of repaglinide microspheres using novel acetylated starches of bitter and Chinese yams as polymers. Int. J. Biol. Macromol., 2017, 94(Pt A), 544-553.
[http://dx.doi.org/ 10.1016/j.ijbiomac.2016.10.032] [PMID: 27769931]
[98]
Mundargi, R.C.; Shelke, N.B.; Rokhade, A.P.; Patil, S.A.; Aminabhavi, T.M. Formulation and in-vitro evaluation of novel starch-based tableted microspheres for controlled release of ampicillin. Carbohydr. Polym., 2008, 71(1), 42-53.
[http://dx.doi.org/10.1016/j.carbpol.2007.05.013]
[99]
Namazi, H.; Belali, S. Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study. Stärke, 2016, 68(3-4), 177-187.
[http://dx.doi.org/10.1002/star.201400226]
[100]
Kulkarni, S.D.; Sinha, B.N.; Jayaram Kumar, K. Synthesis, characterization and evaluation of release retardant modified starches of Lagenaria siceraria seeds. Int. J. Biol. Macromol., 2013, 61, 396-403.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.07.027] [PMID: 23921208]
[101]
Li, X.; Zhang, P.; Chen, L.; Xie, F.; Li, L.; Li, B. Structure and colon-targeted releasing property of resistant octenyl succinate starch. Food Res. Int., 2012, 47(2), 246-252.
[http://dx.doi.org/10.1016/j.foodres.2011.06.031]
[102]
Pereira, A.G.; Fajardo, A.R.; Nocchi, S.; Nakamura, C.V.; Rubira, A.F.; Muniz, E.C. Starch-based microspheres for sustained-release of curcumin: Preparation and cytotoxic effect on tumor cells. Carbohydr. Polym., 2013, 98(1), 711-720.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.013] [PMID: 23987403]
[103]
Caldonazo, A.; Almeida, S.L.; Bonetti, A.F.; Lazo, R.E.L.; Mengarda, M.; Murakami, F.S. Pharmaceutical applications of starch nanoparticles: A scoping review. Int. J. Biol. Macromol., 2021, 181, 697-704.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.061] [PMID: 33766602]
[104]
Lu, D.R.; Xiao, C.M.; Xu, S.J. Starch-based completely biodegradable polymer materials. Express Polym. Lett., 2009, 3(6), 366-375.
[http://dx.doi.org/10.3144/expresspolymlett.2009.46]
[105]
Namazi, H; Pooresmaeil, M; Hasani, M. Oxidized starch/CuO bionanocompositehydrogels as an antibacterial and stimuli-responsiveagent with potential colon-specific naproxen delivery. Int. J. Polym.Mater. Polym. Biomater., 2020, 1-10.
[106]
Wang, S.; Chen, Y.; Liang, H.; Chen, Y.; Shi, M.; Wu, J.; Liu, X.; Li, Z.; Liu, B.; Yuan, Q.; Li, Y. Intestine-specific delivery of hydrophobic bioactives from oxidized starch microspheres with an enhanced stability. J. Agric. Food Chem., 2015, 63(39), 8669-8675.
[http://dx.doi.org/10.1021/acs.jafc.5b03575] [PMID: 26414436]
[107]
SCCS members the SCCS notes of guidance for the testing of cosmetic ingredients and their safety evaluation. Regul. Toxicol. Pharmacol., 2021, 127, 105052.
[108]
Til, H.P.; Feron, V.J.; Immel, H.R.; Vogel, W.F. Chronic (89-week) feeding study with hydroxypropyl distarch phosphate, starch acetate, lactose and sodium alginate in mice. Food Chem. Toxicol., 1986, 24(8), 825-834.
[http://dx.doi.org/10.1016/0278-6915(86)90072-4] [PMID: 2430873]
[109]
Jesus, D.R.; Barbosa, L.N.; Prando, T.B.L.; Martins, L.F.; Gasparotto, F.; Guedes, K.M.R.; Dragunski, D.C.; Lourenço, E.L.B.; Dalsenter, P.R.; Junior, A.G. Ninety-day oral toxicity assessment of an alternativebiopolymer for controlled release drug delivery systems obtained from cassava starch acetate Evid-Based Complem. Alt. Med.,, 2015.
[http://dx.doi.org/10.1155/2015/390416]
[110]
Hanisa, H.; Zainah, A.N.; Tarmizi, S.A.; Wan Abd Aziz, W.M.; Somchit, M.N. Subacute effects of edible film from modified sago starch in rats. Am. J. Food Technol., 2011, 6, 695-700.
[http://dx.doi.org/10.3923/ajft.2011.695.700]
[111]
de Groot, A.P.; Til, H.P.; Feron, V.J.; Dreef-van der Meulen, H.C.; Willems, M.I. Two-year feeding amd multigeneration studies in rats on five chemically modified starches. Food Cosmet. Toxicol., 1974, 12(5-6), 651-663.
[http://dx.doi.org/10.1016/0015-6264(74)90236-3] [PMID: 4476679]
[112]
Safety assessment of starch phosphates as used in cosmetics. Scientific Literature Review for Public Available from: 2022.https://cir-safety.org/sites/default/files/Starch%20Phosphates.pdf
[113]
Test, No. 423: Acute Oral toxicity - Acute Toxic Class Method OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, 2002.
[114]
Test, No. 407: Repeated Dose 28-day Oral Toxicity Study in Rodents OECD Guidelines for the Testing of Chemicals; OECD Publishing: Paris, 2008.
[115]
van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics, 2020, 12(5), 393.
[http://dx.doi.org/10.3390/pharmaceutics12050393] [PMID: 32344802]
[116]
Chowdary, K.P.R.; Enturi, V.; Sujatha, S. Preparation and evaluation of starch citrate:A new modified starch as directly compressible vehicle in tablet formulations. Int. J. Chem. Sci., 2011, 9, 177-187.
[117]
Khalid, G.M.; Musa, H.; Olowosulu, A.K. Evaluation of filler/binder properties of modified starches derived from plectranthus esculentus by direct compression in metronidazole tablet formulations. In. 8th International Conference and Exhibition on Pharmaceutics and Novel Drug Delivery Systems, Pharmaceutica 2016, March 07-09,, 2016.Madrid, Spain
[http://dx.doi.org/10.4172/2153-2435.C1.027]
[118]
Lawal, M.V.; Odeniyi, M.A.; Itiola, O.A. The effect of thermal and chemical modifications of excipients on the compressional properties of paracetamol tablet formulations including maize, cassava and sweet potato starches as filler-binders. J. Excip. Food Chem., 2015, 6, 65-82.
[119]
Pachuau, L.; Dutta, R.S.; Devi, T.B.; Deka, D.; Hauzel, L. Taro starch (Colocasia esculenta) and citric acid modified taro starch astablet disintegrating agents. Int. J. Biol. Macromol, 2018, 118(Pt A), 397-405.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.086] [PMID: 29935240]
[120]
Sadeghi, M.; Hemmati, S.; Salehi, R.; Solhi, M.; Ghorbani, M.; Hamishehkar, H. Leucine-grafted starch as a new superdisintegrant for the formulation of domperidone tablets. J. Drug Deliv. Sci. Technol., 2019, 50, 136-144.
[http://dx.doi.org/10.1016/j.jddst.2019.01.021]
[121]
Siriwachirachai, C.; Pongjanyakul, T. Acid and alkali modifications of tapioca starches: Physicochemical characterizations and evaluations for use in tablets. J. Drug Deliv. Sci. Technol., 2022, 68, 103068.
[http://dx.doi.org/10.1016/j.jddst.2021.103068]
[122]
Jelkmann, M.; Leichner, C.; Menzel, C.; Kreb, V.; Bernkop-Schnürch, A. Cationic starch derivatives as mucoadhesive and soluble excipients in drug delivery. Int. J. Pharm., 2019, 570, 118664.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118664] [PMID: 31513871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy