Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Research Article

Predicting the Anticancer Activity of 2-alkoxycarbonylallyl Esters against MDA-MB-231 Breast Cancer - QSAR, Machine Learning and Molecular Docking

Author(s): Babatunde Samuel Obadawo, Oluwatoba Emmanuel Oyeneyin*, Adesoji Alani Olanrewaju, Damilohun Samuel Metibemu, Sunday Adeola Emaleku, Taoreed Olakunle Owolabi and Nureni Ipinloju

Volume 19, Issue 6, 2022

Published on: 15 September, 2022

Article ID: e110822207398 Pages: 14

DOI: 10.2174/1570163819666220811094019

Price: $65

Abstract

Background: The continuous increase in mortality of breast cancer and other forms of cancer due to the failure of current drugs, resistance, and associated side effects calls for the development of novel and potent drug candidates.

Methods: In this study, we used the QSAR and extreme learning machine models in predicting the bioactivities of some 2-alkoxycarbonylallyl esters as potential drug candidates against MDA-MB-231 breast cancer. The lead candidates were docked at the active site of a carbonic anhydrase target.

Results: The QSAR model of choice satisfied the recommended values and was statistically significant. The R2pred (0.6572) was credence to the predictability of the model. The extreme learning machine ELM-Sig model showed excellent performance superiority over other models against MDAMB- 231 breast cancer. Compound 22 with a docking score of 4.67 kcal mol-1 displayed better inhibition of the carbonic anhydrase protein, interacting through its carbonyl bonds.

Conclusion: The extreme learning machine’s ELM-Sig model showed excellent performance superiority over other models and should be exploited in the search for novel anticancer drugs.

Keywords: Breast cancer, Quantitative structure-activity relationship, Extreme learning machine, Molecular docking, carbonic anhydrase receptor

Graphical Abstract

[1]
Ronayne CT, Solano LN, Nelson GL, et al. Synthesis and biological evaluation of 2-alkoxycarbonylallyl esters as potential anticancer agents. Bioorg Med Chem Lett 2017; 27(4): 776-80.
[http://dx.doi.org/10.1016/j.bmcl.2017.01.037] [PMID: 28129978]
[2]
Trusted guidance when you need us most. Because no one should face breast cancer alone. Available from: https://www.breastcancer.org
[3]
Seyfried TN, Huysentruyt LC. On the origin of cancer metastasis. Crit Rev Oncog 2013; 18(1-2): 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[4]
Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metastasis Rev 2019; 38(1-2): 65-77.
[http://dx.doi.org/10.1007/s10555-019-09799-0] [PMID: 31076951]
[5]
Supuran CT. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors. J Exp Pharmacol 2020; 12: 603-17.
[http://dx.doi.org/10.2147/JEP.S265620] [PMID: 33364855]
[6]
Mboge MY, McKenna R, Frost SC. Advances in anti-cancer drug development targeting carbonic anhydrase IX and XII. Top Anticancer Res 2015; 5: 3-42.
[7]
Krasavin M, Kalinin S, Sharonova T, Supuran CT. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents. J Enzyme Inhib Med Chem 2020; 35(1): 1555-61.
[http://dx.doi.org/10.1080/14756366.2020.1801674] [PMID: 32746643]
[8]
Aimene Y, Eychenne R, Rodriguez F, et al. Synthesis, crystal structure, inhibitory activity and molecular docking of coumarins/sulfonamides containing triazolyl pyridine moiety as potent selective carbonic anhydrase IX and XII inhibitors. Crystals 2021; 11(9): 1076.
[http://dx.doi.org/10.3390/cryst11091076]
[9]
Nocentini A, Lucidi A, Perut F, et al. α,γ-diketocarboxylic acids and their esters act as carbonic anhydrase IX and XII selective inhibitors. ACS Med Chem Lett 2019; 10(4): 661-5.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00023] [PMID: 30996814]
[10]
Singh P, Kumar SD, Sridhar GN, et al. Ureidosulfocoumarin derivatives as selective and potent carbonic anhydrase IX and XII inhibitors. ChemMedChem 2022; 17(5): e202100725.
[http://dx.doi.org/10.1002/cmdc.202100725] [PMID: 34898017]
[11]
Obadawo BS, Oyeneyin OE, Anifowose MM, Fagbohungbe KH, Amoko JS. QSAR evaluation of c-8-tert-butyl substituted 4-aryl-6,7,8,9- tetrahydrobenzo[4,5]thieno[3, 2-e] [1,2,4]triazolo [4,3-a] pyrimidin-5(4h)-one derivatives as potent antienterovirus agents. Sci Lett 2020; 8(1): 28-35.
[12]
Obadawo BS, Asogwa U, Ali AA. QSAR studies of BBR analogues against coxsackievirus B1. Bull Natl Res Cent 2022; 46(1): 14.
[http://dx.doi.org/10.1186/s42269-022-00698-z]
[13]
Owolabi TO, Gondal MA. Development of hybrid extreme learning machine based chemo-metrics for precise quantitative analysis of LIBS spectra using internal reference pre-processing method. Anal Chim Acta 2018; 1030: 33-41.
[http://dx.doi.org/10.1016/j.aca.2018.05.029] [PMID: 30032771]
[14]
Shamsah SMI, Owolabi TO. modeling the maximum magnetic entropy change of doped manganite using a grid search-based extreme learning machine and hybrid gravitational search-based support vector regression. Crystals 2020; 10(4): 310.
[http://dx.doi.org/10.3390/cryst10040310]
[15]
Owolabi TO, Saleh TA, Olubosede O, Souiyah M, Oyeneyin OE. Modeling the specific surface area of doped spinel ferrite nanomaterials using hybrid intelligent computational method. J Nanomater 2021; 2021: 1-13.
[http://dx.doi.org/10.1155/2021/9677423]
[16]
Oyeneyin OE, Obadawo BS, Metibemu DS, et al. An exploration of the antiproliferative potential of chalcones and dihydropyrazole derivatives in prostate cancer via androgen receptor: combined QSAR, machine learning, and molecular docking techniques. Phys Chem Res 2022; 10: 211-23.
[http://dx.doi.org/10.22036/pcr.2021.293051.1932]
[17]
Oyeneyin OE, Obadawo BS, Orimoloye SM, et al. Prediction of inhibition activity of BET bromodomain inhibitors using grid search based extreme learning machine and molecular docking. Lett Drug Des Discov 2021; 18(11): 1039-49.
[http://dx.doi.org/10.2174/1570180818666210521215433]
[18]
Eniafe GO, Metibemu DS, Omotuyi OI, et al. Agemone mexicana flavanones; apposite inverse agonists of the β2-adrenergic receptor in asthma treatment. Bioinformation 2018; 14(2): 60-7.
[http://dx.doi.org/10.6026/97320630014060] [PMID: 29618901]
[19]
Oyeneyin OE, Abayomi TG, Ipinloju N, Agbaffa EB, Akerele DD, Arobadade OA. Investigation of amino chalcone derivatives as anti-proliferative agents against MCF-7 breast cancer cell lines-DFT, molecular docking and pharmacokinetics studies. Adv J Chem-Sect A 2021; 4(4): 288-99.
[http://dx.doi.org/10.22034/AJCA.2021.285869.1261]
[20]
Oyeneyin OE, Obadawo BS, Olanrewaju AA, et al. Predicting the bioactivity of 2-alkoxycarbonylallyl esters as potential antiproliferative agents against pancreatic cancer (MiaPaCa-2) cell lines: GFA-based QSAR and ELM-based models with molecular docking. J Genet Eng Biotechnol 2021; 19(1): 38.
[http://dx.doi.org/10.1186/s43141-021-00133-2] [PMID: 33689046]
[21]
Shao Y, Molnar LF. SPARTAN 14’, build 1.01. Irvine (CA). 2014.
[22]
Becke AD. Density‐functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993; 98(7): 5648-52.
[http://dx.doi.org/10.1063/1.464913]
[23]
Yap CW. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput Chem 2011; 32(7): 1466-74.
[http://dx.doi.org/10.1002/jcc.21707] [PMID: 21425294]
[24]
Ballabio D, Consonni V, Mauri A, Claeys-Bruno M, Sergent M, Todeschini R. A novel variable reduction method adapted from space-filling designs. Chemom Intell Lab Syst 2014; 136: 147-54.
[http://dx.doi.org/10.1016/j.chemolab.2014.05.010]
[25]
Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969; 11(1): 137-48.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[26]
Obadawo BS, Oyeneyin OE, Anifowose MM, Fagbohungbe KH, Amoko JS. QSAR modeling of novel substituted 4- Phenylisoquinolinones as potent BET bromodomain (BRD4-BD1) inhibitors. Biom Lett 2019; 5: 69-78.
[27]
Khaled KF. Modeling corrosion inhibition of iron in acid medium by genetic function approximation method: A QSAR model. Corros Sci 2011; 53(11): 3457-65.
[http://dx.doi.org/10.1016/j.corsci.2011.01.035]
[28]
Ikwu FA, Isyaku Y, Obadawo BS, Lawal HA, Ajibowu SA. In silico design and molecular docking study of CDK2 inhibitors with potent cytotoxic activity against HCT116 colorectal cancer cell line. J Genet Eng Biotechnol 2020; 18(1): 51.
[http://dx.doi.org/10.1186/s43141-020-00066-2] [PMID: 32930901]
[29]
Tropsha A. Best practices for QSAR model development, validation, and exploitation. Mol Inform 2010; 29(6-7): 476-88.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[30]
Veerasamy R, Rajak H, Jain A, Sivadasan S, Christapher P. Validation of QSAR Models - Strategies and importance. Int J Drug Des Discov 2011; 2: 511-9.
[31]
Huang GB, Zhu QY, Siew CK. Extreme learning machine: Theory and applications. Neurocomputing 2006; 70(1-3): 489-501.
[http://dx.doi.org/10.1016/j.neucom.2005.12.126]
[32]
Wang Y, Runhua L, Yuqi C. Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine. Spectrochim Acta B At Spectrosc 2021; 177: 106077.
[http://dx.doi.org/10.1016/j.sab.2021.106077]
[33]
Owolabi TO. Extreme learning machine and swarm- based support vector regression methods for predicting crystal lattice parameters of pseudo-cubic/cubic perovskites extreme learning machine and swarm-based support vector regression methods for predicting crystal lat. J Appl Phys 2020; 24: 245107.
[http://dx.doi.org/10.1063/5.0008809]
[34]
Angeli A, Trallori E, Ferraroni M, Di Cesare ML, Ghelardini C, Supuran CT. Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur J Med Chem 2018; 157: 1214-22.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.096] [PMID: 30193219]
[35]
Protein data Bank, 6h3q Available from: https://www.rcsb.org/structure/6h3q
[36]
Dash R, Hosen SMZ, Karim MR, et al. In silico analysis of indole-3-carbinol and its metabolite DIM as EGFR tyrosine kinase inhibitors in platinum resistant ovarian cancer vis a vis ADME/T property analysis. J Appl Pharm Sci 2015; 5(11): 73-9.
[http://dx.doi.org/10.7324/JAPS.2015.501112]
[37]
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 2013; 27(3): 221-34.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[38]
Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 2010; 6(5): 1509-19.
[http://dx.doi.org/10.1021/ct900587b] [PMID: 26615687]
[39]
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M. Epik: A software program for pK(a) prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 2007; 21(12): 681-91.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy