Generic placeholder image

Current Rheumatology Reviews

Editor-in-Chief

ISSN (Print): 1573-3971
ISSN (Online): 1875-6360

Review Article

De Novo Vasculitis after COVID-19 Vaccination

Author(s): Xiaoxiao Tang, Fei Liu, Qiuyu Li, Haidong Fu, Jingjing Wang and Jianhua Mao*

Volume 19, Issue 2, 2023

Published on: 03 September, 2022

Page: [151 - 158] Pages: 8

DOI: 10.2174/1573397118666220817092235

Price: $65

Abstract

Background: The coronavirus disease 2019 (COVID-19) pandemic continues to spread around the world. Vaccinations have been administered globally and have been proven to be safe and effective. However, vasculitis has been reported as an adverse event occurring after COVID-19 vaccination.

Methods: In this review, we analyzed the literature to identify original articles that reported on patients who developed vasculitis following COVID-19 vaccination and summarized their clinical manifestations. PubMed and Web of Knowledge were searched to identify relevant studies.

Results: A total of 27 patients who developed vasculitis following COVID-19 vaccination were identified from 21 studies. The involved organs included the skin and kidney. The main clinical features of patients whose skin was affected were papules, maculopapular rashes, and plaques. Most of the patients exhibited small vessel vasculitis and single-organ vasculitis; these were resolved within one month. Patients whose kidneys were affected exhibited vasculitis, including anti-neutrophil cytoplasmic antibody glomerulonephritis and IgA nephritis. Most patients were treated with corticosteroid, rituximab, and cyclophosphamide, and one patient needed hemodialysis. The renal function of most patients was improved or recovered, but one patient needed maintenance dialysis.

Conclusion: Vasculitis was rarely reported after COVID-19 vaccine administration. It often manifested as cutaneous small-vessel vasculitis or glomerulonephritis. Notably, when a patient demonstrates hematuria, proteinuria, and acute kidney injury after COVID-19 vaccination, there is a possibility that the patient could have developed vasculitis. Skin-related problems were quickly resolved, while kidney-related problems may progress to chronic kidney disease.

Keywords: COVID-19, vaccine, vaccination, vasculitis, glomerulonephritis, immunization.

Graphical Abstract

[1]
World Health Organization. Over views of coronavirus WHO 2022. Available from: covid19.who.int
[2]
Fiolet T, Kherabi Y, MacDonald CJ, Ghosn J, Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin Microbiol Infect 2022; 28(2): 202-21.
[http://dx.doi.org/10.1016/j.cmi.2021.10.005] [PMID: 34715347]
[3]
Asghar N, Mumtaz H, Syed AA, et al. Safety, efficacy, and immunogenicity of COVID-19 vaccines; A systematic review. Immunol Med 2022; 1-13.
[http://dx.doi.org/10.1080/25785826.2022.2068331] [PMID: 35491898]
[4]
Gambichler T, Boms S, Susok L, et al. Cutaneous findings following COVID-19 vaccination: Review of world literature and own experience. J Eur Acad Dermatol Venereol 2022; 36(2): 172-80.
[http://dx.doi.org/10.1111/jdv.17744] [PMID: 34661927]
[5]
Klomjit N, Alexander MP, Fervenza FC, et al. COVID-19 vaccination and glomerulonephritis. Kidney Int Rep 2021; 6(12): 2969-78.
[http://dx.doi.org/10.1016/j.ekir.2021.09.008] [PMID: 34632166]
[6]
Watanabe T. Vasculitis following influenza vaccination: A review of the literature. Curr Rheumatol Rev 2017; 13(3): 188-96.
[http://dx.doi.org/10.2174/1573397113666170517155443] [PMID: 28521688]
[7]
Agmon LN, Paz Z, Israeli E, Shoenfeld Y. Vaccines and autoimmunity. Nat Rev Rheumatol 2009; 5(11): 648-52.
[http://dx.doi.org/10.1038/nrrheum.2009.196] [PMID: 19865091]
[8]
Jeffs LS, Nitschke J, Tervaert JW, Peh CA, Hurtado PR. Viral RNA in the influenza vaccine may have contributed to the development of ANCA-associated vasculitis in a patient following immunisation. Clin Rheumatol 2016; 35(4): 943-51.
[http://dx.doi.org/10.1007/s10067-015-3073-0] [PMID: 26361945]
[9]
Kharkar V, Vishwanath T, Mahajan S, Joshi R, Gole P. Asymmetrical cutaneous vasculitis following COVID-19 vaccination with unusual eosinophil preponderance. Clin Exp Dermatol 2021; 46(8): 1596-7.
[http://dx.doi.org/10.1111/ced.14797] [PMID: 34115904]
[10]
Bostan E, Gulseren D, Gokoz O. New-onset leukocytoclastic vasculitis after COVID-19 vaccine. Int J Dermatol 2021; 60(10): 1305-6.
[http://dx.doi.org/10.1111/ijd.15777] [PMID: 34241833]
[11]
Hines AM, Murphy N, Mullin C, Barillas J, Barrientos JC. Henoch-Schönlein purpura presenting post COVID-19 vaccination. Vaccine 2021; 39(33): 4571-2.
[http://dx.doi.org/10.1016/j.vaccine.2021.06.079] [PMID: 34247902]
[12]
Larson V, Seidenberg R, Caplan A, Brinster NK, Meehan SA, Kim RH. Clinical and histopathological spectrum of delayed adverse cutaneous reactions following COVID-19 vaccination. J Cutan Pathol 2022; 49(1): 34-41.
[http://dx.doi.org/10.1111/cup.14104] [PMID: 34292611]
[13]
Dash S, Behera B, Sethy M, Mishra J, Garg S. COVID-19 vaccine-induced urticarial vasculitis. Dermatol Ther 2021; 34(5): e15093.
[http://dx.doi.org/10.1111/dth.15093] [PMID: 34369046]
[14]
Berry CT, Eliliwi M, Gallagher S, et al. Cutaneous small vessel vasculitis following single-dose Janssen Ad26.COV2.S vaccination. JAAD Case Rep 2021; 15: 11-4.
[http://dx.doi.org/10.1016/j.jdcr.2021.07.002] [PMID: 34337124]
[15]
Vassallo C, Boveri E, Brazzelli V, et al. Cutaneous lymphocytic vasculitis after administration of COVID-19 mRNA vaccine. Dermatol Ther 2021; 34(5): e15076.
[http://dx.doi.org/10.1111/dth.15076] [PMID: 34327795]
[16]
Okuda S, Hirooka Y, Sugiyama M. Propylthiouracil-induced antineutrophil cytoplasmic antibody-associated vasculitis after COVID-19 vaccination. Vaccines 2021; 9(8): 842.
[http://dx.doi.org/10.3390/vaccines9080842] [PMID: 34451967]
[17]
Kar BR, Singh BS, Mohapatra L, Agrawal I. Cutaneous small-vessel vasculitis following COVID-19 vaccine. J Cosmet Dermatol 2021; 20(11): 3382-3.
[http://dx.doi.org/10.1111/jocd.14452] [PMID: 34529877]
[18]
Sandhu S, Bhatnagar A, Kumar H, et al. Leukocytoclastic vasculitis as a cutaneous manifestation of ChAdOx1 nCoV-19 corona virus vaccine (recombinant). Dermatol Ther 2021; 34(6): e15141.
[http://dx.doi.org/10.1111/dth.15141] [PMID: 34546608]
[19]
Badier L, Toledano A, Porel T, et al. IgA vasculitis in adult patient following vaccination by ChadOx1 nCoV-19. Autoimmun Rev 2021; 20(11): 102951.
[http://dx.doi.org/10.1016/j.autrev.2021.102951] [PMID: 34509658]
[20]
Cavalli G, Colafrancesco S, De Luca G, et al. Cutaneous vasculitis following COVID-19 vaccination. Lancet Rheumatol 2021; 3(11): e743-4.
[http://dx.doi.org/10.1016/S2665-9913(21)00309-X] [PMID: 34611627]
[21]
Sirufo MM, Raggiunti M, Magnanimi LM, Ginaldi L, De Martinis M. Henoch-Schönlein purpura following the first dose of COVID-19 viral vector vaccine: A case report. Vaccines (Basel) 2021; 9(10): 1078.
[http://dx.doi.org/10.3390/vaccines9101078] [PMID: 34696186]
[22]
Bencharattanaphakhi R, Rerknimitr P. Sinovac COVID-19 vaccine-induced cutaneous leukocytoclastic vasculitis. JAAD Case Rep 2021; 18: 1-3.
[http://dx.doi.org/10.1016/j.jdcr.2021.10.002] [PMID: 34660867]
[23]
Sekar A, Campbell R, Tabbara J, Rastogi P. ANCA glomerulonephritis after the Moderna COVID-19 vaccination. Kidney Int 2021; 100(2): 473-4.
[http://dx.doi.org/10.1016/j.kint.2021.05.017] [PMID: 34081948]
[24]
Anderegg MA, Liu M, Saganas C, et al. De novo vasculitis after mRNA-1273 (Moderna) vaccination. Kidney Int 2021; 100(2): 474-6.
[http://dx.doi.org/10.1016/j.kint.2021.05.016] [PMID: 34087251]
[25]
Shakoor MT, Birkenbach MP, Lynch M. ANCA-associated vasculitis following pfizer-BioNTech COVID-19 vaccine. Am J Kidney Dis 2021; 78(4): 611-3.
[http://dx.doi.org/10.1053/j.ajkd.2021.06.016] [PMID: 34280507]
[26]
Villa M, Díaz-Crespo F, Pérez de José A, et al. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: Casualty or causality? Kidney Int 2021; 100(4): 937-8.
[http://dx.doi.org/10.1016/j.kint.2021.07.026] [PMID: 34416184]
[27]
Dube GK, Benvenuto LJ, Batal I. Antineutrophil cytoplasmic autoantibody-associated glomerulonephritis following the pfizer-BioNTech COVID-19 vaccine. Kidney Int Rep 2021; 6(12): 3087-9.
[http://dx.doi.org/10.1016/j.ekir.2021.08.012] [PMID: 34423176]
[28]
Hakroush S, Tampe B. Case Report: ANCA-associated vasculitis presenting with rhabdomyolysis and pauci-immune crescentic glomerulonephritis after pfizer-BioNTech COVID-19 mRNA vaccination. Front Immunol 2021; 12: 762006.
[http://dx.doi.org/10.3389/fimmu.2021.762006] [PMID: 34659268]
[29]
Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised international Chapel hill consensus conference nomenclature of vasculitides. Arthritis Rheum 2013; 65(1): 1-11.
[http://dx.doi.org/10.1002/art.37715] [PMID: 23045170]
[30]
Younger DS. Overview of the vasculitides. Neurol Clin 2019; 37(2): 171-200.
[http://dx.doi.org/10.1016/j.ncl.2019.01.005] [PMID: 30952404]
[31]
Zafrir Y, Agmon LN, Shoenfeld Y. Post-influenza vaccination vasculitides: A possible new entity. J Clin Rheumatol 2009; 15(6): 269-70.
[http://dx.doi.org/10.1097/RHU.0b013e3181b56177] [PMID: 19734729]
[32]
Hoffman GS, Calabrese LH. Vasculitis: Determinants of disease patterns. Nat Rev Rheumatol 2014; 10(8): 454-62.
[http://dx.doi.org/10.1038/nrrheum.2014.89] [PMID: 24934189]
[33]
Baiu DC, Sandor M, Hart M. CD4+ T cells sensitized by vascular smooth muscle induce vasculitis, and interferon gamma is critical for the initiation of vascular pathology. Am J Pathol 2010; 177(6): 3215-23.
[http://dx.doi.org/10.2353/ajpath.2010.090985] [PMID: 20971729]
[34]
Toussirot É, Bereau M. Vaccination and induction of autoimmune diseases. Inflamm Allergy Drug Targets 2015; 14(2): 94-8.
[http://dx.doi.org/10.2174/1871528114666160105113046] [PMID: 26728772]
[35]
O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003; 2(9): 727-35.
[http://dx.doi.org/10.1038/nrd1176] [PMID: 12951579]
[36]
Duggal T, Segal P, Shah M, Carter-Monroe N, Manoharan P, Geetha D. Antineutrophil cytoplasmic antibody vasculitis associated with influenza vaccination. Am J Nephrol 2013; 38(2): 174-8.
[http://dx.doi.org/10.1159/000354084] [PMID: 23941822]
[37]
Skibinski DAG, Jones LA, Zhu YO, et al. Induction of human T-cell and cytokine responses following vaccination with a novel influenza vaccine. Sci Rep 2018; 8(1): 18007.
[http://dx.doi.org/10.1038/s41598-018-36703-7] [PMID: 30573748]
[38]
Christian LM, Porter K, Karlsson E, Schultz-Cherry S. Proinflammatory cytokine responses correspond with subjective side effects after influenza virus vaccination. Vaccine 2015; 33(29): 3360-6.
[http://dx.doi.org/10.1016/j.vaccine.2015.05.008] [PMID: 26027906]
[39]
Binda V, Moroni G, Messa P. ANCA-associated vasculitis with renal involvement. J Nephrol 2018; 31(2): 197-208.
[http://dx.doi.org/10.1007/s40620-017-0412-z] [PMID: 28560688]
[40]
Geetha D, Jefferson JA. ANCA-associated vasculitis: Core curriculum 2020. Am J Kidney Dis 2020; 75(1): 124-37.
[http://dx.doi.org/10.1053/j.ajkd.2019.04.031] [PMID: 31358311]
[41]
Hirsch JS, Ng JH, Ross DW, et al. Acute kidney injury in patients hospitalized with COVID-19. Kidney Int 2020; 98(1): 209-18.
[http://dx.doi.org/10.1016/j.kint.2020.05.006] [PMID: 32416116]
[42]
Lebedev L, Sapojnikov M, Wechsler A, et al. Minimal change disease following the pfizer-BioNTech COVID-19 vaccine. Am J Kidney Dis 2021; 78(1): 142-5.
[http://dx.doi.org/10.1053/j.ajkd.2021.03.010] [PMID: 33839200]
[43]
Leclerc S, Royal V, Lamarche C, Laurin LP. Minimal change disease with severe acute kidney injury following the oxford-astrazeneca COVID-19 vaccine: A case report. Am J Kidney Dis 2021; 78(4): 607-10.
[http://dx.doi.org/10.1053/j.ajkd.2021.06.008] [PMID: 34242687]
[44]
Aydın MF, Yıldız A, Oruç A, et al. Relapse of primary membranous nephropathy after inactivated SARS-CoV-2 virus vaccination. Kidney Int 2021; 100(2): 464-5.
[http://dx.doi.org/10.1016/j.kint.2021.05.001] [PMID: 33992674]
[45]
Sacker A, Kung V, Andeen N. Anti-GBM nephritis with mesangial IgA deposits after SARS-CoV-2 mRNA vaccination. Kidney Int 2021; 100(2): 471-2.
[http://dx.doi.org/10.1016/j.kint.2021.06.006] [PMID: 34119511]
[46]
Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in Chile. N Engl J Med 2021; 385(10): 875-84.
[http://dx.doi.org/10.1056/NEJMoa2107715] [PMID: 34233097]
[47]
Tada T, Zhou H, Samanovic MI, et al. Neutralization of SARS-CoV-2 variants by mRNA and adenoviral vector vaccine-elicited antibodies. Front Immunol 2022; 13: 797589.
[http://dx.doi.org/10.3389/fimmu.2022.797589] [PMID: 35350781]
[48]
Nakra NA, Blumberg DA, Herrera-Guerra A, Lakshminrusimha S. Multi-System Inflammatory Syndrome in Children (MIS-C) following SARS-CoV-2 infection: Review of clinical presentation, hypothetical pathogenesis, and proposed management. Children 2020; 7(7): E69.
[http://dx.doi.org/10.3390/children7070069] [PMID: 32630212]
[49]
Henderson LA, Yeung RSM. MIS-C: Early lessons from immune profiling. Nat Rev Rheumatol 2021; 17(2): 75-6.
[http://dx.doi.org/10.1038/s41584-020-00566-y] [PMID: 33349661]
[50]
Poussaint TY, LaRovere KL, Newburger JW, et al. Multisystem inflammatory-like syndrome in a child following COVID-19 mRNA vaccination. Vaccines 2021; 10(1): 43.
[http://dx.doi.org/10.3390/vaccines10010043] [PMID: 35062704]
[51]
Kondo M, Yamanaka K. Possible HSP reactivation post-COVID-19 vaccination and booster. Clin Case Rep 2021; 9(10): e05032.
[http://dx.doi.org/10.1002/ccr3.5032] [PMID: 34745629]
[52]
Baier E, Olgemöller U, Biggemann L, Buck C, Tampe B. Dual-positive MPO- and PR3-ANCA-associated vasculitis following SARS-CoV-2 mRNA booster vaccination: A case report and systematic review. Vaccines (Basel) 2022; 10(5): 653.
[http://dx.doi.org/10.3390/vaccines10050653] [PMID: 35632410]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy