Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

Latest in COVID-19 Vaccine 'Candidates' Race

Author(s): Manar Fayiz Atoum*, Dalia Abu Zreig and Laith Majed Abu Zreig

Volume 23, Issue 1, 2023

Published on: 31 August, 2022

Article ID: e180822207640 Pages: 10

DOI: 10.2174/1871526522666220818124416

Price: $65

Abstract

Restoring everyday civil life from the devastating pandemic of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) can be only by the development of an efficient vaccine. As of April 12, 2022, 497,960,492 confirmed cases of COVID-19 were reported, including 6,181,850 lives having been lost worldwide and completely paralyzing the d global economy. Detection of a novel coronavirus SARS-CoV-2 in Wuhan, in December 2019, and the genetic sequence of SARS-CoV-2 that was published on January 11, 2020, leads to a global race, to prepare for a preventive vaccine. No single institution can develop a vaccine individually because there are many stages for developing and producing a successful vaccine. Since this virus threatens the health, the economy, and society the demand for a fast-track vaccine is understandable. This article tries to give an overview of vaccine 'candidates' development and clinical trials, and it mentions some challenges of using these vaccines for managing SARS‐CoV‐2.

Keywords: COVID-19 vaccine, mRNA-based vaccines, inactivated virus, replication-deficient adenovirus vector

Graphical Abstract

[1]
Tregoning JS, Brown ES, Cheeseman HM, et al. Vaccines for COVID-19. Clin Exp Immunol 2020; 202(2): 162-92.
[http://dx.doi.org/10.1111/cei.13517] [PMID: 32935331]
[2]
Payne S. Family coronaviridae. Viruses 2017; 149-58.
[http://dx.doi.org/10.1016/B978-0-12-803109-4.00017-9]
[3]
Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun 2020; 11(1): 1620.
[http://dx.doi.org/10.1038/s41467-020-15562-9] [PMID: 32221306]
[4]
Tse LV, Meganck RM, Graham RL, Baric RS. The current and future state of vaccines, antivirals, and gene therapies against emerging coronaviruses. Front Microbiol 2020; 11: 658.
[http://dx.doi.org/10.3389/fmicb.2020.00658] [PMID: 32390971]
[5]
Molaei S, Dadkhah M, Asghariazar V, Karami C, Safarzadeh E. The immune response and immune evasion characteristics in SARS-CoV, MERS-CoV, and SARS-CoV-2: Vaccine design strategies. Int Immunopharmacol 2021; 92: 107051.
[http://dx.doi.org/10.1016/j.intimp.2020.107051] [PMID: 33429331]
[6]
Jiang X-L, Wang GL, Zhao XN, et al. Lasting antibody and T cell responses to SARS-CoV-2 in COVID-19 patients three months after infection. Nat Commun 2021; 12(1): 897.
[http://dx.doi.org/10.1038/s41467-021-21155-x] [PMID: 33563974]
[7]
Smits VAJ, Hernández-Carralero E, Paz-Cabrera MC, et al. The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochem Biophys Res Commun 2021; 543: 45-9.
[http://dx.doi.org/10.1016/j.bbrc.2021.01.073] [PMID: 33515911]
[8]
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics-developing a new class of drugs. Nat Rev Drug Discov 2014; 13(10): 759-80.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[9]
Walsh EE, Frenck R, Falsey AR, et al. RNA-Based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study. N Engl J Med 2020; 2020.08.17.20176651.
[http://dx.doi.org/10.1101/2020.08.17.20176651] [PMID: 32839784]
[10]
Tanne JH. COVID-19: FDA panel votes to approve Pfizer BioNTech vaccine. BMJ 2020; 371: m4799.
[http://dx.doi.org/10.1136/bmj.m4799] [PMID: 33310748]
[11]
Pardi N, Weissman D. Nucleoside modified mRNA vaccines for infectious diseases. Methods Mol Biol 2017; 1499: 109-21.
[http://dx.doi.org/10.1007/978-1-4939-6481-9_6] [PMID: 27987145]
[12]
BioNTech. Pfizer and BioNTech Conclude Phase 3 Study of COVID-19 Vaccine Candidate, Meeting All Primary Efficacy Endpoints 2021. Available from: https://investors.biontech.de/news-releases/news-release-details/pfizer-and-biontech-conclude-phase-3-study-covid-19-vaccine [Accessed April 23, 2020]
[13]
Pfizer and Biontech Receive authorization in the European Union for COVID-19 Vaccine 2020. Available from: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-receive-authorization-european-union [Accessed April 23 2020]
[14]
MModerna COVID-19 Vaccine Retains Neutralizing Activity Against Emerging Variants First Identified in the U.K. and the Republic of South Africa 2021. Available from: https://investors.modernatx.com/news-releases/news-release-details/moderna-covid-19-vaccine-retains-neutralizing-activity-against [Accessed April 23 2020]
[15]
Precision vaccinations. BBIBP-CorV COVID-19 Vaccine 2021. Available from: https://www.precisionvaccinations.com/vaccines/bbibp-corv-covid-19-vaccine [Accessed April 23 2020]
[16]
Egypt issued an emergency authorization on the 3rd, January 2021. Available from: https://www.bbc.com/news/world-asia-china-55498197
[17]
GOV.UK. Approval of the Oxford University/AstraZeneca coronavirus vaccine: Foreign Secretary's statement. 2020. Available from: https://www.gov.uk/government/news/oxford-universityastrazeneca-covid-19-vaccine-approved [accessed 23 April 2020]
[18]
Reuters. Argentine regulator approves AstraZeneca/Oxford COVID-19 vaccine –AstraZeneca. 2020. Available from: https://www.reuters.com/article/us-health-coronavirus-argentina-astrazen-idUSKBN29421P [Accessed (April 23 2021)]
[19]
Folegatti P, Ewer K, Aley P, et al. Oxford COVID vaccine trial group safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomized controlled trial. Clinical Trial Lancet 2020; 396(10249): 467-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4]
[20]
AstraZeneca. COVID-19 vaccine AZD1222 showed robust immune responses in all participants in Phase I/II trial. 2021. Available from: https://www.astrazeneca.com/media-centre/press-releases/2020/covid-19-vaccine-azd1222-showed-robust-immune-responses-in-all-participants-in-phase-i-ii-trial.html [Accessed April 23 2021]
[21]
Phillips N, Cyranoski D, Mallapaty S. A leading coronavirus vaccine trial is on hold: Scientists react. Nature 2020.
[http://dx.doi.org/10.1038/d41586-020-02594-w] [PMID: 32908295]
[22]
Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397(10269): 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[23]
B.M.J. COVID-19: European countries suspend use of Oxford-AstraZeneca vaccine after reports of blood clots 2021. Available from: https://www.bmj.com/content/372/bmj.n699 [Accessed April 23 2021]
[24]
Tampabay. Why Europe suspended 'AstraZeneca's COVID-19 vaccine | PolitiFact 2021. Available from: https://www.tampabay.com/news/health/2021/03/19/why-europe-suspended-astrazenecas-covid-19-vaccine-politifact/ [Accessed April 23 2020]
[25]
News AstraZeneca vaccine not linked to overall increased risk of blood clots, benefits outweigh risks, says Europe's drug regulator 2020. Available from: https://www.abc.net.au/news/2021-03-19/astrazeneca-vaccine-not-linked-to-increase-risk-blood-clots/13260884 [Accessed April 23 2021]
[26]
Krause KL, Furneaux R, Benjes P, et al. The post-lockdown period should be used to acquire effective therapies for future resurgence in SARS-CoV-2 infections. N Z Med J 2020; 133(1513): 107-11.
[http://dx.doi.org/10.1056/NEJMp2031373] [PMID: 32325475]
[27]
Bangkokpost. China’s CanSino COVID vaccine shows 65.7% efficacy. 2021. Available from: https://www.bangkokpost.com/world/2065255/chinas-cansino-covid-vaccine-shows-65-7-efficacy [Accessed April 23 2021]
[28]
Global times. Can Sino 66% effective, '''good' as single-dose to cover bigger population. 2021. Available from: https://www.globaltimes.cn/page/202102/1215342.shtml [Accessed April 23 2021]
[29]
Lu S. Heterologous prime-boost vaccination. Curr Opin Immunol 2009; 21(3): 346-51.
[http://dx.doi.org/10.1016/j.coi.2009.05.016] [PMID: 19500964]
[30]
Logunov DY, Dolzhikova IV, Zubkova OV, et al. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia. Lancet 2020; 396(10255): 887-97.
[http://dx.doi.org/10.1016/S0140-6736(20)31866-3] [PMID: 32896291]
[31]
Burki TK. The Russian vaccine for COVID-19. Lancet Respir Med 2020; 8(11): e85-6.
[http://dx.doi.org/10.1016/S2213-2600(20)30402-1] [PMID: 32896274]
[32]
Callaway E. Russia’s fast-track coronavirus vaccine draws outrage over safety. Nature 2020; 584(7821): 334-5.
[http://dx.doi.org/10.1038/d41586-020-02386-2] [PMID: 32782400]
[33]
Kyriakidis NC. López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ Vaccines 2021; 6(1): 28.
[http://dx.doi.org/10.1038/s41541-021-00292-w]
[34]
Two more Russian vaccines: What we do and do not know. Available from: https://www.dw.com/en/two-more-russian-vaccines-what-we-do-and-dont-know/a-56811025 [Accessed April 23 2021]
[35]
Mercado NB, Zahn R, Wegmann F, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature 2020; 586(7830): 583-8.
[http://dx.doi.org/10.1038/s41586-020-2607-z] [PMID: 32731257]
[36]
Mahase E. COVID-19: Johnson and Johnson vaccine trial is paused because of unexplained illness in participant. BMJ 2020; 371: m3967.
[http://dx.doi.org/10.1136/bmj.m3967] [PMID: 33051241]
[37]
Gao Q, Bao L, Mao H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020; 369(6499): 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[38]
Ucsf. How Effective Is the Johnson & Johnson COVID-19 Vaccine? 'Here's What You Should Know 2021. Available from: https://www.ucsf.edu/news/2021/03/420071/how-effective-johnson-johnson-covid-19-vaccine-heres-what-you-should-know [Accessed April 23 2020]
[39]
Polack FP, Thomas SJ, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020; 383(27): 2603-15.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[40]
Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of COVID-19 vaccines against the B16172 (Delta) variant. N Engl J Med 2021; 385(7): 585-94.
[http://dx.doi.org/10.1056/NEJMoa2108891] [PMID: 34289274]
[41]
Abu-Raddad LJ, Chemaitelly H, Yassine HM, et al. Pfizer-BioNTech mRNA BNT162b2 COVID-19 vaccine protection against variants of concern after one versus two doses. J Travel Med 2021.
[http://dx.doi.org/10.1093/jtm/taab083]
[42]
Thomas SJ, Moreira ED Jr, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med 2021; 385(19): 1761-73.
[http://dx.doi.org/10.1056/NEJMoa2110345] [PMID: 34525277]
[43]
Abu-Raddad LJ, Chemaitelly H, Butt AA. Effectiveness of the BNT162b2 COVID-19 vaccine against the B117 and B1351 variants. N Engl J Med 2021; 385(2): 187-9.
[http://dx.doi.org/10.1056/NEJMc2104974] [PMID: 33951357]
[44]
Nanduri S, Pilishvili T, Derado G, et al. Effectiveness of Pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant-National Healthcare Safety Network. MMWR Morb Mortal Wkly Rep 2021; 70(34): 1163-6.
[http://dx.doi.org/10.15585/mmwr.mm7034e3] [PMID: 34437519]
[45]
Dagan N, Barda N, Biron-Shental T, et al. Effectiveness of the BNT162b2 mRNA COVID-19 vaccine in pregnancy. Nat Med 2021; 27(10): 1693-5.
[http://dx.doi.org/10.1038/s41591-021-01490-8] [PMID: 34493859]
[46]
Baden LR, El Sahly HM, Essink B, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021; 384(5): 403-16.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[47]
Kandikattu HK, Yadavalli CS, Venkateshaiah SU, Mishra A. Vaccine efficacy in mutant SARS-CoV-2 variants. Int J Cell Biol Physiol 2021; 4(1-2): 1-12.
[PMID: 34790972]
[48]
Graham F. Daily briefing: why the delta variant spreads so fast. Nature 2021.
[http://dx.doi.org/10.1038/d41586-021-02032-5]
[49]
Callaway E, Mallapaty S. Latest results put Oxford-AstraZeneca COVID vaccine back on track. Nature 2021.
[http://dx.doi.org/10.1038/d41586-021-00836-z]
[50]
Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 COVID-19 vaccine against the B1351 variant. N Engl J Med 2021; 384(20): 1885-98.
[http://dx.doi.org/10.1056/NEJMoa2102214] [PMID: 33725432]
[51]
Tanriover MD, Doğanay HL, Akova M, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021; 398(10296): 213-22.
[http://dx.doi.org/10.1016/S0140-6736(21)01429-X] [PMID: 34246358]
[52]
Mahmud MS, Kamrujjaman M, Adan MMY, et al. Vaccine efficacy and SARS-CoV-2 control in California and U.S. during the session 2020-2026: A modeling study. Infect Dis Model 2022; 7(1): 62-81.
[http://dx.doi.org/10.1016/j.idm.2021.11.002] [PMID: 34869959]
[53]
Melo-González F, Soto JA, González LA, et al. Recognition of variants of concern by antibodies and T cells induced by a SARS-CoV-2 inactivated vaccine. Front Immunol 2021; 12: 747830.
[http://dx.doi.org/10.3389/fimmu.2021.747830] [PMID: 34858404]
[54]
Vacharathit V, Aiewsakun P, Manopwisedjaroen S, et al. CoronaVac induces lower neutralising activity against variants of concern than natural infection. Lancet Infect Dis 2021; 21(10): 1352-4.
[http://dx.doi.org/10.1016/S1473-3099(21)00568-5] [PMID: 34454652]
[55]
Liu X, Shaw RH, Stuart ASV, et al. Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): A single-blind, randomised, non-inferiority trial. Lancet 2021; 398(10303): 856-69.
[http://dx.doi.org/10.1016/S0140-6736(21)01694-9] [PMID: 34370971]
[56]
Momin T, Kansagra K, Patel H, et al. Safety and Immunogenicity of a DNA SARS-CoV-2 vaccine (ZyCoV-D): Results of an open-label, non-randomized phase I part of phase I/II clinical study by intradermal route in healthy subjects in India. EClinicalMedicine 2021; 38: 101020.
[http://dx.doi.org/10.1016/j.eclinm.2021.101020] [PMID: 34308319]
[57]
Heath PT, Galiza EP, Baxter DN, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med 2021; 385(13): 1172-83.
[http://dx.doi.org/10.1056/NEJMoa2107659] [PMID: 34192426]
[58]
Shinde V, Bhikha S, Hoosain Z, et al. Efficacy of NVX-CoV2373 COVID-19 vaccine against the B.1.351 variant. N Engl J Med 2021; 384(20): 1899-909.
[http://dx.doi.org/10.1056/NEJMoa2103055] [PMID: 33951374]
[59]
Al Kaabi N, Zhang Y, Xia S, et al. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults: A randomized clinical trial. JAMA 2021; 326(1): 35-45.
[http://dx.doi.org/10.1001/jama.2021.8565] [PMID: 34037666]
[60]
Xia S, Zhang Y, Wang Y, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021; 21(1): 39-51.
[http://dx.doi.org/10.1016/S1473-3099(20)30831-8] [PMID: 33069281]
[61]
Adam D. What scientists know about new, fast-spreading coronavirus variants. Nature 2021; 594(7861): 19-20.
[http://dx.doi.org/10.1038/d41586-021-01390-4] [PMID: 34031583]
[62]
Chen J, Lu H. New challenges to fighting COVID-19: Virus variants, potential vaccines, and development of antivirals. Biosci Trends 2021; 15(2): 126-8.
[http://dx.doi.org/10.5582/bst.2021.01092] [PMID: 33746183]
[63]
Collier DA, De Marco A, Ferreira IATM, et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature 2021; 593(7857): 136-41.
[http://dx.doi.org/10.1038/s41586-021-03412-7] [PMID: 33706364]
[64]
Hoffmann M, Arora P. Groß R, et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell 2021; 184(9): 2384-2393.e12.
[http://dx.doi.org/10.1016/j.cell.2021.03.036] [PMID: 33794143]
[65]
Muik A, Wallisch AK. Sänger B, et al. Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science 2021; 371(6534): 1152-3.
[http://dx.doi.org/10.1126/science.abg6105] [PMID: 33514629]
[66]
Liu J, Liu Y, Xia H, et al. BNT162b2-elicited neutralization of B.1.617 and other SARS-CoV-2 variants. Nature 2021; 596(7871): 273-5.
[http://dx.doi.org/10.1038/s41586-021-03693-y] [PMID: 34111888]
[67]
Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 2021; 184(9): 2348-2361.e6.
[http://dx.doi.org/10.1016/j.cell.2021.02.037] [PMID: 33730597]
[68]
Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021; 596(7871): 276-80.
[http://dx.doi.org/10.1038/s41586-021-03777-9] [PMID: 34237773]
[69]
Shen X, Tang H, McDanal C, et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral spike vaccines. Cell Host Microbe 2021; 29(4): 529-539.e3.
[http://dx.doi.org/10.1016/j.chom.2021.03.002] [PMID: 33705729]
[70]
Wu K, Werner AP, Koch M, et al. Serum neutralizing activity elicited by mRNA-1273 vaccine. N Engl J Med 2021; 384(15): 1468-70.
[http://dx.doi.org/10.1056/NEJMc2102179] [PMID: 33730471]
[71]
Edara VV, Pinsky BA, Suthar MS, et al. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N Engl J Med 2021; 385: 664-6.
[http://dx.doi.org/10.1056/NEJMc2107799]
[72]
Supasa P, Zhou D, Dejnirattisai W, et al. Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell 2021; 184(8): 2201-2211.e7.
[http://dx.doi.org/10.1016/j.cell.2021.02.033] [PMID: 33743891]
[73]
Dejnirattisai W, Zhou D, Supasa P, et al. Antibody evasion by the P.1 strain of SARS-CoV-2. Cell 2021; 184(11): 2939-2954.e9.
[http://dx.doi.org/10.1016/j.cell.2021.03.055] [PMID: 33852911]
[74]
Gushchin VA, Dolzhikova IV, Shchetinin AM, et al. Neutralizing activity of sera from sputnik v-vaccinated people against variants of concern (VOC: B.1.1.7, B.1.351, P.1, B.1.617.2, B.1.617.3) and Moscow endemic SARS-CoV-2 variants. Vaccines (Basel) 2021; 9(7): 779.
[http://dx.doi.org/10.3390/vaccines9070779] [PMID: 34358195]
[75]
U.S. Food and Drug Administration, 2020 .D.A.'F.D.A.'s Approval of Veklury (Remdesivir) for the Treatment of COVID-19-The Science of Safety and Effectiveness. 2020. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/fdas-approval-veklury-remdesivir-treatment-covid-19-science-safety-and-effectiveness [Accessed May 22, 2021]
[76]
Abd-Elsalam S, Salama M, Soliman S, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am J Trop Med Hyg 2021; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[77]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of combined sofosbuvir and daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2022; 20(2): 291-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[78]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[79]
Dabbous HM, Abd-Elsalam Sh, El-Sayed M, Sherief A, Ebeid F. Efficacy of favipiravir in COVID-19 treatment: A multicenter randomized study. Arch Virol 2021; 166: 494-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[80]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: A Randomized, Multicenter Trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy